1
|
Zhang L, Bai R, Zhang J, Chen Z, Guo J. Fe 3+ addition as a promising strategy to enhance the pollutant removal performance and mitigate the membrane fouling of a laboratory-scale membrane bioreactor treating sulfamethoxazole wastewater. ENVIRONMENTAL RESEARCH 2025; 274:121284. [PMID: 40049348 DOI: 10.1016/j.envres.2025.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Membrane bioreactor (MBR) is a water treatment process combining membrane technologies with activated sludge, which is beneficial to the removal of antibiotics. However, with the extension of the operation cycle, its efficiency in treating antibiotic wastewater decreases and the membrane fouling intensifies. As the presence of Fe3+ could improve pollutants removal, microbial activity and sludge properties, it was anticipated that the addition of Fe3+ in MBR might promote the removal of antibiotics and reduce membrane fouling. The effects of Fe3+ concentration on the removal of sulfamethoxazole (SMX) and membrane fouling were investigated in this work. The results revealed that the removal efficiencies of COD, TN, and SMX was 98%, 86%, and 70%, respectively, when 40 mg/L Fe3+ was introduced into MBR with the influent SMX concentration of 1 mg/L. This performance was superior to that observed in the absence of Fe3+, which was 93%, 74%, and 53% for COD, TN, and SMX removal, respectively. Correspondingly, the membrane fouling rate decreased from 2.52 kPa/d to 1.03 kPa/d, demonstrating that Fe3+ could mitigate membrane fouling. The exploration into membrane fouling mechanism demonstrated that the flocculation of activated sludge was enhanced and the protein (PN) content in the cake layer was significantly reduced. Concurrently, the repulsive energy barrier (XDLVO) between foulants and membrane surface was markedly increased. The study identified four SMX degradation pathways, i.e., N-S bond breaking, C-S bond breaking, N-O bond breaking, and benzene ring deamination. The toxicity levels of the degradation intermediates were determined to span from harmless to toxic as compared with SMX itself. This study offers new insights into the enhanced elimination of SMX through the MBR-Fe process and elucidates the mechanisms involved in mitigating membrane fouling, highlighting the potential of this process in degrading antibiotic wastewater.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Rumeng Bai
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Zicheng Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jingbo Guo
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin, 132012, China.
| |
Collapse
|
2
|
Yoo J, Oshita K, Kusakabe T, Takaoka M. Adhesion behavior of dewatered sewage sludge during indirect thermal drying. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125203. [PMID: 40186975 DOI: 10.1016/j.jenvman.2025.125203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
We comprehensively investigated the factors influencing sludge adhesion during indirect thermal drying. We analyzed sludge properties and assessed adhesion during thermal drying using peel and shear tests at temperatures ranging from 100 to 180 °C. We conducted a comparative analysis of sludge properties and adhesion, exploring their correlations. Additionally, we examined the relationship between sludge adhesion and changes in extracellular polymeric substances (EPSs) throughout the drying process. The results indicate that factors leading to increased sludge adhesiveness include higher drying temperatures and the initial soluble EPS (S-EPS) concentration (R > 0.88). Only the S-EPS concentration showed an initial increase during thermal drying, followed by a decrease. Sludge with higher initial S-EPS concentrations released more S-EPS during the early stages of thermal drying. Sludge adhesion tended to increase after the S-EPS concentration began to decline. These observations suggest that the adhesive properties of sludge are not directly related to S-EPS but rather to the heat-induced release and transformation of organic content into substances that enhance adhesion. Potential technical solutions to mitigate sludge adhesion include lowering the drying temperature or reducing the S-EPS concentration through anaerobic digestion.
