1
|
Rodrigues BCG, de Mello BS, Grangeiro LC, Dussan KJ, Sarti A. The most important technologies and highlights for biogas production worldwide. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2025; 75:87-108. [PMID: 39186308 DOI: 10.1080/10962247.2024.2393192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Bioenergy or green fuel has been considered the fuel of the future for being a type of renewable energy that contributes to the preservation of the environment as it helps to reduce greenhouse gas emissions. In this way, biogas offers a potential alternative to fossil fuels from anaerobic digestion (AD) bioprocess, which allows the action of several microorganisms in the transformation of substrates into biogas and secondary bioproducts. Over the years, researchers have discussed that low yields in AD are associated with different factors such as type of wastewater, reactor configuration, substrate concentration, temperature, organic loading rates, and biomass concentration inside of the reactor. In this way, to better conduct the AD, studies point to the reactor configuration as one of the factors in the determination of high biogas production for a long period. Understanding and knowing the type of reactor and how the parameters such as biomass accumulation and immobilization, pH, or temperature occur in the system would provide information and can help to improve the bioenergy production in different systems. Moreover, research opportunities about different technologies are essential for the anaerobic digestion of many substrates and the stability of interest production. Thus, this type of scientific study gives a broad overview of the principal systems used in the AD process and information about the circular economy in the production of biogas in the world. Important considerations are highlighted.Implications: The review paper provides information about the scenario of biogas in the world state-of-art and the biogas production from AD. Afterward, an extensive analysis of different and principal types of reactors applied to the AD process, aimed at presenting an overview of the advantages and disadvantages of each configuration intending to gain new insights to improve traditional reactors or propose novel ones. This article enables us to have a perspective about the different technologies available and about new alternatives from an operational point of view for bioenergy from AD, not only in bench studies or pilot scale studies but also at an industrial level. Thus, this type of scientific study gives a broad overview of the principal systems used in the AD process and information about the circular economy in the production of biogas in the world.
Collapse
Affiliation(s)
- Brenda Clara Gomes Rodrigues
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives- Institute of Chemistry - CEMPEQC, São Paulo State University (UNESP), São Paulo, Brazil
| | - Bruna Sampaio de Mello
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives- Institute of Chemistry - CEMPEQC, São Paulo State University (UNESP), São Paulo, Brazil
| | - Luana Cardoso Grangeiro
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Kelly Johana Dussan
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives- Institute of Chemistry - CEMPEQC, São Paulo State University (UNESP), São Paulo, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), São Paulo, Brazil
| | - Arnaldo Sarti
- Department of Engineering, Physics, and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives- Institute of Chemistry - CEMPEQC, São Paulo State University (UNESP), São Paulo, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
2
|
Sandoval-García V, Ruano MV, Alliet M, Brepols C, Comas J, Harmand J, Heran M, Mannina G, Rodriguez-Roda I, Smets I, Robles A. Modeling MBR fouling: A critical review analysis towards establishing a framework for good modeling practices. WATER RESEARCH 2025; 268:122611. [PMID: 39579635 DOI: 10.1016/j.watres.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 11/25/2024]
Abstract
This study critically analyses filtration process modeling in membrane bioreactor (MBR) technology. More specifically, the variety of approaches and assumptions considered within a curated selection of resistance-in-series (RIS) filtration models found in the literature is critically assessed. Aimed to move towards good filtration process modeling practices, the basis for establishing a unified framework rooted in the fundamentals of membrane fouling is defined in this work, considering fouling classifications, process dynamics, and underlying processes used by different authors for elucidating membrane fouling phenomena. Systematically analyzing these factors should be considered as a basic step for efficiently comparing the performance of different models. This involves a detailed examination of the processes applied within each model and their interplay with the involved resistances and fouling types. A lack of homogeneity in RIS-based filtration modeling has been observed. To address this, basic guidelines towards good modeling practices are proposed aimed at balancing model accuracy and complexity. Specifically, seven model processes, six resistances, and three subgroups for types of fouling, further divided into four or five categories are proposed to guide the selection of processes and state variables in the model structure. Hence, this study facilitates the understanding of different approaches to be used during the modeling exercise of membrane filtration processes within the MBR field, not only to enhance the comprehensibility of available filtration models, but also to help the comparison, implementation, and adaptation of available models and the comprehensive development of new ones.
Collapse
Affiliation(s)
- V Sandoval-García
- Departament d'Enginyeria Química, ETSE-UV, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia 46100, Spain
| | - M V Ruano
- Departament d'Enginyeria Química, ETSE-UV, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia 46100, Spain
| | - M Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - C Brepols
- Erftverband, Am Erftverband 6, Bergheim 50126, Germany
| | - J Comas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Girona 17003, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, Girona 17071, Spain
| | - J Harmand
- LBE, INRAE, University Montpellier, Narbonne, France
| | - M Heran
- IEM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - G Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, Palermo 90128, Italy
| | - I Rodriguez-Roda
- LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, Girona 17071, Spain
| | - I Smets
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - A Robles
- Departament d'Enginyeria Química, ETSE-UV, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
3
|
Mannina G, Ni BJ, Makinia J, Harmand J, Alliet M, Brepols C, Ruano MV, Robles A, Heran M, Gulhan H, Rodriguez-Roda I, Comas J. Biological processes modelling for MBR systems: A review of the state-of-the-art focusing on SMP and EPS. WATER RESEARCH 2023; 242:120275. [PMID: 37413746 DOI: 10.1016/j.watres.2023.120275] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
A mathematical correlation between biomass kinetic and membrane fouling can improve the understanding and spread of Membrane Bioreactor (MBR) technology, especially in solving the membrane fouling issues. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the modelling of kinetic processes of biomass, focusing on modelling production and utilization of soluble microbial products (SMP) and extracellular polymeric substances (EPS). The key findings of this work show that the new conceptual approaches focus on the role of different bacterial groups in the formation and degradation of SMP/EPS. Even though several studies have been published regarding SMP modelling, there still needs to be more information due to the highly complicated SMP nature to facilitate the accurate modelling of membrane fouling. The EPS group has seldom been addressed in the literature, probably due to the knowledge deficiency concerning the triggers for production and degradation pathways in MBR systems, which require further efforts. Finally, the successful model applications showed that proper estimation of SMP and EPS by modelling approaches could optimise membrane fouling, which can influence the MBR energy consumption, operating costs, and greenhouse gas emissions.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christoph Brepols
- Erftverband, Wastewater Department, Am Erftverband 6, 50126 Bergheim, Germany
| | - M Victoria Ruano
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | - Angel Robles
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | - Marc Heran
- Institut Européen des Membranes, IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hazal Gulhan
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy; Environmental Engineering Department, Civil Engineering Faculty, Istanbul Technical University, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Ignasi Rodriguez-Roda
- LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Joaquim Comas
- LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain; Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
4
|
Anjum S, Aslam S, Hussain N, Bilal M, Boczkaj G, Smułek W, Jesionowski T, Iqbal HM. Bioreactors and biophoton-driven biohydrogen production strategies. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2023; 48:21176-21188. [DOI: 10.1016/j.ijhydene.2023.01.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
5
|
Amin N, Aslam M, Khan Z, Yasin M, Hossain S, Shahid MK, Inayat A, Samir A, Ahmad R, Murshed MN, Khurram MS, El Sayed ME, Ghauri M. Municipal solid waste treatment for bioenergy and resource production: Potential technologies, techno-economic-environmental aspects and implications of membrane-based recovery. CHEMOSPHERE 2023; 323:138196. [PMID: 36842558 DOI: 10.1016/j.chemosphere.2023.138196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
World estimated municipal solid waste generating at an alarming rate and its disposal is a severe concern of today's world. It is equivalent to 0.79 kg/d per person footprint and causing climate change; health hazards and other environmental issues which need attention on an urgent basis. Waste to energy (WTE) considers as an alternative renewable energy potential to recover energy from waste and reduce the global waste problems. WTE reduced the burden on fossil fuels for energy generation, waste volumes, environmental, and greenhouse gases emissions. This critical review aims to evaluate the source of solid waste generation and the possible routes of waste management such as biological landfill and thermal treatment (Incineration, pyrolysis, and gasification). Moreover, a comparative evaluation of different technologies was reviewed in terms of economic and environmental aspects along with their limitations and advantages. Critical literature revealed that gasification seemed to be the efficient route and environmentally sustainable. In addition, a framework for the gasification process, gasifier types, and selection of gasifiers for MSW was presented. The country-wise solutions recommendation was proposed for solid waste management with the least impact on the environment. Furthermore, key issues and potential perspectives that require urgent attention to facilitate global penetration are highlighted. Finally, practical implications of membrane and comparison membrane-based separation technology with other conventional technologies to recover bioenergy and resources were discussed. It is expected that this study will lead towards practical solution for future advancement in terms of economic and environmental concerns, and also provide economic feasibility and practical implications for global penetration.
Collapse
Affiliation(s)
- Naila Amin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan; Department of Chemical Engineering and Technology, University of Gujrat, Hafiz Hayat campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - Zakir Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shakhawat Hossain
- Department of Industrial and Production Engineering, Jashore University of Science and Technology, Jessore, 7408, Bangladesh
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon, 34134, Republic of Korea
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Samir
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia; Center of Plasma Technology, Al-Azhar University, Cairo, Egypt
| | - Rizwan Ahmad
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences & Technology (PAF-IAST), Haripur, Pakistan
| | - Mohammad N Murshed
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | - Muhammad Shahzad Khurram
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Mohamed E El Sayed
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | - Moinuddin Ghauri
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
6
|
Shehata N, Egirani D, Olabi AG, Inayat A, Abdelkareem MA, Chae KJ, Sayed ET. Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy. CHEMOSPHERE 2023; 320:137993. [PMID: 36720408 DOI: 10.1016/j.chemosphere.2023.137993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based technologies are recently being considered as effective methods for conventional water and wastewater remediation processes to achieve the increasing demands for clean water and minimize the negative environmental effects. Although there are numerous merits of such technologies, some major challenges like high capital and operating costs . This study first focuses on reporting the current membrane-based technologies, i.e., nanofiltration, ultrafiltration, microfiltration, and forward- and reverse-osmosis membranes. The second part of this study deeply discusses the contributions of membrane-based technologies in achieving the sustainable development goals (SDGs) stated by the United Nations (UNs) in 2015 followed by their role in the circular economy. In brief, the membrane based processes directly impact 15 out of 17 SDGs which are SDG1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16 and 17. However, the merits, challenges, efficiencies, operating conditions, and applications are considered as the basis for evaluating such technologies in sustainable development, circular economy, and future development.
Collapse
Affiliation(s)
- Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Davidson Egirani
- Faculty of Science, Niger Delta University, Wilberforce Island, Nigeria
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, South Korea.
| | - Enas Taha Sayed
- Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
7
|
Ghaffar I, Deepanraj B, Sundar LS, Vo DVN, Saikumar A, Hussain A. A review on the sustainable procurement of microalgal biomass from wastewaters for the production of biofuels. CHEMOSPHERE 2023; 311:137094. [PMID: 36334745 DOI: 10.1016/j.chemosphere.2022.137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The feasibility of microalgal biomass as one of the most promising and renewable sources for the production of biofuels is being studied extensively. Microalgal biomass can be cultivated under photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic cultivation conditions. Photoautotrophic cultivation is the most common way of microalgal biomass production. Under mixotrophic cultivation, microalgae can utilize both organic carbon and CO2 simultaneously. Mixotrophic cultivation depicts higher biomass productivity as compared to photoautotrophic cultivation. It is evident from the literature that mixotrophic cultivation yields higher quantities of polyunsaturated fatty acids as compared to that photoautotrophic cultivation. In this context, for economical biomass production, the organic carbon of industrial wastewaters can be valorized for the mixotrophic cultivation of microalgae. Following the way, contaminants' load of wastewaters can be reduced while concomitantly producing highly productive microalgal biomass. This review focuses on different aspects covering the sustainable cultivation of different microalgal species in different types of wastewaters.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| | - Lingala Syam Sundar
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Algam Saikumar
- Department of Aeronautical Engineering, MLR Institute of Technology, Hyderabad, Telangana, India
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
8
|
El-Qelish M, Hassan GK, Leaper S, Dessì P, Abdel-Karim A. Membrane-based technologies for biohydrogen production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115239. [PMID: 35568016 DOI: 10.1016/j.jenvman.2022.115239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/27/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Overcoming the existing environmental issues and the gradual depletion of energy sources is a priority at global level, biohydrogen can provide a sustainable and reliable energy reserve. However, the process instability and low biohydrogen yields are still hindering the adoption of biohydrogen production plants at industrial scale. In this context, membrane-based biohydrogen production technologies, and in particular fermentative membrane bioreactors (MBRs) and microbial electrolysis cells (MECs), as well as downstream membrane-based technologies such as electrodialysis (ED), are suitable options to achieve high-rate biohydrogen production. We have shed the light on the research efforts towards the development of membrane-based technologies for biohydrogen production from organic waste, with special emphasis to the reactor design and materials. Besides, techno-economic analyses have been traced to ensure the suitability of such technologies in bio-H2 production. Operation parameters such as pH, temperature and organic loading rate affect the performance of MBRs. MEC and ED technologies also are highly affected by the chemistry of the membrane used and anode material as well as the operation parameters. The limitations and future directions for application of membrane-based biohydrogen production technologies have been individuated. At the end, this review helps in the critical understanding of deploying membrane-based technologies for biohydrogen production, thereby encouraging future outcomes for a sustainable biohydrogen economy.
