1
|
Barron C, Devaux MF, Foucat L, Falourd X, Looten R, Joseph-Aime M, Durand S, Bonnin E, Lapierre C, Saulnier L, Rouau X, Guillon F. Enzymatic degradation of maize shoots: monitoring of chemical and physical changes reveals different saccharification behaviors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:1. [PMID: 33402195 PMCID: PMC7786969 DOI: 10.1186/s13068-020-01854-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/09/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND The recalcitrance of lignocellulosics to enzymatic saccharification has been related to many factors, including the tissue and molecular heterogeneity of the plant particles. The role of tissue heterogeneity generally assessed from plant sections is not easy to study on a large scale. In the present work, dry fractionation of ground maize shoot was performed to obtain particle fractions enriched in a specific tissue. The degradation profiles of the fractions were compared considering physical changes in addition to chemical conversion. RESULTS Coarse, medium and fine fractions were produced using a dry process followed by an electrostatic separation. The physical and chemical characteristics of the fractions varied, suggesting enrichment in tissue from leaves, pith or rind. The fractions were subjected to enzymatic hydrolysis in a torus reactor designed for real-time monitoring of the number and size of the particles. Saccharification efficiency was monitored by analyzing the sugar release at different times. The lowest and highest saccharification yields were measured in the coarse and fine fractions, respectively, and these yields paralleled the reduction in the size and number of particles. The behavior of the positively- and negatively-charged particles of medium-size fractions was contrasted. Although the amount of sugar release was similar, the changes in particle size and number differed during enzymatic degradation. The reduction in the number of particles proceeded faster than that of particle size, suggesting that degradable particles were degraded to the point of disappearance with no significant erosion or fragmentation. Considering all fractions, the saccharification yield was positively correlated with the amount of water associated with [5-15 nm] pore size range at 67% moisture content while the reduction in the number of particles was inversely correlated with the amount of lignin. CONCLUSION Real-time monitoring of sugar release and changes in the number and size of the particles clearly evidenced different degradation patterns for fractions of maize shoot that could be related to tissue heterogeneity in the plant. The biorefinery process could benefit from the addition of a sorting stage to optimise the flow of biomass materials and take better advantage of the heterogeneity of the biomass.
Collapse
Affiliation(s)
- Cécile Barron
- CIRAD, INRAE, IATE, Institut Agro, Univ. Montpellier, 34060, Montpellier, France
| | | | - Loïc Foucat
- INRAE, UR BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Xavier Falourd
- INRAE, UR BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | | | | | | | | | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | | | - Xavier Rouau
- CIRAD, INRAE, IATE, Institut Agro, Univ. Montpellier, 34060, Montpellier, France
| | | |
Collapse
|
2
|
Crowe JD, Hao P, Pattathil S, Pan H, Ding SY, Hodge DB, Jensen JK. Xylan Is Critical for Proper Bundling and Alignment of Cellulose Microfibrils in Plant Secondary Cell Walls. FRONTIERS IN PLANT SCIENCE 2021; 12:737690. [PMID: 34630488 PMCID: PMC8495263 DOI: 10.3389/fpls.2021.737690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 05/07/2023]
Abstract
Plant biomass represents an abundant and increasingly important natural resource and it mainly consists of a number of cell types that have undergone extensive secondary cell wall (SCW) formation. These cell types are abundant in the stems of Arabidopsis, a well-studied model system for hardwood, the wood of eudicot plants. The main constituents of hardwood include cellulose, lignin, and xylan, the latter in the form of glucuronoxylan (GX). The binding of GX to cellulose in the eudicot SCW represents one of the best-understood molecular interactions within plant cell walls. The evenly spaced acetylation and 4-O-methyl glucuronic acid (MeGlcA) substitutions of the xylan polymer backbone facilitates binding in a linear two-fold screw conformation to the hydrophilic side of cellulose and signifies a high level of molecular specificity. However, the wider implications of GX-cellulose interactions for cellulose network formation and SCW architecture have remained less explored. In this study, we seek to expand our knowledge on this by characterizing the cellulose microfibril organization in three well-characterized GX mutants. The selected mutants display a range of GX deficiency from mild to severe, with findings indicating even the weakest mutant having significant perturbations of the cellulose network, as visualized by both scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show by image analysis that microfibril width is increased by as much as three times in the severe mutants compared to the wild type and that the degree of directional dispersion of the fibrils is approximately doubled in all the three mutants. Further, we find that these changes correlate with both altered nanomechanical properties of the SCW, as observed by AFM, and with increases in enzymatic hydrolysis. Results from this study indicate the critical role that normal GX composition has on cellulose bundle formation and cellulose organization as a whole within the SCWs.
