1
|
Pérez HJV, de Souza CL, Passos F, Roman MB, Mora EJC. Co-digestion and co-treatment of sewage and organic waste in mainstream anaerobic reactors: operational insights and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58687-58719. [PMID: 39316211 DOI: 10.1007/s11356-024-34918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
The global shift towards sustainable waste management has led to an intensified exploration of co-digestion and co-treatment of sewage and organic waste using anaerobic reactors. This review advocates for an integrated approach where organic waste is treated along with the sewage stream, as a promising solution to collect, treat, and dispose of organic waste, thereby reducing the environmental and economic burden on municipalities. Various efforts, ranging from laboratory to full-scale studies, have been undertaken to assess the feasibility and impacts of co-digestion or co-management of sewage and organic waste, using technologies such as up-flow anaerobic sludge blankets or anaerobic membrane bioreactors. However, there has been no consensus on a standardized definition of co-digestion, nor a comprehensive understanding of its impacts. In this paper, we present a comprehensive review of the state-of-the-art in liquid anaerobic co-digestion systems, which typically operate at 1.1% total solids. The research aims to investigate how the integration of organic waste into mainstream anaerobic-based sewage treatment plants has the potential to enhance the sustainability of both sewage and organic waste management. In addition, utilizing the surplus capacity of existing anaerobic reactors leads to significant increases in methane production ranging from 190 to 388% (v/v). However, it should be noted that certain challenges may arise, such as the necessity for the development of tailored strategies and regulatory frameworks to enhance co-digestion practices and address the inherent challenges.
Collapse
Affiliation(s)
- Henry Javier Vílchez Pérez
- School of Civil Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica.
| | - Cláudio Leite de Souza
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, Belo Horizonte, MG, 6627, Brazil
| | - Fabiana Passos
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, C/Jordi Girona, 1-3, Building D1, 08034, Barcelona, Spain
| | - Mauricio Bustamante Roman
- School of Biosystems Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica
| | - Erick Javier Centeno Mora
- School of Civil Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica
| |
Collapse
|
2
|
Hmaissia A, Bareha Y, Vaneeckhaute C. Correlations and impact of anaerobic digestion operating parameters on the start-up duration: Database construction for robust start-up guidelines. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121068. [PMID: 38728989 DOI: 10.1016/j.jenvman.2024.121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Anaerobic digestion (AD) has become a popular technique for organic waste management while offering economic and environmental advantages. As AD becomes increasingly prevalent worldwide, research efforts are primarily focused on optimizing its processes. During the operation of AD systems, the occurrence of unstable events is inevitable. So far, numerous conclusions have been drawn from full and lab-scale studies regarding the driving factors of start-up perturbations. However, the lack of standardized practices reported in start-up studies raises concerns about the comparability and reliability of obtained data. This study aims to develop a knowledge database and investigate the possibility of applying machine learning techniques on experimentation-extracted data to assist start-up planning and monitoring. Thus, a standardized database referencing 75 cases of start-up of one-stage wet continuously-stirred tank reactors (CSTR) processing agricultural, industrial, or municipal organic effluent in mono-digestion from 31 studies was constructed. 10 % of the total observations included in this database concern failed start-up experiments. Then, correlations between the parameters and their impacts on the start-up duration were studied using multivariate analysis and a model-based ranking methodology. Insights into trends of choices were highlighted through the correlation analysis of the database. As such, scenarios favoring short start-up duration were found to involve relatively low retention times (average initial and final hydraulic retention times, (HRTi) and (HRTf) of 26.25 and 20.6 days, respectively), high mean organic loading rates (average OLRmean of 5.24 g VS·d-1·L -1) and the processing of highly fermentable substrates (average feed volatile solids (VSfeed) of 81.35 g L-1). The model-based ranking of AD parameters demonstrated that the HRTf, the VSfeed, and the target temperature (Tf) have the strongest impact on the start-up duration, receiving the highest relative scores among the evaluated AD parameters. The database could serve as a reference for comparison purposes of future start-up studies allowing the identification of factors that should be closely controlled.
Collapse
Affiliation(s)
- Amal Hmaissia
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, QC, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Younes Bareha
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, QC, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Céline Vaneeckhaute
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, QC, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Jønson BD, Tsapekos P, Tahir Ashraf M, Jeppesen M, Ejbye Schmidt J, Bastidas-Oyanedel JR. Pilot-scale study of biomethanation in biological trickle bed reactors converting impure CO 2 from a Full-scale biogas plant. BIORESOURCE TECHNOLOGY 2022; 365:128160. [PMID: 36273766 DOI: 10.1016/j.biortech.2022.128160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Research within biological methanation has been a great development using biotrickling filters (BTF), as a power-to-x solution, but research within up scaling is missing. This study investigates the commercial potential of biomethanation in BTF by operating two 1 m3 reactors which was implemented into a full-scale biogas plant. Several areas were investigated, such as enrichment and start-up, long-term steady state operation, serial operation, and intermittent feed. A methane productivity of [Formula: see text] with a product gas of 95.7 % CH4 was obtained for parallel operation, whereas during serial operation a methane productivity of [Formula: see text] at 97.4 % CH4 was achieved. The flexibility of the biomethanation was demonstrated with unintentional loss of H2 feed in periods of 12 to 72 h, where initial performance was regained within 6 to 12 h. The results from this study demonstrate the potential for commercial use of biomethanation in BTF for future Power-to-X solutions.