Collapse
Affiliation(s)
- Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, P.O. Box 12622, Cairo, Egypt
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, P.O. Box 12622, Cairo, Egypt.
| | - Sebastian Leaper
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Paolo Dessì
- School of Chemistry and Energy Research Centre, Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| | - Ahmed Abdel-Karim
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, P.O. Box 12622, Cairo, Egypt; Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
9
|
Wu B, Liu H, Liu Z, Zhang J, Zhai X, Zhu Y, Sano D, Wang X, Chen R. Interface behavior and removal mechanisms of human pathogenic viruses in anaerobic membrane bioreactor (AnMBR). WATER RESEARCH 2022; 219:118596. [PMID: 35598470 DOI: 10.1016/j.watres.2022.118596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Effective removal of human pathogenic viruses is an indispensable yet rarely studied aspect for sustainable treatment of domestic wastewater by anaerobic membrane bioreactor (AnMBR). In this study, the interface behaviors and removal mechanisms of norovirus genogroup I (GI), genogroup II (GII), and rotavirus A from domestic wastewater was systematically investigated in a one-stage AnMBR. On average, norovirus GI, GII and rotavirus were reduced by 4.64, 5.00, and 2.31 logs, respectively. Viruses tended to be transferred to larger-sized suspended solids from sewage influent to the mixed liquor, and the weight-specific concentration of the virus in >100 μm particles of the mixed liquor was significantly higher than that of sewage, indicating a particle scale-dependent affinity with the virus. In-series membrane filtration test showed the main contribution of the membrane retention, which was dominated by the bio-cake layer and the pristine membrane, while the membrane and associated pore foulants can retain viruses in a filtration resistance-efficient way. An unsteady-state mass balance model revealed that free viruses in the bulk liquid of AnMBR were minimally attached to the cake layer but mainly retained by the membrane and pore foulants (>99%). In addition, despite the small virus decay rates in the mixed liquor, the associated contribution increased with run time due to the prolonged sludge retention time. These insights into virus behaviors and removal mechanisms may provide novel regulation strategies for enhanced virus removal by AnMBR.
Collapse
Affiliation(s)
- Baolei Wu
- Shaanxi Key Lab of Environmental Engineering, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Lab of Environmental Engineering, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Zhendong Liu
- Shaanxi Key Lab of Environmental Engineering, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Jinfan Zhang
- Shaanxi Key Lab of Environmental Engineering, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Xuanyu Zhai
- Shaanxi Key Lab of Environmental Engineering, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Yifan Zhu
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xiaochang Wang
- Shaanxi Key Lab of Environmental Engineering, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, No. 13 Yanta Road, Xi'an 710055, China
| | - Rong Chen
- Shaanxi Key Lab of Environmental Engineering, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, No. 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
10
|
Odriozola M, van Lier JB, Spanjers H. Optimising the Flux Enhancer Dosing Strategy in a Pilot-Scale Anaerobic Membrane Bioreactor by Mathematical Modelling. MEMBRANES 2022; 12:membranes12020151. [PMID: 35207073 PMCID: PMC8877340 DOI: 10.3390/membranes12020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
Flux enhancers (FEs) have been successfully applied for fouling mitigation in membrane bioreactors. However, more research is needed to compare and optimise different dosing strategies to improve the filtration performance, while minimising the use of FEs and preventing overdosing. Therefore, the goal of this research is to develop an optimised control strategy for FE dosing into an AnMBR by developing a comprehensive integrated mathematical model. The integrated model includes filtration, flocculation, and biochemical processes to predict the effect of FE dosing on sludge filterability and membrane fouling rate in an AnMBR. The biochemical model was based on an ADM1, modified to include FEs and colloidal material. We developed an empirical model for the FE-induced flocculation of colloidal material. Various alternate filtration models from the literature and our own empirical models were implemented, calibrated, and validated; the best alternatives were selected based on model accuracy and capacity of the model to predict the effect of varying sludge characteristics on the corresponding output, that is fouling rate or sludge filterability. The results showed that fouling rate and sludge filterability were satisfactorily predicted by the selected filtration models. The best integrated model was successfully applied in the simulation environment to compare three feedback and two feedforward control tools to manipulate FE dosing to an AnMBR. The modelling results revealed that the most appropriate control tool was a feedback sludge filterability controller that dosed FEs continuously, referred to as ∆R20_10. Compared to the other control tools, application of the ∆R20_10 controller resulted in a more stable sludge filterability and steady fouling rate, when the AnMBR was subject to specific disturbances. The simulation environment developed in this research was shown to be a useful tool to test strategies for dosing flux enhancer into AnMBRs.