Collapse
Affiliation(s)
- Jacob D. Crowe
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, United States
| | - Pengchao Hao
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Henry Pan
- Department of Chemical Engineering, University of Texas, Austin, TX, United States
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - David B. Hodge
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Jacob Krüger Jensen
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jacob Krüger Jensen
| |
Collapse
|
3
|
Phongpreecha T, Christy KF, Singh SK, Hao P, Hodge DB. Effect of catalyst and reaction conditions on aromatic monomer yields, product distribution, and sugar yields during lignin hydrogenolysis of silver birch wood. BIORESOURCE TECHNOLOGY 2020; 316:123907. [PMID: 32739581 DOI: 10.1016/j.biortech.2020.123907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The impact of catalyst choice and reaction conditions during catalytic hydrogenolysis of silver birch biomass are assessed for their effect on aromatic monomer yields and selectivities, lignin removal, and sugar yields from enzymatic hydrolysis. At a reaction temperature of 220 °C with no supplemental H2, it was demonstrated that both Co/C and Ni/C exhibited aromatic monomer yields of >50%, which were close to the theoretical maximum expected for the lignin based on total β-O-4 content and exhibited high selectivities for 4-propylguaiacol and 4-propylsyringol. Pd/C exhibited a significantly different set of products, and using a model lignin dimer, showed a product profile that shifted upon inclusion of supplemental H2, suggesting that the generation of surface hydrogen is critical for this catalyst system. Lignin removal during hydrogenolysis could be correlated to glucose yields and inclusion of lignin depolymerizing catalysts significantly improves lignin removal and subsequent enzymatic hydrolysis yields.
Collapse
Affiliation(s)
| | - Kendall F Christy
- Department of Chemical Engineering and Materials Science, Michigan State University, United States
| | - Sandip K Singh
- Chemical & Biological Engineering Department, Montana State University, United States
| | - Pengchao Hao
- Department of Chemistry, Michigan State University, United States
| | - David B Hodge
- Chemical & Biological Engineering Department, Montana State University, United States; Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
4
|
Crowe JD, Li M, Williams DL, Smith AD, Liu T, Hodge DB. Alkaline and Alkaline-Oxidative Pretreatment and Hydrolysis of Herbaceous Biomass for Growth of Oleaginous Microbes. Methods Mol Biol 2020; 1995:173-182. [PMID: 31148129 DOI: 10.1007/978-1-4939-9484-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter describes methods for generation of hydrolysates amenable to conversion to microbial lipids from herbaceous lignocellulosic biomass utilizing either mild alkali pretreatment with NaOH or alkaline hydrogen peroxide pretreatment with NaOH and H2O2. This pretreatment is followed by enzymatic hydrolysis of the plant cell wall polysaccharides to yield hydrolysates. These hydrolysates are composed primarily of the monosaccharides glucose and xylose as well as acetate and phenolic monomers that may all serve as a source of renewable carbon to produce microbial lipids. Application of these mild pretreatment conditions minimizes the generation of inhibitors, enabling microbial cultivations to often be performed without the need for detoxification.
Collapse
Affiliation(s)
- Jacob D Crowe
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Muyang Li
- Department of Agricultural and Biological Engineering, Michigan State University, East Lansing, MI, USA
| | | | - Alex D Smith
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Tongjun Liu
- Department of Bioengineering, Qilu University of Technology, Jinan, China
| | - David B Hodge
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MN, USA. .,Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
5
|
Huang W, Yuan H, Li X. Multi-perspective analyses of rice straw modification by Pleurotus ostreatus and effects on biomethane production. BIORESOURCE TECHNOLOGY 2020; 296:122365. [PMID: 31759858 DOI: 10.1016/j.biortech.2019.122365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Multi-perspective analyses were carried out to investigate the effect of rice straw modification for 45 days by P. ostreatus on biomethane of production. The results showed that rice straw modified for 25 days achieved the highest biomethane yield of 269 mL·g-1 VS, which was a 26.9% improvement compared with non-modified rice straw. The multi-perspective analyses demonstrated that the improvement resulted from fungal enzymatic reactions, which led to changes in the physicochemical properties of rice straw. The porosity, surface area, acetyl group abundance, degree of polymerization, and lignin degradation selectivity of rice straw modified for 25 days were optimal for enzyme adsorption. Compared with non-modified rice straw, the adsorption of cellulase and xylanase on rice straw modified for 25 days was increased by 18.8% and 58.1%, respectively, which facilitated biomethane production. The study indicated that P. ostreatus is effective for improving biomethane production from rice straw.