Collapse
Affiliation(s)
- Brian Dahl Jønson
- SDU-Biotechnology, Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark; Nature Energy A/S, Odense DK-5220, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Muhammed Tahir Ashraf
- SDU-Biotechnology, Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark.
| | | | - Jens Ejbye Schmidt
- Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark
| | | |
Collapse
|
4
|
Wang G, Jiang Y, Tang K, Zhang Y, Andersen HR. Efficient recovery of dissolved Fe(II) from near neutral pH Fenton via microbial electrolysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129196. [PMID: 35739726 DOI: 10.1016/j.jhazmat.2022.129196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Fe(II) regeneration from ferric sludge via a biocathode and citrate system has recently been proposed to avoid iron-sludge accumulation and iron consumption in homogeneous Fenton treatments. However, poor regeneration rate of Fe(II) from ferric sludge at a near-neutral pH, without an iron-complexing agent, limited its wider practical application. Here, a biocathode augmented with Geobacter sulfurreducens hosted by a microbial electrolysis cell was developed to efficiently regenerate dissolved Fe(II) from ferric sludge at near-neutral pH levels, without using iron-complexing agents. In the Geobacter sulfurreducens-rich biocathode without complexing agents, the regeneration rate of dissolved Fe(II) increased three-fold compared with the biocathode before inoculating Geobacter sulfurreducens. The highest concentration of dissolved Fe(II) increased from 45 mg Fe/L to 199 mg Fe/L at pH 6 when 0.5 V of voltage was applied. Furthermore, 84 mg Fe/L of dissolved Fe(II) was successfully regenerated from ferric sludge during the 123 days' operation of flow-through biocathode. Finally, the regenerated Fe(II) solution without organic matters was successfully applied in a near-neutral pH Fenton treatment to remove recalcitrant pollutants. This Geobacter sulfurreducens-rich biocathode, with its low chemical consumption, high regeneration rate and feasibility for continuous flow operation, offers a more efficient method to realize iron-free in homogeneous Fenton treatments.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yufeng Jiang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
5
|
Marami H, Tsapekos P, Khoshnevisan B, Madsen JA, Andersen JK, Rafiee S, Angelidaki I. Going beyond conventional wastewater treatment plants within circular bioeconomy concept - a sustainability assessment study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1878-1903. [PMID: 35358077 DOI: 10.2166/wst.2022.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTP) have extensive energy processes that undermine their economic and environmental performance. In this context, the integration of wastewater treatment with other biochemical processes such as co-digestion of sludge with organic wastes, and production of value-added products at their downstream processes will shift conventional WWTPs into biorefinery platforms with better sustainability performance. The sustainability of such a biorefinery platform has been investigated herein using an economic and life cycle assessment approach. This WWTP-based biorefinery treats wastewater from Copenhagen municipality, co-digests the source-sorted organic fraction of municipal solid waste and sludge, and upgrades biogas into biomethane using a hydrogen-assisted upgrading method. Apart from bioenergy, this biorefinery also produces microbial protein (MP) using recovered nutrients from WWTP's reject water. The net environmental savings achieved in two damage categories, i.e., -1.07 × 10-2 species.yr/FU in ecosystem quality and -1.68 × 106 USD/FU in resource scarcity damage categories along with high potential windows for the further environmental profile improvements make this biorefinery platform so encouraging. Despite being promising in terms of environmental performance, the high capital expenditure and low gross profit have undermined the economic performance of the proposed biorefinery. Technological improvements, process optimization, and encouraging incentives/subsidies are still needed to make this platform economically feasible.
Collapse
Affiliation(s)
- Hadis Marami
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | | | | | - Shahin Rafiee
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| |
Collapse
|
6
|
Zou X, Wang Y, Dai Y, Zhou S, Wang B, Li Y, Li J. Batch and semi-continuous experiments examining the sludge mesophilic anaerobic digestive performance with different varieties of rice straw. BIORESOURCE TECHNOLOGY 2022; 346:126651. [PMID: 34974102 DOI: 10.1016/j.biortech.2021.126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic co-digestion of excess sludge (ES) and different varieties of rice straw including indica rice straw (IRS), japonica rice straw (JRS) and glutinous rice straw (GRS) was investigated in batch and semi-continuous experiments. The batch experiment results showed that the GRS addition presents the highest hydrolysis and methanogenesis rates, its cumulative methane yield (CMY) was 305.75 mL/g VS and its average methane content was 60.56%. After digestion, the structure of GRS was almost completely destroyed, which was beneficial to the degradation of lignocellulose. The digestive process is affected by the abundance of Actinobactereria, Proteobacteria, Methanosaetae and Methanosarcina. The results of semi-continuous digestion were similar to batch digestion. In addition, the addition of GRS increased TN concentration in biogas residue and TP concentration in biogas slurry, but was not conducive to the subsequent dehydration of sludge.