Collapse
|
11
|
Gautam RK, Kamilya T, Verma S, Muthukumaran S, Jegatheesan V, Navaratna D. Evaluation of membrane cake fouling mechanism to estimate design parameters of a submerged AnMBR treating high strength industrial wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113867. [PMID: 34607143 DOI: 10.1016/j.jenvman.2021.113867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
A mathematical model, which was previously developed for submerged aerobic membrane bioreactors, was successfully applied to elucidate the membrane cake-layer fouling mechanisms due to bound extracellular polymeric substances (eEPS) in a submerged anaerobic membrane bioreactor (SAnMBR). This biofouling dynamic model explains the mechanisms such as attachment, consolidation and detachment of eEPS produced in the bioreactor on the membrane surface. The 4th order Runge-Kutta method was used to solve the model equations, and the parameters were estimated from simulated and experimental results. The key design parameters representing the behaviour of cake fouling dynamics were systematically investigated. Organic loading rate (OLR) was considered a controlling factor governing the mixed liquor suspended solids (MLSS), eEPS production, filtration resistance (Rt), and transmembrane pressure (TMP) variations in a SAnMBR. eEPS showed a proportional relation with OLR at subsequent MLSS variations. The consolidation of EPS increased the specific eEPS resistance (αs), influencing the cake resistance (Rc). The propensities of eEPS showed a positive correlation with Rt and TMP. The outcomes of the study also estimated a set of valuable design parameters which would be vital for applying in AnMBRs treating industrial wastewater.
Collapse
Affiliation(s)
- Rajneesh Kumar Gautam
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 3011, Australia.
| | - Tuhin Kamilya
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, West Bengal, 713209, India.
| | - Saumya Verma
- Department of Statistics, University of Lucknow, Lucknow, 226007, India.
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 3011, Australia.
| | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 8001, Australia.
| | - Dimuth Navaratna
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 3011, Australia.
| |
Collapse
|
12
|
Kong Z, Li L, Wu J, Wang T, Rong C, Luo Z, Pan Y, Li D, Li Y, Huang Y, Li YY. Evaluation of bio-energy recovery from the anaerobic treatment of municipal wastewater by a pilot-scale submerged anaerobic membrane bioreactor (AnMBR) at ambient temperature. BIORESOURCE TECHNOLOGY 2021; 339:125551. [PMID: 34298245 DOI: 10.1016/j.biortech.2021.125551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The potential of bio-energy recovery from real municipal wastewater was investigated using a one-stage pilot-scale submerged anaerobic membrane bioreactor (AnMBR) for a range of HRTs from 24 h to 6 h at ambient temperature around 25 °C. This pilot-scale AnMBR demonstrated a high COD removal efficiency of over 90% during an operation of 217 days for municipal wastewater treatment. The energy balance of the AnMBR was calculated from both theoretical and practical aspects. The theoretical net energy potential was calculated as 0.174 kWh/m3 by applying operational data to empirical equations, obtaining a bio-energy recovery efficiency of 69.4%. The practical net energy potential was estimated as -0.014 kWh/m3 using the powers of engines applied in a full-scale wastewater treatment plant. This is considerably lower than that of the conventional activated sludge process. These results are evidence of the potential of the AnMBR and feasibility in the treatment of municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Chao Rong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
13
|
Charfi A, Kim S, Yoon Y, Cho J. Optimal cleaning strategy to alleviate fouling in membrane distillation process to treat anaerobic digestate. CHEMOSPHERE 2021; 279:130524. [PMID: 34134401 DOI: 10.1016/j.chemosphere.2021.130524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with the membrane fouling issue in the Direct Contact Membrane Distillation (DCMD) process treating a wasted sludge from an anaerobic digestion process. The main objective is to define an optimal cleaning strategy to alleviate fouling. Using a lab scale DCMD process, a cleaning strategy based on DI water flushing followed by 0.2% sodium hypochlorite (NaOCl) and 3% citric acid (C6H8O7) cleaning was tested with different cleaning frequencies and various chemical cleaning durations at different cross-flow velocities. To avoid severe fouling, the optimal cross-flow velocity was found at 0.18 m/s (0.8 L/min). Moreover, even if higher cross-flow velocity allows higher flux, it could increase fouling risks. For a better membrane regeneration and process productivity, a cleaning of 60 min duration for each chemical cleaning applied every two days was defined as the optimal cleaning strategy. Such conditions allowed the preservation of 75.5% of the initial flux after 96 h of operation. Furthermore, the effect on membrane flux regeneration of DI water flushing, sodium hypochlorite, and citric acid cleaning registered were, 31.52%, 11.95% and 20.65%, respectively. This study revealed that in the MD process treating real wastewater both external and internal fouling are responsible of permeate flux decline due to the accumulation of organic and inorganic matter on the membrane surface as well as within the pores.
Collapse
Affiliation(s)
- Amine Charfi
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
14
|
New insight into the membrane fouling of anaerobic membrane bioreactors treating sewage: Physicochemical and biological characterization of cake and gel layers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Saulat H, Khan MM, Aslam M, Chawla M, Rafiq S, Zafar F, Khan MM, Bokhari A, Jamil F, Bhutto AW, Bazmi AA. Wind speed pattern data and wind energy potential in Pakistan: current status, challenging platforms and innovative prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34051-34073. [PMID: 33119799 DOI: 10.1007/s11356-020-10869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Energy is an essential parameter for the economic growth and sustainable development of any country. Due to the rapid increase in energy demand, depletion of fossil fuels and environmental concerns, many developing and developed countries are moving towards alternative renewable resources such as solar energy, wind energy and biomass. Wind energy as a renewable energy source is gaining a lot of significant attention. Wind energy is a sustainable solution to produce energy having potential benefits such as clean source, reduced toxic gases emission and environmental friendly protocol for operation. Pakistan is among the top countries facing the worst energy crisis due to different political and financial issues. Pakistan is blessed with a huge potential of wind energy having all the basic requirements such as windy regions and good wind speed for harnessing energy. Pakistan can utilize the potential of wind energy to reduce the problem of energy outrage in the country and also take steps towards green economy from conventional fuel economy. This critical review highlights the current status, potential and the steps taken in the past and present to overcome the energy shortage in Pakistan by employing wind energy. Outlook on wind speed data, deployment of wind energy, environmental effect of wind energy and its barriers in the adoption are discussed with recommendations and suggestions to utilize this clean energy in an effective way. Graphical abstract.