Collapse
Affiliation(s)
- Junyeong Yoo
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Cluster C, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Kazuyuki Oshita
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Cluster C, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Taketoshi Kusakabe
- Faculty of Engineering, Osaka Institute of Technology, Omiya Campus, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Cluster C, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
3
|
Homayoonfal M, Hajhashemi Z, Hajheidari M, Rezaei F, Nadali MS. Modeling and simulation-assisted strategies for effective membrane-fouling mitigation during membrane bioreactor operation. Heliyon 2024; 10:e38953. [PMID: 39492913 PMCID: PMC11531625 DOI: 10.1016/j.heliyon.2024.e38953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
This research principally aimed to present a suitable strategy for membrane-fouling mitigation in membrane-bioreactors (MBRs). The current strategies for membrane-fouling mitigation before initiating the process in many cases, are unmodifiable for a specific MBR system along the operations. Thus, membrane-fouling strategies during filtration should be applied. To select the best and most economical method for controlling fouling during the operations, the quality (site and mechanism) as well as quantity (thickness, mass, and porosity of the cake layer, and pore resistances) of fouling should be predicted. Accordingly, in this research, two powerful tools, i.e. modeling and simulation, have been used for predicting the quality and quantity of fouling, respectively. Through modeling, the best model describing the site and mechanism of fouling was chosen. Through simulation, the thickness, mass and porosity of the cake layer, along with resistance of cake and pores were calculated. In addition, the match between the results of modeling, simulation, and experimental results confirmed the accuracy of the performed predictions. Ultimately, to achieve the minimum membrane-fouling during filtration, based on the modeling results, the general solution of washing (physical or chemical), and based on the simulation results, its intensity (low, medium, and high) were proposed.
Collapse
Affiliation(s)
- Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Zohre Hajhashemi
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Hajheidari
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Fateme Rezaei
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Mohammad Saber Nadali
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
4
|
Silva BG, Perez-Calleja P, Foresti E, Nerenberg R. Unique biofilm structure and mass transfer mechanisms in the foam aerated biofilm reactor (FABR). ENVIRONMENTAL TECHNOLOGY 2023; 44:3367-3381. [PMID: 35348424 DOI: 10.1080/09593330.2022.2058422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The foam-aerated biofilm reactor (FABR) is a novel biofilm process that can simultaneously remove carbon and nitrogen from wastewater. A porous polyurethane foam sheet forms an interface between wastewater and aerated water, making it a counter-diffusional biofilm process similar to the membrane-aerated biofilm reactor (MABR). However, it is not clear how biofilm develops the foam interior, and how this impacts mass transfer and performance. This research explored biofilm development within the foam sheet and determined whether advective transport within the sheet played a significant role. Foam sheets with 2-, 4.5- and 9-mm thicknesses were explored. Oxygen, nitrate, nitrite and ammonia profiles in the sheet were measured using microsensors, and biofilm imaging studies were carried out using optical coherence tomography (OCT). On the foam's aerated side, a dense nitrifying biofilm formed. Beyond the aerobic zone, much less biomass was observed, with a high porosity foam-biofilm layer. The higher effective diffusivity within the foam for the 4- and 9-mm sheets suggested advective transport within the foam channel structures. Using an effective diffusivity factor in conventional 1-D biofilm models reproduced the measured substrate concentration profiles within the foam. Four different practical conditions were modelled. The maximum TN removal efficiency was about 70% and a nitrogen removal flux of 1.25 gN.m-2.d-1. We conclude that mass transfer resistance occurred primarily in the dense, nitrifying layer near the aerated side. The rest of the foam sheet was porous, allowing the advective mass transfer.
Collapse
Affiliation(s)
- Bruno Garcia Silva
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil
| | - Patricia Perez-Calleja
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Eugenio Foresti
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
5
|
Zhou Y, Zhu Y, Zhu J, Li C, Chen G. A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3429. [PMID: 36834120 PMCID: PMC9967642 DOI: 10.3390/ijerph20043429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Discharging large amounts of domestic and industrial wastewater drastically increases the reactive nitrogen content in aquatic ecosystems, which causes severe ecological stress and biodiversity loss. This paper reviews three common types of denitrification processes, including physical, chemical, and biological processes, and mainly focuses on the membrane technology for nitrogen recovery. The applicable conditions and effects of various treatment methods, as well as the advantages, disadvantages, and influencing factors of membrane technologies, are summarized. Finally, it is proposed that developing effective combinations of different treatment methods and researching new processes with high efficiency, economy, and energy savings, such as microbial fuel cells and anaerobic osmotic membrane bioreactors, are the research and development directions of wastewater treatment processes.