Collapse
Affiliation(s)
- Xiaoshuang Zou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yiran Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yongheng Dai
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
7
|
Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants. ENERGIES 2021. [DOI: 10.3390/en14248252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biological biogas upgrading with H2 derived from excess renewable electricity was modeled and simulated in PROII® (AVEVA Group plc, Cambridge, UK). An economic analysis was performed for a biogas plant processing 100,000 tons of biomass (substrate) per year. The biogas and biomethane production simulation results were validated with laboratory experimental data, as well as full-scale data obtained from biogas plants. A biomethane production cost of 0.47 €/Nm3 was calculated, while the minimum biomethane selling price for NPV = 0 was equal to 0.66 €/Nm3, considering a H2 price of 1.0 €/kg. The feasibility analysis indicated that the H2-related costs were the major contributor to the capital and operation costs due to high expenses associated with the in-situ H2 storage facility and the purchasing of H2, respectively. Compared to conventional upgrading methods, biological biogas upgrading has a higher capital and production cost, which can be reduced by increasing the plant capacity. The sensitivity analysis showed that the profitability is very sensitive to biomethane prices, capital investment, and the H2 price.
Collapse
|
8
|
Baniamerian H, Ghofrani-Isfahani P, Tsapekos P, Alvarado-Morales M, Shahrokhi M, Angelidaki I. Multicomponent nanoparticles as means to improve anaerobic digestion performance. CHEMOSPHERE 2021; 283:131277. [PMID: 34182648 DOI: 10.1016/j.chemosphere.2021.131277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Sufficient quantity of trace metals is essential for a well performing anaerobic digestion (AD) process. Among the essential trace elements in active sites of multiple important enzymes for AD are iron and nickel ions. In the present study, iron and nickel in the form of Fe2O3 and NiO were coated on TiO2 nanoparticles to be used in batch and continuous operation mode. The effect of TiO2, Fe2O3-TiO2, and NiO-TiO2 nanoparticles on each step of AD process was assessed utilizing simple substrates (i.e. cellulose, glucose, acetic acid, and mixture of H2-CO2) as well as complex ones (i.e. municipal biopulp). The hydrolysis rate of cellulose substrate increased with higher dosages of the coated TiO2 with both metals. For instance, the hydrolysis rate was increased up to 54% at Fe2O3-TiO2 and at a concentration of 23.5 mg/L for NiO-TiO2 it was increased up to 58%, while higher dosage suppressed the hydrolytic activity. Experimental results revealed that low dosages of NiO-TiO2 increased the accumulated methane production up to 24% probably by increasing the enzymatic activity of acetoclastic methanogenesis. NiO-TiO2 showed positive effect on batch and continuous AD of biopulp and improved methane yield up to 8%.
Collapse
Affiliation(s)
- Hamed Baniamerian
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Parisa Ghofrani-Isfahani
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Mohammad Shahrokhi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
9
|
Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes (Basel) 2021. [DOI: 10.3390/pr9111875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study evaluates the performance of different agricultural by-products to identify the potential effect of independent variables, using as the dependent variable the biogas production. A Box–Behnken experimental design was carried out in a pilot-scale plant of four stirred stainless-steel digesters under mesophilic semi-continuous digestion. The results obtained support the creation of a technical framework to scale up the process and further evaluation of the potential environmental impacts through life cycle assessment (LCA) methodology. A stable behaviour was achieved in 12 of the 13 experiments proposed. The highest value of daily biogas production was 2200.15 mL day−1 with a stabilization time of 14 days, an organic loading rate of 4 g VS feed daily, low C/N ratio and a 1:1 relation of nitrogen providers. The concentrations of CH4 remained stable after the production stabilization and an average biogas composition of 60.6% CH4, 40.1% CO2 and 0.3% O2 was obtained for the conditions mentioned above. Therefore, the real scale plant was estimated to manage 2.67 tonnes of residual biomass per day, generating 369.69 kWh day−1 of electricity. The LCA analysis confirms that the co-digestion process evaluated is a feasible and environmentally sustainable option for the diversification of the Colombian energy matrix and the development of the agro-industrial sector.
Collapse
|
10
|
Yang Z, Tsapekos P, Zhang Y, Zhang Y, Angelidaki I, Wang W. Bio-electrochemically extracted nitrogen from residual resources for microbial protein production. BIORESOURCE TECHNOLOGY 2021; 337:125353. [PMID: 34116279 DOI: 10.1016/j.biortech.2021.125353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Upcycling of nutrients from residual resources for producing microbial protein (MP) is an attractive method to valorize residues. In this study, we investigated bio-electrochemical methods to recover ammonia-N, for further production of MP. Reject water and digestate were used for ammonia-N recovery in microbial fuel cell (MFC) system. In one-stage process, ammonia-N recovery was 32 - 42% with 57 - 154 kJ/m3 waste stream of electricity generation. For further enhancing recovery efficiency, a two-stage process was developed, achieving efficiency of 53 - 61%. Subsequently, MP was grown with the extracted ammonia-N, and amino acid concentration was 421 and 272 mg/L under 25 °C and 35 °C, respectively. Similar essential amino acid content of MP (especially under 25 °C) with the one from fish demonstrated the attractiveness of upcycling residues to proteins. Based on simplified economic evaluation, the produced energy performed the potential to catch 1.63 - 6.54 €/m3 waste stream.