Collapse
Affiliation(s)
- Hammad Saulat
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Muhammad Masood Khan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Muhammad Chawla
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Sikander Rafiq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Lahore, Pakistan
| | - Faisal Zafar
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Sebou-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Muhammad Mahmood Khan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Aqeel Ahmed Bazmi
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
- Process and Energy Systems Engineering Center-PRESTIGE, Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
16
|
Mao G, Hu H, Liu X, Crittenden J, Huang N. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:115785. [PMID: 33607600 DOI: 10.1016/j.envpol.2020.115785] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
For the foreseeable future, industrial water demand will grow much faster than agriculture. The demand together with the urgency of wastewater treatment, will pose big challenges for most developing countries. We applied the bibliometric analysis combined with social network analysis and S-curve technique to quantitatively analyze 9413 publications related to industrial wastewater treatment in the Scientific Citation Index (SCI) and Social Sciences Citation Index (SSCI) databases from 1998 to 2019. The results showed that: (1) Publications on industrial wastewater treatment have increased from 120 in 1998 to 895 in 2019 with a steady annual increment rate, and researchers have focused more on the application and optimization of existing technologies. (2) China had the highest number of publications (n = 1651, 19.66% of global output) and was a core country in the international cooperation network, whereas the United States and European countries produced higher quality papers. (3) By analyzing the co-occurrence and clusters of keywords and comparing three wastewater treatment categories (physical, chemical, biological), adsorption (n = 1277), oxidation (n = 1085) and activated sludge process (n = 1288) were the top three techniques. Researchers have shifted their focus to treatment technologies for specific wastewater type, such as textile wastewater, pulp and paper wastewater, and pharmaceutical wastewater. The S-curve from articles indicates that physical and chemical treatment technologies are attached with great potential in the near future, especially adsorption and advanced oxidation, while the biological treatment technologies are approaching to the saturation stage. Different pattern is observed for the S-curve derived from patents, which stressed the limited achievement until now and further exploration in the field application for the three treatment categories. Our analysis provides information of technology development landscape and future opportunities, which is useful for decision makers and researchers who are interested in this area.
Collapse
Affiliation(s)
- Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| | - Haoqiong Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| | - Xi Liu
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, China; College of Management and Economics, Tianjin University, Tianjin, 300072, China.
| | - John Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ning Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| |
Collapse
|
17
|
Zhu Y, Chen R, Li YY, Sano D. Virus removal by membrane bioreactors: A review of mechanism investigation and modeling efforts. WATER RESEARCH 2021; 188:116522. [PMID: 33091802 DOI: 10.1016/j.watres.2020.116522] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Accepted: 10/13/2020] [Indexed: 05/09/2023]
Abstract
The increasing pressure on the global water supply calls for more advanced solutions with higher efficiency and better sustainability, leading to the promptly developing water reclamation and reuse schemes including treatment technologies and risk management strategies where microbial safety is becoming a crucial aspect in the interest of public health. Backed up by the development of membrane technology, membrane bioreactors (MBR) have received substantial attention for their superiority over conventional treatment methods in many ways and are considered promising in the water reclamation realm. This review paper provides an overview of the efforts made to manage and control the potential waterborne viral disease risks raised by the use of effluent from MBR treatment processes, including the mechanisms involved in the virus removal process and the attempts to model the dynamics of the removal process. In principle, generalized and integrated virus removal models that provide insight into real-time monitoring are urgently needed for advanced real-time control purpose. Future studies of approaches that can well handle the inherent uncertainty and nonlinearity of the complex removal process are crucial to the development and promotion of related technologies.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
18
|
Effect of air velocity, temperature, and relative humidity on drying kinetics of rubberwood. Heliyon 2020; 6:e05151. [PMID: 33083612 PMCID: PMC7550925 DOI: 10.1016/j.heliyon.2020.e05151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
Kiln drying of rubberwood lumbers is a complex transport phenomenon for realistic modeling and simulation. To decouple this complexity, researchers usually divide their research into two parts. The first one is single-lumber drying kinetics to describe how wood lumber responds to its surface conditions. Then they combine this drying kinetics with a lumped transport model or dispersion model or computational fluid dynamics. The mathematical models are then solved numerically to predict the industrial kiln drying behaviors. This work focuses on the drying kinetics of stacked rubberwood lumbers using hot air at different air velocity (0.5, 1.5, 2.5, 3.5, 4.0 m/s), relative humidity (6-67% relative humidity (RH)) and temperature (60-100 °C). The drying kinetics followed the conventional drying theory. However, the two drying periods, namely constant and falling rate (CRP and FRP), were not distinct. As the air velocity increased, the transition from CRP to FRP is faster. The middle of the transition period (at critical moisture content, CMC) moves closer to the fiber saturation point (FSP). The overall mass transfer coefficients in the falling rate period for stacked rubberwood drying were lower than those predicted by the Ananias correlation. Hence, a modified formula was proposed, representing the overall moisture transfer coefficients as a function of air velocity, temperature, relative humidity, and lumbers thickness for the range of variables under investigation satisfactorily. In general, the drying rate and the overall moisture transfer coefficient increased with increasing air velocity, drying temperature, and decreasing RH. Relative humidity directly affects the driving force of moisture transfer rate because higher RH is associated with higher equilibrium moisture content. A lumped parameter model for kiln drying was also developed. After being integrated with the estimated mass transfer coefficient, the model can predict the moisture profiles in lab-scale kiln drying satisfactory, although the model needs more validation data. These kinetic parameters and correlation for stacked rubberwood drying can be used in more complex models and process optimization in future research.
Collapse
|
19
|
Durán F, Robles Á, Giménez JB, Ferrer J, Ribes J, Serralta J. Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology. WATER RESEARCH 2020; 184:116133. [PMID: 32721762 DOI: 10.1016/j.watres.2020.116133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The dissolved methane released from the effluent, the need to remove nutrients (ideally by recovery), or the energy lost by the competition between methanogenic and sulfate-reducing bacteria (SRB) for the biodegradable COD have been identified as the main issues to be addressed before AnMBR becomes widespread. Mathematical modeling of this technology can be used to obtain further insights into these bottlenecks plus other valuable information for design, simulation and control purposes. This paper therefore proposes an AnMBR anaerobic digestion model to simulate the crucial SRB-related process since these bacteria degrade more than 40% of the organic matter. The proposed model, which is included in the BNRM2 collection model, has a reduced but all-inclusive structure, including hydrolysis, acidogenesis, acetogenesis, methanogenesis and other SRB-related processes. It was calibrated and validated using data from an AnMBR pilot plant treating sulfate-rich UWW, including parameter values obtained in off-line experiments and optimization methods. Despite the complex operating dynamics and influent composition, it was able to reproduce the process performance. In fact, it was able to simulate the AD of sulfate-rich UWW considering only two groups of SRB: heterotrophic SRB growing on both VFA (propionate) and acetate, and autotrophic SRB growing on hydrogen. Besides the above-mentioned constraints, the model reproduced the dynamics of the mixed liquor solids concentration, which helped to integrate biochemical and filtration models. It also reproduced the alkalinity and pH dynamics in the mixed liquor required for assessing the effect of chemical precipitation on membrane scaling.