Collapse
Affiliation(s)
| | - Yingying Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | | | | | | |
Collapse
|
6
|
Taheri M, Fallah N, Nasernejad B. Comparison of high-concentration azo dye removal by long HRT in MSBRs' bioaugmented with GAC and sponge media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1201-1215. [PMID: 35915305 DOI: 10.1007/s11356-022-22055-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The present study assessed the performance and fouling of adding granular activated carbon (GAC) and sponge (BioCube), as two different media, to a membrane sequencing batch reactor (MSBR) system in wastewater treatment containing Acid Red 18 (AR 18). Anaerobic phase, aerobic phase, and hydraulic retention times (HRTs) of 24 h, 12 h, and 72 h were considered for 500 mg/L AR 18 removal at a sludge retention time (SRT) of 20 days by separately adding up to 35% BioCube volume and 8 g/L GAC to the reactors. Based on the kinetic study, 63 mg/L (87% removal) and 115 mg/L (77% removal) remaining dye were reported in the GAC and BioCube membrane sequencing batch reactors (GAC-MSBR and BioCube-MSBR), respectively. A gradual oxidation-reduction potential decline toward -416 mV confirmed better dye removal in GAC-MSBR than BioCube-MSBR, observing a sudden drop to -354 mV. The morphology can explain better biological treatment in GAC-MSBR in addition to the adsorption process. Soluble microbial products (SMPs) of 126.92 mg/L and 395.18 mg/L were obtained for GAC-MSBR and BioCube-MSBR, respectively. Chemical oxygen demand (COD) and SMP indicated that the GAC-MSBR water quality is better than that of the other reactor.
Collapse
Affiliation(s)
- Mahsa Taheri
- Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran
| | - Narges Fallah
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran.
| | - Bahram Nasernejad
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran
| |
Collapse
|
7
|
Nabi M, Gao D, Liang H, Cheng L, Yang W, Li Y. Landfill leachate treatment by graphite engineered anaerobic membrane bioreactor: Performance enhancement and membrane fouling mitigation. ENVIRONMENTAL RESEARCH 2022; 214:114010. [PMID: 35921906 DOI: 10.1016/j.envres.2022.114010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Low efficiency of anaerobic digestion and membrane fouling, treating landfill leachate, are big barriers in the application of anaerobic membrane bioreactor (AnMBR). Anaerobic digestion enhancement and membrane fouling mitigation of AnMBR with graphite addition, treating landfill leachate, were investigated in this study. The effect of graphite on organics removal, biogas production, methane content in biogas, membrane fouling, microbial responses and foulant compositions were analyzed. With the graphite addition, chemical oxygen demand (COD) removal of 78% was achieved for influent COD concentration of 3000 mg/l, which was significantly higher than the stage without graphite addition (65%) for influent COD concentration of 2000 mg/l. Similarly, methane content in biogas with graphite addition was 56%, while without graphite addition it was 46%. These digestion improvements were due to the promotion of organics degradation, facilitated by direct interspecies electron transfer (DIET) mechanism via graphite addition in AnMBR. The graphite addition prolonged membrane cleaning cycle from 13 days to 30 days. Protein content in loosely bound extracellular polymeric substance (LB-EPS) was the main fouling agent, which decreased with the graphite addition. The main mechanism behind membrane fouling mitigation was the protein content reduction in LB-EPS, which was biodegraded by Trichococcus being increased in relative abundance with the graphite addition. Furthermore, abundance of Denitratisoma decreased in anaerobic sludge and its accumulation reduced on membrane surface, subsequently membrane fouling was mitigated. Overall, graphite addition in AnMBR is a potential eco-innovative approach that efficiently removes pollutants from landfill leachate, enhances biogas quality and mitigates membrane fouling.