Collapse
Affiliation(s)
- Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yi Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
11
|
Duan N, Kougias PG, Campanaro S, Treu L, Angelidaki I. Evolution of the microbial community structure in biogas reactors inoculated with seeds from different origin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144981. [PMID: 33940708 DOI: 10.1016/j.scitotenv.2021.144981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to provide solid proofs regarding the achievement of "steady-state conditions", which means that the performance of the anaerobic digester is representative of the applied environmental conditions. For this reason, we investigated how, starting from different inoculum sources (i.e., municipal wastewater treatment, bio-waste treatment, and agricultural waste biogas plant), the microbial community adapted to the operational parameters and led to stable biogas production in thermophilic digesters treating the same influent feedstock. The results revealed that the different system achieved similar process performance and microbial community structure after a period that was equal to four hydraulic retention times, approved by a constant pH of 7.89 ± 0.08, 7.92 ± 0.05 and 7.85 ± 0.08, respectively, and stable TAN concentration of 1500 mg/L. Moreover, it was found that the microbial composition of the inocula was a key factor for the speed of achieving stable process performance; thus, a pre-adapted to the influent feedstock inoculum can shorten the stabilization process. On the contrary, after long term reactor operation, the microbial structure was shaped according to the chemical composition of the influent feedstock. The results of the study can also be used as a guide in future researches on anaerobic degradation, particularly in determining the time interval of an experiment to reflect changes in the microbial community of anaerobic digester.
Collapse
Affiliation(s)
- Na Duan
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; Soil and Water Resources Institute, Hellenic Agricultural Organisation- DEMETER, 57001 Thermi-Thessaloniki, Greece.
| | - Stefano Campanaro
- Department of Biology, University of Padova, Padova, Italy; CRIBI - Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative Viale G. Colombo, 335131 Padova, Italy
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; CRIBI - Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative Viale G. Colombo, 335131 Padova, Italy.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
12
|
Sun H, Xu M, Wu S, Dong R, Angelidaki I, Zhang Y. Innovative air-cathode bioelectrochemical sensor for monitoring of total volatile fatty acids during anaerobic digestion. CHEMOSPHERE 2021; 273:129660. [PMID: 33497985 DOI: 10.1016/j.chemosphere.2021.129660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Bioelectrochemical sensors have proven attractive as simple and low-cost methods with high potential for online monitoring of volatile fatty acids (VFA) in the anaerobic digestion (AD) process. Herein, an innovative dual-chamber air-cathode microbial fuel cell was developed as biosensor for VFA monitoring. The response of the biosensor was nonlinear and increased along with the concentration of VFA mixture increase (2.8-112 mM). Meanwhile, the relationship was linear with low VFA levels (<14 mM) within 2-5 h reaction. High concentrations of bicarbonate decreased the voltage. Stirring speeded up the response and amplified the signal but reduced the saturation concentration (approximately 30 mM) and therefore narrowed the detection range. The applicability of the biosensor was further validated with the effluents from an AD reactor during a start-up period. The VFA concentrations measured by the biosensor were well correlated with the gas chromatographic measurement. The results demonstrate that this biosensor with a novel design could be used for VFA monitoring during the AD process. Based on the 16S rRNA gene sequencing, the dominant microbiomes in the biofilm were identified as Geobacter, Hydrogenophaga, Pelobacter, Chryseobacterium, Oryzomicrobium, and Dysgonomonas.
Collapse
Affiliation(s)
- Hao Sun
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark; College of Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Shubiao Wu
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000, Aarhus C, Denmark
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
13
|
Abstract
This study investigated the applied methods for the collection and treatment of an organic fraction of municipal solid waste with anaerobic digestion (AD), including the effects of selective waste collection system introduction. As the research area, data from a waste treatment plant, which collects waste from about 260,000 inhabitants, was used as the selected waste management plan. Biowaste stream management was emphasized. Thus, research on energy recovery and the characteristics of digestate (nutrient and heavy metals content) obtained from biowaste AD was performed. The results of the studies and their quantitative data were interpreted. A significant discrepancy between the assumptions and the actual situation was revealed (up to 20% year-on-year regarding biowaste). An underestimation of the amount of waste when planning was noted. AD ensures energy recovery from biowaste, which can cover facility electricity needs and material recovery. The digestate might find agricultural usage and become an ecological product. The content of nitrogen (1.5%dry matter), phosphorus (0.55%dry matter), potassium (1.0%dry matter), and organic carbon (16.0%dry matter) indicate a positive impact on crops. Furthermore, it can improve the economic balance, by replacing costs with sales revenues.
Collapse
|
14
|
Xu M, Zhou H, Yang X, Angelidaki I, Zhang Y. Sulfide restrains the growth of Methylocapsa acidiphila converting renewable biogas to single cell protein. WATER RESEARCH 2020; 184:116138. [PMID: 32721763 DOI: 10.1016/j.watres.2020.116138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Methane-oxidizing bacteria (MOB) that can use biogas and recycled nitrogen from wastewater as a sustainable feedstock for single cell protein (SCP) synthesis are receiving increasing attention. Though promising, limited knowledge is available on the alternative strains especially the ones that can tolerant to strict environments such as acidic conditions. Furthermore, how would the hydrogen sulfide affect the MOB (especially the alternative strains) for SCP synthesis when crude biogas is used as feedstock is still unknown. In this study, the capability of an acidic-tolerant methanotrophic bacterium Methylocapsa acidiphila for SCP production using raw biogas and the associated inhibitory effect of sulfide on the bioconversion was for the first time investigated. Results showed that the inhibitory effect of sulfide on the growth of M. acidiphila was observed starting from 8.13 mg L-1 Na2S (equivalent to approximately 1000 ppm of H2S in crude biogas). The total amino acid content in the dry biomass decreased more than two times due to sulfide inhibition compared with the control samples without the presence of sulfide (585.96 mg/g dry biomass), while the proportion of essential amino acids in the total amino acid was not affected when the concentration of Na2S was lower than 5.73 mg L-1. The performance of M. acidiphila in a sulfide-rich environment was further studied at different operational conditions. The feeding gas with a CH4/O2 ratio of 6:4 could help to alleviate the sulfide inhibition, compared with other ratios (4:6 and 8:2). Moreover, the sequential supply of the feed gas could also alleviate sulfide inhibition. In addition, the MOB's growth rate was higher when applying a higher mixing rate of 120 rpm, compared with 70 rpm and 0, due to a better gas-liquid mass transfer. The inoculum size of 20% and 10% resulted in a faster growth rate compared with the 5%. Furthermore, M. acidiphila could assimilate either NH4+ or NO3- as nitrogen source with a similar growth rate, giving it the potential to recycle nitrogen from a wide range of wastewaters. The results will not only create new knowledge for better understanding the role of hydrogen sulfide in the assimilation of raw biogas by acid-tolerant M. acidiphila but also provide technical insights into the development of an efficient and robust process for the waste-to-protein conversion.