Collapse
Affiliation(s)
- Freddy Durán
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| | - Ángel Robles
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain.
| | - Juan Bautista Giménez
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| | - José Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| | - Josep Ribes
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Joaquín Serralta
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| |
Collapse
|
20
|
Jamil F, Aslam M, Al-Muhtaseb AH, Bokhari A, Rafiq S, Khan Z, Inayat A, Ahmed A, Hossain S, Khurram MS, Abu Bakar MS. Greener and sustainable production of bioethylene from bioethanol: current status, opportunities and perspectives. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The economic value of bioethylene produced from bioethanol dehydration is remarkable due to its extensive usage in the petrochemical industry. Bioethylene is produced through several routes, such as steam cracking of hydrocarbons from fossil fuel and dehydration of bioethanol, which can be produced through fermentation processes using renewable substrates such as glucose and starch. The rise in oil prices, environmental issues due to toxic emissions caused by the combustion of fossil fuel and depletion of fossil fuel resources have led a demand for an alternative pathway to produce green ethylene. One of the abundant alternative renewable sources for bioethanol production is biomass. Bioethanol produced from biomass is alleged to be a competitive alternative to bioethylene production as it is environmentally friendly and economical. In recent years, many studies have investigated catalysts and new reaction engineering pathways to enhance the bioethylene yield and to lower reaction temperature to drive the technology toward economic feasibility and practicality. This paper critically reviews bioethylene production from bioethanol in the presence of different catalysts, reaction conditions and reactor technologies to achieve a higher yield and selectivity of ethylene. Techno-economic and environmental assessments are performed to further development and commercialization. Finally, key issues and perspectives that require utmost attention to facilitate global penetration of technology are highlighted.
Collapse
Affiliation(s)
- Farrukh Jamil
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Ala’a H. Al-Muhtaseb
- Department of Petroleum and Chemical Engineering , College of Engineering, Sultan Qaboos University , Muscat , Oman
| | - Awais Bokhari
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Sikander Rafiq
- Department of Chemical, Polymer and Composite Material Engineering , University of Engineering and Technology , Lahore – New Campus , Pakistan
| | - Zakir Khan
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering , University of Sharjah , 27272 Sharjah , United Arab Emirates
| | - Ashfaq Ahmed
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
- School of Environmental Engineering , University of Seoul , Seoul, 02504 , Republic of Korea
| | - Shakhawat Hossain
- Department of Industrial and Production Engineering , Jashore University of Science and Technology , Jashore-7408 , Bangladesh
| | - Muhammad Shahzad Khurram
- Department of Chemical Engineering , COMSATS University Islamabad (CUI) , Lahore Campus, Defense Road, Off Raiwind Road , Lahore , Pakistan
| | - Muhammad S. Abu Bakar
- Faculty of Integrated Technologies , Universiti Brunei Darussalam , Jalan Tungku Link , BE1410, Gadong , Brunei Darussalam
| |
Collapse
|
21
|
Kim M, Lam TY, Tan GYA, Lee PH, Kim J. Use of polymeric scouring agent as fluidized media in anaerobic fluidized bed membrane bioreactor for wastewater treatment: System performance and microbial community. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Khan AN, Nadeem MA, Hussain MS, Aslam M, Bazmi AA. A forecasting model approach of sustainable electricity management by developing adaptive neuro-fuzzy inference system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17607-17618. [PMID: 31845246 DOI: 10.1007/s11356-019-06626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
With an exponential industrial growth, an accurate demand forecasting of energy is of prime importance for strategic decision-making and new power policies regarding generation and distribution in the power sector. This is a great impediment in economic development as well as shattering people's daily life. Hence, forecasting of energy demand in emerging markets is one of the most important policy tool used by decision-makers all over the world. This study focused on the forecasting approach of electricity consumption in Pakistan by developing a model that is called ANFIS (Adaptive neuro-fuzzy inference system). A framework was developed comprising economic and demographic variables as input. Previous historical data of GDP, population, industry efficiency, and weather (annual average temperature) was collected as input to the model and electricity consumption as output of the model. By developing ANFIS model, forecasting was done up to 2045. The increasing trends with respect to predictors showed significant association with electricity consumption. The overall least error proved this model best for forecasting and planning electricity demand to achieve sustainability in the power sector.
Collapse
Affiliation(s)
- Aamir Nawaz Khan
- Department of Management Sciences, COMSATS University Islamabad, Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Asif Nadeem
- Department of Management Sciences, COMSATS University Islamabad, Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Aqeel Ahmed Bazmi
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan.
- Process and Energy Systems Engineering Center-PRESTIGE, Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
23
|
|
24
|
Jabbari B, Jalilnejad E, Ghasemzadeh K, Iulianelli A. Recent Progresses in Application of Membrane Bioreactors in Production of Biohydrogen. MEMBRANES 2019; 9:membranes9080100. [PMID: 31405178 PMCID: PMC6723787 DOI: 10.3390/membranes9080100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Biohydrogen is a clean and viable energy carrier generated through various green and renewable energy sources such as biomass. This review focused on the application of membrane bioreactors (MBRs), emphasizing the combination of these devices with biological processes, for bio-derived hydrogen production. Direct biophotolysis, indirect biophotolysis, photo-fermentation, dark fermentation, and conventional techniques are discussed as the common methods of biohydrogen production. The anaerobic process membrane bioreactors (AnMBRs) technology is presented and discussed as a preferable choice for producing biohydrogen due to its low cost and the ability of overcoming problems posed by carbon emissions. General features of AnMBRs and operational parameters are comprehensively overviewed. Although MBRs are being used as a well-established and mature technology with many full-scale plants around the world, membrane fouling still remains a serious obstacle and a future challenge. Therefore, this review highlights the main benefits and drawbacks of MBRs application, also discussing the comparison between organic and inorganic membranes utilization to determine which may constitute the best solution for providing pure hydrogen. Nevertheless, research is still needed to overcome remaining barriers to practical applications such as low yields and production rates, and to identify biohydrogen as one of the most appealing renewable energies in the future.