Collapse
Affiliation(s)
- Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuqi Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
8
|
Simultaneous Removal of Organic Matter and Nutrients from High Strength Organic Wastewater Using Sequencing Batch Reactor (SBR). Processes (Basel) 2022. [DOI: 10.3390/pr10101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Industrial wastewater discharges often contain high levels of organic matter and nutrients, which can lead to eutrophication and constitute a serious hazard to receiving waters and aquatic life. The purpose of this study was to examine the efficacy of using a sequencing batch reactor (SBR) to treat high-strength organic wastewater for the removal of both chemical oxygen demand (COD) and nutrients (nitrogen and phosphorus). At a constant COD concentration of approximately 1000 mg/L, the effects of cycle time (3 and 9 h) and various C:N:P ratios (100:5:2, 100:5:1, 100:10:1, and 100:10:2) were investigated using four identical SBRs (R1, R2, R3, and R4). According to experimental data, a significant high removal, i.e., 90%, 98.5%, and 84.8%, was observed for COD, NH3-N, and PO43−-P, respectively, when C:N:P was 100:5:1, at a cycle time of 3 h. Additionally, when cycle time was increased to 9 h, the highest levels of COD removal (95.7%), NH3-N removal (99.6%), and PO43−-P removal (90.31%) were accomplished. Also, in order to comprehend the primary impacts and interactions among the various process variables, the data was statistically examined using analysis of variance (ANOVA) at a 95% confidence level, which revealed that the interaction of cycle time and C/N ratio, cycle time and C/P ratio is significant for COD and NH3-N removal. However, the same interaction was found to be insignificant for PO43−-P removal. Sludge volume index (SVI30 and SVI10) and sludge settleability were studied, and the best settling was found in R3 with SVI30 of 55 mL/g after 9 h. Further evidence that flocs were present in reactors came from an average ratio of SVI 30/SVI 10 = 0.70 after 9 h and 0.60 after 3 h.
Collapse
|
9
|
Purba LDA, Md Khudzari J, Iwamoto K, Mohamad SE, Yuzir A, Abdullah N, Shimizu K, Hermana J. Discovering future research trends of aerobic granular sludge using bibliometric approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114150. [PMID: 34864588 DOI: 10.1016/j.jenvman.2021.114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The advantageous characteristics of aerobic granular sludge (AGS) have led to their increasing popularities among academics and industrial players. However, there has been no bibliometric report on current and future research trends of AGS. This study utilized the available reports of AGS in the Scopus database for comprehensive bibliometric analyses using VOSviewer software. A total of 1203 research articles from 1997 to 2020 were analyzed. The dominance of the Netherlands and China were revealed by the high number of publications and citations. Nevertheless, the Netherlands exhibited higher average citation per article at 76.4. A recent process of AGS involving biochar and algal addition were also identified. Meanwhile, the application of AGS for antibiotic containing wastewater as well as possibility of resource recovery were recently reported and was expected to expand in the future. It was suggested that application of AGS would develop further along with the development of sustainable wastewater treatment process.
Collapse
Affiliation(s)
- Laila Dina Amalia Purba
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Jauharah Md Khudzari
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Koji Iwamoto
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shaza Eva Mohamad
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Ali Yuzir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Norhayati Abdullah
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Associate Director, UTM International, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Joni Hermana
- Department of Environmental Engineering, Faculty of Civil, Planning and Geoengineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| |
Collapse
|
10
|
Zhang X, Zhang Z, Liu Y, Hao Ngo H, Guo W, Wang H, Zhang Y, Zhang D. Impacts of sulfadiazine on the performance and membrane fouling of a hybrid moving bed biofilm reactor-membrane bioreactor system at different C/N ratios. BIORESOURCE TECHNOLOGY 2020; 318:124180. [PMID: 33022530 DOI: 10.1016/j.biortech.2020.124180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The performance and membrane fouling of a hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system was evaluated when exposed to 0.5 mg/L of antibiotic sulfadiazine (SDZ). Results indicated that although SDZ reduced the removal efficiency of NH4+-N and TN (up to 12%) and TOC (up to 6%) at low C/N (2.5 and 4), it had no significant effect at high C/N (6 and 9). It was found that SDZ was removed 75% and 58% at high C/N of 9 and low C/N of 2.5, respectively. SDZ decreased the ratio of volatile biomass/total biomass and sludge particle size and increased the concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) in MBR. Consequently, this accelerated the membrane fouling rates, with an average increase of 6.85 kPa/d at low C/N (2.5) and 0.513-0.701 kPa/d at medium and high C/N (4, 6 and 9).