Collapse
Affiliation(s)
- Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Huihui Zhou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaoyong Yang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Anaerobic Digestion Performance: Separate Collected vs. Mechanical Segregated Organic Fractions of Municipal Solid Waste as Feedstock. ENERGIES 2020. [DOI: 10.3390/en13153768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replacement of fossil fuel with renewable energy sources seems as though it will be crucial in the future. On the other hand, waste generation increases year by year. Thus, waste-to-energy technologies fit in with the actual trends, such as the circular economy. The crucial type of generated waste is municipal solid waste, which is in the research area. Regarding the organic fraction of municipal solid waste (OFMSW), anaerobic digestion (AD) allows the recovery of biogas and energy. Furthermore, if it is supported by source segregation, it should allow the recovery of material as fertilizer. The AD process performance (biogas yield and stability) comparison of source-segregated OFMSW (ss-OFMWS) and mechanically sorted OFMSW (ms-OFMSW) as feedstocks was performed in full-scale conditions. The daily biogas volume and methane content were measured to assess AD efficiency. To verify the process stability, the volatile fatty acid (VFA) content, pH value, acidity, alkalinity, and dry matter were determined. The obtained biogas yield per ton was slightly higher in the case of ss-OFMSW (111.1 m3/ton), compared to ms-OFMSW (105.3 m3/ton), together with a higher methane concentration: 58–60% and 51–53%, respectively, and followed by a higher electricity production capacity of almost 700 MWh for ss-OFMSW digestion. The obtained VFA concentrations, at levels around 1.1 g/kg, pH values (slightly above 8.0), acidity, and alkalinity indicate the possibilities of the digester feeding and no-risk exploitation of either as feedstock.
Collapse
|
16
|
Zha X, Tsapekos P, Alvarado-Morales M, Lu X, Angelidaki I. Potassium inhibition during sludge and biopulp co-digestion; experimental and model-based approaches. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:304-311. [PMID: 32563839 DOI: 10.1016/j.wasman.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Process instability with consecutive low methane production are common challenges of the anaerobic digestion (AD) of municipal wastes. In the present study, the co-digestion of sewage sludge and municipal biopulp was investigated at batch and continuously fed digesters. At batch tests, the highest methane yield for co-digestion (467 ± 17 mLCH4/gVS) was achieved when biopulp contributed to 80% of organic matter content and sludge the remaining 20%. At continuous mode operation, co-digestion achieved 0.91 ± 0.11 L/(L·d) methane productivity, while mono-digestion of sludge achieved 0.62 ± 0.05 L/(L·d). Potassium inhibition was investigated at the most efficient co-digestion scenario and was found that the half maximal inhibitory concentration (IC50) occurred at 8 g-K+/L. Subsequently, the effect of K+ was investigated at different scenarios at continuous operation. Simulations based on BioModel described the inhibitory effect of K+ by introducing non-competitive inhibition of methanogens. Simulation results confirmed the strongly inhibitory effect of potassium to the AD process.
Collapse
Affiliation(s)
- Xiao Zha
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Xiwu Lu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
17
|
Khoshnevisan B, Dodds M, Tsapekos P, Torresi E, Smets BF, Angelidaki I, Zhang Y, Valverde-Pérez B. Coupling electrochemical ammonia extraction and cultivation of methane oxidizing bacteria for production of microbial protein. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110560. [PMID: 32421560 DOI: 10.1016/j.jenvman.2020.110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Conventional treatment of residual resources relies on nutrient removal to limit pollution. Recently, nutrient recovery technologies have been proposed as more environmentally and energetically efficient strategies. Nevertheless, the upcycling of recovered resources is typically limited by their quality or purity. Specifically, nitrogen extracted from residual streams, such as anaerobic digestion (AD) effluents and wastewaters, could support microbial protein production. In this context, this study was performed as a proof-of-concept to combine nitrogen recovery via electrochemical reactors with the production of high quality microbial protein via cultivation of methanotrophs. Two types of AD effluents, i.e., cattle manure and organic fraction of municipal solid waste, and urine were tested to investigate the nitrogen extraction efficiency. The results showed that 31-51% of the nitrogen could be recovered free of trace chemicals from residual streams depending on the substrate and voltage used. Based on the results achieved, higher nitrogen concentration in the residual streams resulted in higher nitrogen flux between anodic and cathodic chambers. Results showed that the extraction process has an energy demand of 9.97 (±0.7) - 14.44 (±1.19) kWh/kg-N, depending on the substrate and operating conditions. Furthermore, a mixed-culture of methanotrophic bacteria could grow well with the extracted nitrogen producing a total dry weight of 0.49 ± 0.01 g/L. Produced biomass contained a wide range of essential amino acids making it comparable with conventional protein sources.