Collapse
Affiliation(s)
- Bahman Jabbari
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran
| | - Elham Jalilnejad
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran.
| | - Kamran Ghasemzadeh
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran
| | - Adolfo Iulianelli
- Institute on Membrane Technology of the Italian National Research Council (CNR-ITM), via P. Bucci Cubo 17/C, 87036 Rende (CS), Italy.
| |
Collapse
|
25
|
Maaz M, Yasin M, Aslam M, Kumar G, Atabani AE, Idrees M, Anjum F, Jamil F, Ahmad R, Khan AL, Lesage G, Heran M, Kim J. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. BIORESOURCE TECHNOLOGY 2019; 283:358-372. [PMID: 30928198 DOI: 10.1016/j.biortech.2019.03.061] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Water shortage, public health and environmental protection are key motives to treat wastewater. The widespread adoption of wastewater as a resource depends upon development of an energy-efficient technology. Anaerobic membrane bioreactor (AnMBR) technology has gained increasing popularity due to their ability to offset the disadvantages of conventional treatment technologies. However there are several hurdles, yet to climb over, for wider spread and scale-up of the technology. This paper reviews fundamental aspects of anaerobic digestion of wastewater, and identifies the challenges and opportunities to the further development of AnMBRs. Membrane fouling and its implications are discussed, and strategies to control membrane fouling are proposed. Novel AnMBR configurations are discussed as an integrated approach to overcome technology limitations. Energy demand and recovery in AnMBRs is analyzed. Finally key issues that require urgent attention to facilitate global penetration of AnMBR technology are highlighted.
Collapse
Affiliation(s)
- Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - A E Atabani
- Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Mubbsher Idrees
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Fatima Anjum
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Rizwan Ahmad
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan; Department of Environmental Engineering, Inha University, Inharo-100, Michuholgu, Incheon, Republic of Korea
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | | | - Marc Heran
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Inharo-100, Michuholgu, Incheon, Republic of Korea
| |
Collapse
|
26
|
Hamedi H, Ehteshami M, Mirbagheri SA, Zendehboudi S. New deterministic tools to systematically investigate fouling occurrence in membrane bioreactors. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Rongwong W, Goh K, Sethunga G, Bae TH. Fouling formation in membrane contactors for methane recovery from anaerobic effluents. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Hafuka A, Mashiko R, Odashima R, Yamamura H, Satoh H, Watanabe Y. Digestion performance and contributions of organic and inorganic fouling in an anaerobic membrane bioreactor treating waste activated sludge. BIORESOURCE TECHNOLOGY 2019; 272:63-69. [PMID: 30312869 DOI: 10.1016/j.biortech.2018.09.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
This study evaluates the performance of an anaerobic membrane bioreactor (AnMBR) digesting waste activated sludge. A digestion reactor equipped with an external hollow fiber microfiltration membrane module was operated in continuous-mode for 248 days. The system demonstrated 56% volatile solids degradation at an organic loading rate of 0.40 g-VS/(L·d) in 15 days of hydraulic retention time. The average methane content in the biogas produced was 76% which is considerably high compared to that from a typical continuously stirred tank reactor. The transmembrane pressure remained under 12 kPa without membrane cleaning during the experimental period due to low filtration flux (0.01-0.07 m/d) and cross-flow-mode filtration. Ex situ membrane cleaning revealed that physically irreversible fouling was the dominant form of membrane fouling. Inorganic and organic fouling accounted for 16% and 45% of total membrane fouling, respectively.
Collapse
Affiliation(s)
- Akira Hafuka
- Center for Regional Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Riho Mashiko
- Department of Integrated Science and Engineering for Sustainable Society, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Ryuto Odashima
- Department of Integrated Science and Engineering for Sustainable Society, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Hiroshi Yamamura
- Department of Integrated Science and Engineering for Sustainable Society, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo 060-8628, Japan.
| | - Yoshimasa Watanabe
- Research and Development Initiatives, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| |
Collapse
|
29
|
Hamedi H, Ehteshami M, Mirbagheri SA, Rasouli SA, Zendehboudi S. Current Status and Future Prospects of Membrane Bioreactors (MBRs) and Fouling Phenomena: A Systematic Review. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23345] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hamideh Hamedi
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Majid Ehteshami
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
| | | | - Seyed Abbas Rasouli
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| |
Collapse
|
30
|
Aslam M, Ahmad R, Yasin M, Khan AL, Shahid MK, Hossain S, Khan Z, Jamil F, Rafiq S, Bilad MR, Kim J, Kumar G. Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives. BIORESOURCE TECHNOLOGY 2018; 269:452-464. [PMID: 30145004 DOI: 10.1016/j.biortech.2018.08.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Biohydrogen as one of the most appealing energy vector for the future represents attractive avenue in alternative energy research. Recently, variety of biohydrogen production pathways has been suggested to improve the key features of the process. Nevertheless, researches are still needed to overcome remaining barriers to practical applications such as low yields and production rates. Considering practicality aspects, this review emphasized on anaerobic membrane bioreactors (AnMBRs) for biological hydrogen production. Recent advances and emerging issues associated with biohydrogen generation in AnMBR technology are critically discussed. Several techniques are highlighted that are aimed at overcoming these barriers. Moreover, environmental and economical potentials along with future research perspectives are addressed to drive biohydrogen technology towards practicality and economical-feasibility.
Collapse
Affiliation(s)
- Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Rizwan Ahmad
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Department of Environmental Engineering, Inha University, Namgu, 100 Inha-ro, Incheon, Republic of Korea
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Kashif Shahid
- Department of Environmental & Chemical Convergence Engineering, Daegu University, Daegudae-ro 201, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Shakhawat Hossain
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul 143-747, Republic of Korea
| | - Zakir Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Sikander Rafiq
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Namgu, 100 Inha-ro, Incheon, Republic of Korea
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway.
| |
Collapse
|
31
|
Robles Á, Ruano MV, Charfi A, Lesage G, Heran M, Harmand J, Seco A, Steyer JP, Batstone DJ, Kim J, Ferrer J. A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. BIORESOURCE TECHNOLOGY 2018; 270:612-626. [PMID: 30253898 DOI: 10.1016/j.biortech.2018.09.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects. Quantitative environmental and economic evaluation has demonstrated substantial advantages in application of AnMBR to domestic wastewater treatment, but detailed modelling is less mature. While anaerobic process modelling is generally mature, more work is needed on integrated models which include coupling between membrane performance (including fouling) and the biological process. This should include microbial factors, which are important to generation of specific foulants such as soluble and particulate inert organics. Mature and well-established control tools, including better feedback control strategies are also required for both the process, and for fouling control.