Collapse
Affiliation(s)
- WenBo Huang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - HaiRong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - XiuJin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
6
|
Zoghlami A, Paës G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front Chem 2019; 7:874. [PMID: 31921787 PMCID: PMC6930145 DOI: 10.3389/fchem.2019.00874] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Lignocellulosic biomass (LB) is an abundant and renewable resource from plants mainly composed of polysaccharides (cellulose and hemicelluloses) and an aromatic polymer (lignin). LB has a high potential as an alternative to fossil resources to produce second-generation biofuels and biosourced chemicals and materials without compromising global food security. One of the major limitations to LB valorisation is its recalcitrance to enzymatic hydrolysis caused by the heterogeneous multi-scale structure of plant cell walls. Factors affecting LB recalcitrance are strongly interconnected and difficult to dissociate. They can be divided into structural factors (cellulose specific surface area, cellulose crystallinity, degree of polymerization, pore size and volume) and chemical factors (composition and content in lignin, hemicelluloses, acetyl groups). Goal of this review is to propose an up-to-date survey of the relative impact of chemical and structural factors on biomass recalcitrance and of the most advanced techniques to evaluate these factors. Also, recent spectral and water-related measurements accurately predicting hydrolysis are presented. Overall, combination of relevant factors and specific measurements gathering simultaneously structural and chemical information should help to develop robust and efficient LB conversion processes into bioproducts.
Collapse
Affiliation(s)
- Aya Zoghlami
- FARE Laboratory, INRAE, University of Reims Champagne-Ardenne, Reims, France
| | - Gabriel Paës
- FARE Laboratory, INRAE, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
7
|
Yuan Z, Singh SK, Bals B, Hodge DB, Hegg EL. Integrated Two-Stage Alkaline–Oxidative Pretreatment of Hybrid Poplar. Part 2: Impact of Cu-Catalyzed Alkaline Hydrogen Peroxide Pretreatment Conditions on Process Performance and Economics. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
| | - Sandip Kumar Singh
- Department of Chemical & Biological Engineering, Montana State University, 306 Cobleigh Hall, Bozeman, Montana 59717, United States
| | - Bryan Bals
- Michigan Biotechnology Institute, 3815 Technology Boulevard, Lansing, Michigan 48910, United States
| | - David B. Hodge
- Department of Chemical & Biological Engineering, Montana State University, 306 Cobleigh Hall, Bozeman, Montana 59717, United States
- Division of Sustainable Process Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Eric L. Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Gong C, Thomsen ST, Thygesen LG, Felby C. Effects of preheating on briquetting and subsequent hydrothermal pretreatment for enzymatic saccharification of wheat straw. Biotechnol Prog 2019; 35:e2808. [PMID: 30891956 DOI: 10.1002/btpr.2808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/18/2023]
Abstract
Briquetting of plant biomass with low bulk density is an advantage for handling, transport, and storage of the material, and heating of the biomass prior to the briquetting facilitates the densification process and improves the physical properties of the briquettes. This study investigates the effects of preheating prior to briquetting of wheat straw (WS) on subsequent hydrothermal pretreatment and enzymatic conversion to fermentable sugars. WS (11% moisture content) was densified to briquettes under different conditions; without preheating or with preheating at 75 or 125°C for either 5 or 10 min. Subsequent hydrothermal pretreatment was done for both un-briquetted WS and for briquettes. Enzymatic saccharification was afterwards performed for all samples. The results showed that as expected, nonpretreated WS briquettes gave very low sugar yields (22-29% of the cellulose content), even though preheating at 125°C prior to briquetting (without pretreatment) improved sugar yields somewhat. When combined with pretreatment, briquetting with preheating showed neutral or negative effects on sugar yield. This result suggests that moderate preheating (75°C for 5 min) before briquetting improved bulk density and compressive resistance of briquettes without impeding subsequent enzymatic conversion. However, excessive preheating (75 or 125°C for 10 min) before briquetting may result in irreversible structural modifications that hinder the interaction between biomass and water during pretreatment, thereby decreasing the accessibility of cellulose to enzymatic saccharification.