Collapse
Affiliation(s)
- Benyamin Khoshnevisan
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark Dodds
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Elena Torresi
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark; Veolia Water Technologies AB, AnoxKaldnes, Klosterängsvägen 11A, SE-226 47, Lund, Sweden
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
18
|
Zou H, Jiang Q, Zhu R, Chen Y, Sun T, Li M, Zhai J, Shi D, Ai H, Gu L, He Q. Enhanced hydrolysis of lignocellulose in corn cob by using food waste pretreatment to improve anaerobic digestion performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109830. [PMID: 31733477 DOI: 10.1016/j.jenvman.2019.109830] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
This study aims to enhance hydrolysis and anaerobic digestion of corn cob (CC) by using food waste (FW) pretreatment. FW, which tends to be acidification in fermentation, was applied in this process as an acid-like agent to accelerate lignocellulose hydrolysis, aiming to promote methane yield in further digestion process. The effect of FW pretreatment on pH, soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), cellulose/hemicellulose contents and cellulose crystallinity are specially focused. FW:CC = 1:3 based on volatile solid (VS) was found to be the optimal mixing ratio in pretreatment and its hydrolysis efficiency was 28% higher than the control group. An increase of 13.2% in cellulose reduction and a decrease of 6.7% in cellulose crystallinity was achieved at this ratio. Supplementation of FW increased VFA concentrations in slurry mixture that directly change the activities of enzymes and microorganisms. In the stage of methane production, the digester A3 (FW:CC = 1:6 based on VS) with higher hydrolysis efficiency presented the best performance in methane production with a specific methane yield of 401.6 mL/g·VS, due to the recovery of the pH in this digester to the optimal pH range for methanogens' metabolism (pH 6.3-7.2). Kinetics studies of cellulose/hemicellulose degradation indicated that the pretreatment of FW could improve the degradation of cellulose. Three-dimensional excitation emission matrix (3DEEM) results further confirmed that FW play an important role in lignocellulose hydrolysis. In addition, variations of lignocellulosic textures during the pretreatment were also cleared by using field emission-scanning electron microscopy (FE-SEM) analysis.
Collapse
Affiliation(s)
- Huijing Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Qin Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Ruilin Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Yongdong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Tong Sun
- General Research Institute of Architecture & Planning Design Co. LTD., Chongqing University, 174 Shapingba Road, Chongqing, 400044, PR China
| | - Mingxing Li
- General Research Institute of Architecture & Planning Design Co. LTD., Chongqing University, 174 Shapingba Road, Chongqing, 400044, PR China
| | - Jun Zhai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Hainan Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|
19
|
Pathogen Reduction Potential in Anaerobic Digestion of Organic Fraction of Municipal Solid Waste and Food Waste. Molecules 2020; 25:molecules25020275. [PMID: 31936589 PMCID: PMC7024283 DOI: 10.3390/molecules25020275] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 11/23/2022] Open
Abstract
Anaerobic digestion (AD) is a commonly used method of processing waste. Regardless of the type of the used digestate (fertilizer, feedstock in case of solid-state fermentation, raw-material in case of thermal treatment) effective pathogen risk elimination, even in the case of high pathogen concentration is essential. An investigation of the survival time and inactivation rate of the Salmonella Senftenberg W775, Enterococcus spp., and Ascaris suum eggs during thermophilic anaerobic digestion performed on laboratory scale and confirmation of hygienization in full-scale operation were performed in this study. Except for sanitization efficiency, the AD process performance and stability were also verified based on determination of pH value, dry matter content, acidity, alkalinity, and content of fatty acids. The elimination of pathogen was met within 6.06 h, 5.5 h, and about 10 h for the Salmonella Senftenberg W775, Enterococcus spp., and Ascaris suum, respectively in the laboratory trials. The obtained results were confirmed in full-scale tests, using 1500 m3 Kompogas® reactors, operating in MBT Plant located in Poland. Sanitization of the digestate was achieved. Furthermore, the process was stable. The pH value, suspended solids, and ammonium content remained stable at 8.5, 35%, and 3.8 g/kg, respectively. The acetic acid content was noted between almost 0.8 and over 1.1 g/kg, while the concentration of propionic acid was noted at maximum level of about 100 mg/kg. The AD conditions could positively affect the pathogen elimination. Based on these results it can be found that anaerobic digestion under thermophilic conditions results in high sanitation efficiency.
Collapse
|
20
|
Tsapekos P, Khoshnevisan B, Zhu X, Zha X, Angelidaki I. Methane oxidising bacteria to upcycle effluent streams from anaerobic digestion of municipal biowaste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109590. [PMID: 31550605 DOI: 10.1016/j.jenvman.2019.109590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Conventional microbial protein production relies on the usage of pure chemicals and gases. Natural gas, which is a fossil resource, is the common input gas for bacterial protein production. Alternative sources for gas feedstock and nutrients can sufficiently decrease the operational cost and environmental impact of microbial protein production processes. In the present study, the effluents streams of municipal biowaste anaerobic digestion, were used to grow methane oxidising bacteria which can be used as protein source. Results demonstrated that a 40:60 CH4:O2 (v/v) gas feeding resulted in microbial biomass production of 0.95 g-DM/L by a Methylophilus dominated community. When raw biogas was used as input for methane corresponding to the same initial methane partial pressure as before, instead of pure methane, the growth was partially hindered (0.61 g-DM/L) due to the presence of H2S (IC50: 1376 ppm). Hence, desulfurization is suggested before using biogas for microbial protein production. At semi-continuous mode, results showed that the produced biomass had relatively high protein content (>40% of dry weight) and the essential amino acids lysine, valine, leucine and histidine were detected at high levels.