Collapse
Affiliation(s)
- Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zumin Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Ying Liu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huizhong Wang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yufeng Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Dan Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
11
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
12
|
Wang L, Yu X, Xiong W, Li P, Wang S, Fan A, Su H. Enhancing robustness of aerobic granule sludge under low C/N ratios with addition of kitchen wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110503. [PMID: 32421552 DOI: 10.1016/j.jenvman.2020.110503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Aerobic granular sludge (AGS) is one of the most promising biotechnologies for wastewater treatment. However, the instability of AGS at low carbon to nitrogen (C/N) ratios limited its application. In this study, kitchen wastewater addition in the influent was found to improve the morphology, characteristics, and treatment performance of AGS at low C/N ratios of 10, 5 and 2, which strongly reduced the negative impact of low C/N ratios on the biomass concentration, settleability, EPS secretion, stability and performance of AGS. At C/N ratio of 2, sludge disintegration was observed in RA with synthetic wastewater as influent, while the sludge in RB was able to keep a compact microbial structure with particle size of 1.0-1.5 mm. When C/N ratio decreased from 20 to 2 (phase 1 to 4), the MLSS, SVI and EPS secretion in RB were negatively affected at the beginning of each phase, but recovered to 4800 mg L-1, 60 mL g-1, and 86 mg/g SS at the end of phase 4 (C/N ratio of 2), which were 1.3, 0.6 and 1.3 times of those in RA, respectively. Meanwhile, the removal efficiencies of COD, TN, TP and NH4+-N in RB were 90%, 73%, 53%, and 99% at the end of phase 4, which were 1.1, 1.2, 2.2 and 2.4 times of those in RA, respectively. Thus, high-performance AGS with enhanced robustness and high abundance of HN-AD functional bacteria Paracoccus was obtained. These findings provided a promising and cost-effective method to improve the long-term stability and performance of AGS dealing with wastewater of low C/N ratio.
Collapse
Affiliation(s)
- Luxi Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xijia Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wei Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Aili Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
13
|
Ahmadi E, Yousefzadeh S, Mokammel A, Miri M, Ansari M, Arfaeinia H, Badi MY, Ghaffari HR, Rezaei S, Mahvi AH. Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2020; 121:109674. [DOI: 10.1016/j.rser.2019.109674] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Niu B, Cai J, Song W, Zhao G. Novel Electrochemical Pretreatment for Preferential Removal of Nonylphenol in Industrial Wastewater: Biodegradability Improvement and Toxicity Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1258-1266. [PMID: 31702138 DOI: 10.1021/acs.est.9b03153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Preferential pretreatment of nonylphenol (NP) before biological treatment is of great significance due to its horizontal gene transfer effect and endocrine disruption activity. A novel molecular imprinting high-index facet SnO2 (MI-SnO2, HIF) electrode is designed. NP was effectively removed from industrial wastewater at 1.8 V with totally suppressing human estrogen activity. The ratio of 5 day biological oxygen demand to chemical oxygen demand (BOD5/CODCr) was enhanced to 0.412 from 0.186 after preferential pretreatment. The effluent concentration of NP was 6.4 μg L-1 after further simulating anaerobic-anoxic-oxic treatment, which was about 1/10 of that without pretreatment. This preferential electrochemical pretreatment is interpreted as prior adsorption and enrichment of target pollutants on the MI-SnO2, HIF surface. The reactive oxygen species and subsequent oxidation products were investigated by in situ electron paramagnetic resonance and electrochemical infrared spectroscopy. The degradation pathway of NP was further analyzed by liquid chromatography-mass spectrometry. This unique pretreatment method for a complex tannery wastewater system has irreplaceable status because no methods with similar advantages have been reported, expecting to be widely used in preferential pretreatment of toxic contaminants blended with highly concentrated nontoxic organics.