Collapse
Affiliation(s)
- Chunxiao Gong
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Sune Tjalfe Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Lisbeth G Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Claus Felby
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
9
|
Paës G, Navarro D, Benoit Y, Blanquet S, Chabbert B, Chaussepied B, Coutinho PM, Durand S, Grigoriev IV, Haon M, Heux L, Launay C, Margeot A, Nishiyama Y, Raouche S, Rosso MN, Bonnin E, Berrin JG. Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:76. [PMID: 30976326 PMCID: PMC6442405 DOI: 10.1186/s13068-019-1417-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/23/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lignocellulose biomass is known as a recalcitrant material towards enzymatic hydrolysis, increasing the process cost in biorefinery. In nature, filamentous fungi naturally degrade lignocellulose, using an arsenal of hydrolytic and oxidative enzymes. Assessment of enzyme hydrolysis efficiency generally relies on the yield of glucose for a given biomass. To better understand the markers governing recalcitrance to enzymatic degradation, there is a need to enlarge the set of parameters followed during deconstruction. RESULTS Industrially-pretreated biomass feedstocks from wheat straw, miscanthus and poplar were sequentially hydrolysed following two steps. First, standard secretome from Trichoderma reesei was used to maximize cellulose hydrolysis, producing three recalcitrant lignin-enriched solid substrates. Then fungal secretomes from three basidiomycete saprotrophs (Laetisaria arvalis, Artolenzites elegans and Trametes ljubarskyi) displaying various hydrolytic and oxidative enzymatic profiles were applied to these recalcitrant substrates, and compared to the T. reesei secretome. As a result, most of the glucose was released after the first hydrolysis step. After the second hydrolysis step, half of the remaining glucose amount was released. Overall, glucose yield after the two sequential hydrolyses was more dependent on the biomass source than on the fungal secretomes enzymatic profile. Solid residues obtained after the two hydrolysis steps were characterized using complementary methodologies. Correlation analysis of several physico-chemical parameters showed that released glucose yield was negatively correlated with lignin content and cellulose crystallinity while positively correlated with xylose content and water sorption. Water sorption appears as a pivotal marker of the recalcitrance as it reflects chemical and structural properties of lignocellulosic biomass. CONCLUSIONS Fungal secretomes applied to highly recalcitrant biomass samples can further extend the release of the remaining glucose. The glucose yield can be correlated to chemical and physical markers, which appear to be independent from the biomass type and secretome. Overall, correlations between these markers reveal how nano-scale properties (polymer content and organization) influence macro-scale properties (particle size and water sorption). Further systematic assessment of these markers during enzymatic degradation will foster the development of novel cocktails to unlock the degradation of lignocellulose biomass.
Collapse
Affiliation(s)
- Gabriel Paës
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - David Navarro
- INRA, Aix Marseille Univ., UMR1163, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRA, Aix-Marseille Univ., UMR1163, CIRM-CF, Marseille, France
| | - Yves Benoit
- IFP Energies Nouvelles, Rueil-Malmaison, France
| | | | - Brigitte Chabbert
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Pedro M. Coutinho
- CNRS, Aix-Marseille Univ., UMR7857 AFMB, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Sylvie Durand
- INRA, UR1268 Biopolymères Interactions Assemblages, Nantes, France
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA USA
| | - Mireille Haon
- INRA, Aix Marseille Univ., UMR1163, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Laurent Heux
- CNRS, Univ. Grenoble Alpes, CERMAV, Grenoble, France
| | - Charlène Launay
- INRA, UR1268 Biopolymères Interactions Assemblages, Nantes, France
| | | | | | - Sana Raouche
- INRA, Aix Marseille Univ., UMR1163, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Marie-Noëlle Rosso
- INRA, Aix Marseille Univ., UMR1163, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Estelle Bonnin
- INRA, UR1268 Biopolymères Interactions Assemblages, Nantes, France
| | - Jean-Guy Berrin
- INRA, Aix Marseille Univ., UMR1163, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
| |
Collapse
|
10
|
Weiss ND, Felby C, Thygesen LG. Enzymatic hydrolysis is limited by biomass-water interactions at high-solids: improved performance through substrate modifications. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:3. [PMID: 30622645 PMCID: PMC6318902 DOI: 10.1186/s13068-018-1339-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/12/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND To improve process economics for production of fuels and chemicals from lignocellulosic biomass, high solids concentrations are applied in enzymatic hydrolysis, to increase product concentration and reduce energy input. However, increasing solids concentrations decrease cellulose conversion yields, the so called 'high-solids effect.' Previous work suggests that product inhibition and mixing contribute, but an understanding of how biomass properties influence the high-solids effect, is lacking. RESULTS Cellulose hydrolysis yields with an industrial cellulase (Ctec2) were measured on pretreated wheat straw and spruce from 5 to 30% dry matter (DM), and compared to yields of an older industrial cellulase mixture (Celluclast 1.5L/Novozym188). For Ctec2, yield was independent of DM below 15-18% DM, while yields decreased with increasing DM above this range, but at different rates for each biomass. For Celluclast 1.5L/Novozym188, yields decreased already from the lowest DM, suggesting that the high-solids effect was more a function of product inhibition, while the yields of the newer Ctec2 mixture were driven more by biomass-water interactions. LF-NMR relaxometry showed that the onset of the high-solids effect for Ctec2 corresponded to the disappearance of free water from the system, and a decrease in water self-diffusion rates. While the spruce had higher yields at low-solids, the wheat straw had higher yields at high-solids conditions, exhibiting that relative yields at low and high-solids are not related. Higher yields corresponded to increased water constraint by the biomass at high-solids conditions. Modifications to the pretreated wheat straw resulted in improved yields, and changes to the inflection point and intensity of the high-solids effect, showing that this effect can be reduced. CONCLUSIONS The high-solids effect is both enzyme and substrate dependent, and can be reduced by modifying the pretreated biomass, suggesting that pretreatment processes can be designed to achieve similar effects. Yields at low and high-solids concentrations do not correlate for a given biomass, and thus industrial evaluation of biomass recalcitrance should be carried out at high-solids conditions.