Collapse
Affiliation(s)
- Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Benyamin Khoshnevisan
- Department of Environmental Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Iran
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| | - Xiao Zha
- Department of Environmental Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark; School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing, 210096, China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs, Lyngby, DK-2800, Denmark
| |
Collapse
|
21
|
Mazarji M, Kuthiala S, Tsapekos P, Alvarado-Morales M, Angelidaki I. Carbon dioxide anion radical as a tool to enhance lignin valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:47-58. [PMID: 31108268 DOI: 10.1016/j.scitotenv.2019.05.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Lignin is particularly recalcitrant for valorization via the existing pretreatment methods due to its complex cross-linking polymeric network. The aim of this study is to develop a novel integrated pretreatment strategy to exploit the potential of lignocellulosic biomass as resource for production of biofuels and aromatic chemicals. In this regard, a novel UV/TiO2/HCOOH reaction was proposed to systematically generate hydroxyl radical (OH) and carbon dioxide radical anion (CO2-) to depolymerize lignin. Usage of 2,3-dihydrobenzofuran as a simple probe molecule showed cleavage β-O-4 linkage occurred via H abstraction mechanism. The addition of methyl viologen as CO2- scavengers proved the presence of CO2- in this UV/TiO2/HCOOH reaction. Lignin and wheat straw were used to investigate the effect of different parameters, including formic acid concentration and TiO2 dosage, on the efficiency of the reaction. At optimized conditions, the highest phenolic concentrations attained were 173.431 and 66.802 mg/g lignin and wheat straw, respectively. A cycle test was designed with the aim to favor the complete consumption of formic acid through more pretreatment cycles for producing the highest possible Total Phenolic Compounds (TPC) in the liquid phase. After the third consecutive cycle, 103.651 ± 5.964 mg-TPC/g, was obtained. Meanwhile it was found the remaining wheat straw solid fibers used for biogas production, showed 11.0% increase biogas production and increased degradation rate compared to the untreated wheat straw.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sidhant Kuthiala
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
22
|
Mazarji M, Alvarado-Morales M, Tsapekos P, Nabi-Bidhendi G, Mahmoodi NM, Angelidaki I. Graphene based ZnO nanoparticles to depolymerize lignin-rich residues via UV/iodide process. ENVIRONMENT INTERNATIONAL 2019; 125:172-183. [PMID: 30716577 DOI: 10.1016/j.envint.2018.12.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
In this work, potassium iodide (KI) and graphene oxide (GO) were utilized to promote the selectivity of photocatalytic process for alkali lignin oxidation over ZnO. Different concertation of GO was added during the microwave synthesis procedure of ZnO, and the characterization results revealed that graphene can shift the conduction band to more reducing potential, resulting to higher production of superoxide anion radicals (O2-) compared to OH. Response Surface Methodology revealed the most suitable interaction among loading of GO, KI and irradiation time on lignin and total phenolic compound (TPC) degradation. Specifically, the optimal conditions (i.e. maximum lignin (52%) and minimum TPC (55%) degradation) were at [KI] = 0.64 mM; GO content into ZnO 1.2 mg/mL; 240 min of irradiation time. The results showed that higher addition of graphene into structure of ZnO could preserve more phenolics from degradation due to less production of OH. Furthermore, the addition of KI at optimized conditions could enhance the selectivity of degradation of lignin and phenolics via producing I radicals and quenching the excess amount of generated OH, respectively. The lower generation of OH at optimized conditions was quantitatively confirmed by a photoluminescence simplified technique. In addition, the effect of the photocatalytic process on substrate's anaerobic degradability was examined in order to evaluate the suitability of the pretreated solution for energy recovery. Indeed, besides the higher TPC concentration, the biogas production of treated straw at optimized conditions was increased by 35% compared to the untreated sample.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | | | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
23
|
Sun H, Kovalovszki A, Tsapekos P, Alvarado-Morales M, Rudatis A, Wu S, Dong R, Kougias PG, Angelidaki I. Co-digestion of Laminaria digitata with cattle manure: A unimodel simulation study of both batch and continuous experiments. BIORESOURCE TECHNOLOGY 2019; 276:361-368. [PMID: 30658265 DOI: 10.1016/j.biortech.2018.12.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 05/18/2023]
Abstract
This work investigated the thermophilic (55 °C) co-digestion performance both in batch and continuous mode operation. The biochemical methane potentials of L. digitata and cattle manure were 308 ± 24 and 203 ± 33 mL CH4/g VS, respectively. The optimum co-digestion feedstock ratio was found to be 80% macroalgae: 20% manure on a volatile solids basis, which produced 290 ± 19 mL CH4/g VS under long-term and stable continuous operation at an organic loading rate of 2 g VS/L/d and hydraulic retention time of 15 days. Simulations of the batch and continuous experiments were, for the first time, carried out using an integrated anaerobic bioconversion model without structural modifications. Close fits between measured and simulated data provided mutual confirmation of experimental reliability and model robustness, and provided new perspectives for the use of the software tool.