Collapse
Affiliation(s)
- Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| |
Collapse
|
15
|
Zhang W, Jiang F. Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size. WATER RESEARCH 2019; 157:445-453. [PMID: 30981119 DOI: 10.1016/j.watres.2018.07.069] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 06/09/2023]
Abstract
The main goal of the current study was to investigate the membrane fouling mechanism of aerobic granular sludge (AGS) with various AGS sizes. In this regard, AGSs were sieved into 6 levels: 0∼0.5, 0.5∼0.7, 0.7∼1, 1∼1.2, 1.2∼1.7 mm and larger than 1.7 mm, then filtrated by a small dead-end filtration cell. Interestingly, there appeared a critical AGS size (1∼1.2 mm) for membrane fouling. Above 1.2 mm, flux increased and fouling reduced with size, due to the loose cake layer and high permeability caused by larger AGS. Below 1 mm, for smaller AGS, higher flux and lower fouling appeared, because less extracellular polymeric substance (EPS) formed and adhered onto AGS foulants. In the critical size, membrane fouling was serious to the most extent, on account of the dual role of the compact structure of cake fouling layer and the adhesion of EPS. Moreover, this critical AGS size also possessed the highest cake layer, pore blocking and irreversible fouling, which generally existed in various operational conditions. Besides, the results of SEM, AFM, hydrophilicity and ATR-FTIR also proved that the existence of the maximum membrane fouling at the critical AGS size. This study provides a deep understanding of the membrane fouling mechanisms of AGS in membrane filtration and is beneficial for developing a new membrane fouling mitigation strategy by terms of regulating AGS size.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Environmental Science and Engineering, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Chemistry & Environment, South China Normal University, Guangzhou, China.
| | - Feng Jiang
- School of Chemistry & Environment, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Wang X, Chen Z, Shen J, Zhao X, Kang J. Impact of carbon to nitrogen ratio on the performance of aerobic granular reactor and microbial population dynamics during aerobic sludge granulation. BIORESOURCE TECHNOLOGY 2019; 271:258-265. [PMID: 30278350 DOI: 10.1016/j.biortech.2018.09.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Carbon to nitrogen (C/N) ratio is one of the most important factor affecting aerobic granular sludge (AGS) growth and pollutant removal in aerobic granular sludge sequencing batch reactor (AGSBR). For stability of sludge granulation process, AGSs were domesticated in five sequence batch reactors (SBRs) with different C/N ratios (6, 7, 8, 9, and 10), which the ammonia nitrogen concentration of influent was 165 mg/L. The effects of C/N ratio on morphology and property of AGS were studied. The results showed that stable AGS was yielded with good settleability, high pollutant removal efficiency and rich microbial diversity when C/N ratio was 8. AGS yielded had stable structure due to higher protein in extracellular polymeric substances (EPS). High throughput 16S rDNA gene analysis revealed the microbial community diversity increased in AGS under the C/N ratio. The dominant microbes changed at the phylum, class and family three levels with the increasing operation time.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xia Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
17
|
Lei Z, Yang S, Li YY, Wen W, Wang XC, Chen R. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives. BIORESOURCE TECHNOLOGY 2018; 267:756-768. [PMID: 30030048 DOI: 10.1016/j.biortech.2018.07.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
This review surveys the implementation of anaerobic membrane bioreactors in municipal wastewater treatment at ambient temperature. High chemical oxygen demand (COD) removal efficiencies and methane conversion rates were achieved under various conditions, while also achieving a low sludge yield of 0.04-0.09 g volatile suspended solids (VSS)/g COD. A survey of energy demands for pilot-scale anaerobic membrane bioreactors showed that they could be energy neutral or even positive, even though high energy (0.08-0.35 kWh/m3) is required to clear membrane fouling. Thus, the use of anaerobic membrane bioreactors in municipal wastewater treatment at ambient temperature is very promising. However, some challenges such as membrane fouling control, methane in effluent, low COD/SO42--S ratio, and deficiencies in alkalinity should be addressed, especially the latter. Future research perspectives relating to the challenges and further research are proposed.
Collapse
Affiliation(s)
- Zhen Lei
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Shuming Yang
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Wen Wen
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Rong Chen
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|