Collapse
Affiliation(s)
- Noah D. Weiss
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Claus Felby
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Lisbeth G. Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Crowe JD, Zarger RA, Hodge DB. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8652-8662. [PMID: 28876068 DOI: 10.1021/acs.jafc.7b03240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.
Collapse
Affiliation(s)
| | | | - David B Hodge
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology , Luleå 97187, Sweden
| |
Collapse
|
12
|
Thomas VA, Kothari N, Bhagia S, Akinosho H, Li M, Pu Y, Yoo CG, Pattathil S, Hahn MG, Raguaskas AJ, Wyman CE, Kumar R. Comparative evaluation of Populus variants total sugar release and structural features following pretreatment and digestion by two distinct biological systems. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:292. [PMID: 29225697 PMCID: PMC5718110 DOI: 10.1186/s13068-017-0975-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/25/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Populus natural variants have been shown to realize a broad range of sugar yields during saccharification, however, the structural features responsible for higher sugar release from natural variants are not clear. In addition, the sugar release patterns resulting from digestion with two distinct biological systems, fungal enzymes and Clostridium thermocellum, have yet to be evaluated and compared. This study evaluates the effect of structural features of three natural variant Populus lines, which includes the line BESC standard, with respect to the overall process of sugar release for two different biological systems. RESULTS Populus natural variants, SKWE 24-2 and BESC 876, showed higher sugar release from hydrothermal pretreatment combined with either enzymatic hydrolysis or Clostridium thermocellum fermentation compared to the Populus natural variant, BESC standard. However, C. thermocellum outperformed the fungal cellulases yielding 96.0, 95.5, and 85.9% glucan plus xylan release from SKWE 24-2, BESC 876, and BESC standard, respectively. Among the feedstock properties evaluated, cellulose accessibility and glycome profiling provided insights into factors that govern differences in sugar release between the low recalcitrant lines and the BESC standard line. However, because this distinction was more apparent in the solids after pretreatment than in the untreated biomass, pretreatment was necessary to differentiate recalcitrance among Populus lines. Glycome profiling analysis showed that SKWE 24-2 contained the most loosely bound cell wall glycans, followed by BESC 876, and BESC standard. Additionally, lower molecular weight lignin may be favorable for effective hydrolysis, since C. thermocellum reduced lignin molecular weight more than fungal enzymes across all Populus lines. CONCLUSIONS Low recalcitrant Populus natural variants, SKWE 24-2 and BESC 876, showed higher sugar yields than BESC standard when hydrothermal pretreatment was combined with biological digestion. However, C. thermocellum was determined to be a more robust and effective biological catalyst than a commercial fungal cellulase cocktail. As anticipated, recalcitrance was not readily predicted through analytical methods that determined structural properties alone. However, combining structural analysis with pretreatment enabled the identification of attributes that govern recalcitrance, namely cellulose accessibility, xylan content in the pretreated solids, and non-cellulosic glycan extractability.
Collapse
Affiliation(s)
- Vanessa A. Thomas
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Ninad Kothari
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Samarthya Bhagia
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Hannah Akinosho
- School of Chemistry and Biochemistry & Renewable Bioproducts Institute, Atlanta, GA 30332 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Mi Li
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yunqiao Pu
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sivakumar Pattathil
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
- Present Address: Mascoma LLC (Lallemand Inc.), 67 Etna Road, Lebanon, NH 03766 USA
| | - Michael G. Hahn
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Arthur J. Raguaskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Chemical and Biomolecular Engineering, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 USA
| | - Charles E. Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA 92507 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|