Collapse
Affiliation(s)
- Ángel Robles
- CALAGUA, Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain.
| | - Maria Victoria Ruano
- CALAGUA, Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | - Amine Charfi
- LG-Hitachi Water Solutions, B-1104 Daewoo Technopark, 261, Doyak-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14523, South Korea
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France
| | - Marc Heran
- Institut Européen des Membranes, IEM, UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France
| | - Jérôme Harmand
- LBE, Univ Montpellier, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | - Aurora Seco
- CALAGUA, Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | | | - Damien J Batstone
- Advanced Water Management Centre AWMC, The University of Queensland, QLD 4072, Australia
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Incheon, South Korea
| | - José Ferrer
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient, IAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| |
Collapse
|
32
|
Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Cerón-Vivas A, Kalboussi N, Morgan-Sagastume JM, Harmand J, Noyola A. Model assessment of the prevailing fouling mechanisms in a submerged membrane anaerobic reactor treating low-strength wastewater. BIORESOURCE TECHNOLOGY 2018; 268:460-469. [PMID: 30107360 DOI: 10.1016/j.biortech.2018.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Three models (blocking laws, combined and resistance-in-series) were applied to identify the prevailing fouling mechanisms in a submerged membrane in an up-flow anaerobic sludge blanket reactor treating municipal wastewater. Experimental runs were carried out at lab-scale with filtration periods of 4 and 10 min, followed by relaxation periods of one minute with and without nitrogen bubbling. In all conditions excepting one (IF4R), the blocking laws model showed a predominance of cake formation. With the combined model, cake formation coupled with intermediate, standard and complete fouling had the better fits in all conditions, excepting IF4 and IF4R. When sewage was fed, both models pointed at intermediate fouling in the absence of gas bubbling. The resistance-in-series model identified the positive effect of gas bubbling and a post-cake fouling behavior, not shown by the other two models. This modeling approach could be applied for achieving longer filtration runs in submerged UF membranes.
Collapse
Affiliation(s)
- Alexandra Cerón-Vivas
- Facultad de Ingeniería Ambiental, Universidad Pontificia Bolivariana, Km. 7 vía a Piedecuesta, Floridablanca, Colombia.
| | - Nesrine Kalboussi
- Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur (LAMSIN), Tunis, Tunisia; LBE, Univ Montpellier, INRA, Narbonne, France
| | | | | | - Adalberto Noyola
- Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
34
|
Ahmad R, Aslam M, Park E, Chang S, Kwon D, Kim J. Submerged low-cost pyrophyllite ceramic membrane filtration combined with GAC as fluidized particles for industrial wastewater treatment. CHEMOSPHERE 2018; 206:784-792. [PMID: 29800883 DOI: 10.1016/j.chemosphere.2018.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Submerged ceramic membrane reactor treating industrial wastewater was combined with granular activated carbon (GAC) particles to control membrane fouling and organic removal efficiency. The GAC particles were suspended along the membrane surface under bulk recirculation only through the reactor without any gas sparging. Membrane support coated with Al2O3 layer (CPM) and uncoated one (UPM) was compared at constant flux mode of filtration. The membrane support consisted of 80% of pyrophyllite and 20% of alumina. Under up-flow velocity of 0.031 m s-1 through bulk recirculation only without GAC particles, the fouling rates were observed as 0.011 and 0.013 bar h-1 for the CPM and UPM, respectively. With suspension of GAC particles, fouling mitigation was enhanced considerably and this effect was more pronounced with CPM than UPM under the same upflow velocity (90 vs. 57%). In addition, the GAC suspension increased critical flux by 46% higher with CPM than that observed without the carbon particles. The organic removal efficiency of the UPM was lower than that of CPM while the fouling rate was much greater probably due to pore blocking caused by organic dye compounds. For the both membranes, suspension of GAC particles along the membrane surface increased organic removal efficiency higher than 90%. The organic removal efficiency was enhanced by increasing permeate flux, but it became lower as upflow velocity was higher.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea
| | - Muhammad Aslam
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea; Department of Chemical Engineering, COMSATS University, Lahore, Pakistan
| | - Eunyoung Park
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea
| | - Soomin Chang
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea
| | - Deaun Kwon
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Namgu, Yonghyun dong 253, Incheon, Republic of Korea.
| |
Collapse
|
35
|
Song YC, Kim M, Shon H, Jegatheesan V, Kim S. Modeling methane production in anaerobic forward osmosis bioreactor using a modified anaerobic digestion model No. 1. BIORESOURCE TECHNOLOGY 2018; 264:211-218. [PMID: 29807328 DOI: 10.1016/j.biortech.2018.04.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) using microfiltration (MF) or ultrafiltration (UF) membranes was introduced to enhance poor biomass retention of conventional anaerobic digestion (CAD). Recently, forward osmosis (FO) membrane have been applied to AnMBR, which is called AnFOMBR. FO membrane assures not only high biomass retention but also high removal efficiency for low molecular weight (LMW) matters. Methane production rates in CAD, AnMBR, and AnFOMBR were compared using a modified IWA anaerobic digestion model No. 1 (ADM1) in this work. Accumulation of biomass in AnMBR/AnFOMBR results in enhanced biochemical reaction and gains more methane production. AnFOMBR may experience a significant inhibition by accumulated free ammonia and cations, although concentrated soluble substrates rejected by FO membrane are favorable for more methane production. Rejection rate of inorganic nitrogen is a key parameter to determine the inhibition in methane production of AnFOMBR.
Collapse
Affiliation(s)
- Young-Chae Song
- Dept. of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 49112, Republic of Korea
| | - Minseok Kim
- Department of Civil Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Hokyong Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway 2007, NSW, Australia
| | - Veeriah Jegatheesan
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Suhan Kim
- Department of Civil Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
36
|
Novel staged anaerobic fluidized bed ceramic membrane bioreactor: Energy reduction, fouling control and microbial characterization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|