Collapse
Affiliation(s)
- Hao Sun
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China; Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam Kovalovszki
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Amata Rudatis
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Shubiao Wu
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Renjie Dong
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark; Institute of Animal Sciences, Hellenic Agricultural Organisation DEMETER, GR-58100 Paralimni, Greece.
| | - Irini Angelidaki
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
24
|
Treu L, Tsapekos P, Peprah M, Campanaro S, Giacomini A, Corich V, Kougias PG, Angelidaki I. Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. BIORESOURCE TECHNOLOGY 2019; 275:375-385. [PMID: 30599281 DOI: 10.1016/j.biortech.2018.12.084] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
This study investigates the efficiency in methane production of lab-scale mesophilic (37 °C) and thermophilic (54 °C) continuous stirred tank reactors fed with cheese whey at different operational conditions. Results showed that whey mono-digestion was feasible at mesophilic conditions, while at thermophilic conditions frequent acidification incidents were recorded. The limited buffer capacity of the influent feedstock was responsible for the unstable anaerobic digestion process. The co-digestion of cheese whey with cattle manure maintained the pH levels higher than 7.0, and therefore, stable methane production rates were achieved without any significant accumulation of volatile fatty acids. An additional enhancement of the methane productivity was achieved by in-situ H2 dispersion. Microbial community composition was investigated using high-throughput 16S rRNA gene amplicon sequencing and results were correlated with process parameters. Hydrogenotrophic methanogens were the dominant archaea during the whole experiment at mesophilic and thermophilic conditions.
Collapse
Affiliation(s)
- Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; Department of Biology, University of Padua, 35131 Padua, Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, PD, Italy
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - Maria Peprah
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | | | - Alessio Giacomini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, PD, Italy
| | - Viviana Corich
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, PD, Italy
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; Institute of Animal Science, Hellenic Agricultural Organisation Demeter, Paralimni 58100, Greece
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
25
|
Tsapekos P, Alvarado-Morales M, Tong J, Angelidaki I. Nickel spiking to improve the methane yield of sewage sludge. BIORESOURCE TECHNOLOGY 2018; 270:732-737. [PMID: 30292688 DOI: 10.1016/j.biortech.2018.09.136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The presence of micro-nutrients can be stimulatory for the anaerobic digestion (AD) of hardly degradable wastes and thus, improve process performance. Among the essential trace elements, nickel is involved in multiple important enzymes necessary for efficient AD. The present study investigates the effect of nickel spiked sewage sludge on batch and continuous mode operation. Metal spiking was conducted in the form of nanoparticles (Ni-NPs) and salt (NiCl2·6H2O). Results from batch assays showed that 5 mgNi-Salt/kgVS in the presence of Nitrilotriacetic acid (NTA) enhanced the methane yield by ∼10% compared to the untreated sample. The impact of Ni-NPs in the AD process was also positive, but slightly lower compared to the effect of NiCl2·6H2O. The stimulatory impact of Ni was also revealed in continuously fed digester boosting the methane yield by ∼8%. Overall, the improved methane production indicated that methanogenic archaea were favoured by the simultaneous supplementation of Ni and NTA.
Collapse
Affiliation(s)
- Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Juan Tong
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
26
|
Thermophilic Co-Digestion of the Organic Fraction of Municipal Solid Wastes-The Influence of Food Industry Wastes Addition on Biogas Production in Full-Scale Operation. Molecules 2018; 23:molecules23123146. [PMID: 30513604 PMCID: PMC6321569 DOI: 10.3390/molecules23123146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/04/2023] Open
Abstract
Anaerobic digestion (AD) has been used widely as a form of energy recovery by biogas production from the organic fraction of municipal solid wastes (OFMSW). The aim of this study was to evaluate the effect of the introduction of co-substrates (restaurant wastes, corn whole stillage, effluents from the cleaning of chocolate transportation tanks) on the thermophilic anaerobic digestion process of the mechanically separated organic fraction of municipal solid wastes in a full-scale mechanical-biological treatment (MBT) plant. Based on the results, it can be seen that co-digestion might bring benefits and process efficiency improvement, compared to mono-substrate digestion. The 15% addition of effluents from the cleaning of chocolate transportation tanks resulted in an increase in biogas yield by 31.6%, followed by a 68.5 kWh electricity production possibility. The introduction of 10% corn stillage as the feedstock resulted in a biogas yield increase by 27.0%. The 5% addition of restaurant wastes contributed to a biogas yield increase by 21.8%. The introduction of additional raw materials, in fixed proportions in relation to the basic substrate, increases biogas yield compared to substrates with a lower content of organic matter. In regard to substrates with high organic loads, such as restaurant waste, it allows them to be digested. Therefore, determining the proportion of different feedstocks to achieve the highest efficiency with stability is necessary.
Collapse
|
27
|
Ren HY, Kong F, Ma J, Zhao L, Xie GJ, Xing D, Guo WQ, Liu BF, Ren NQ. Continuous energy recovery and nutrients removal from molasses wastewater by synergistic system of dark fermentation and algal culture under various fermentation types. BIORESOURCE TECHNOLOGY 2018; 252:110-117. [PMID: 29306713 DOI: 10.1016/j.biortech.2017.12.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Synergistic system of dark fermentation and algal culture was initially operated at batch mode to investigate the energy production and nutrients removal from molasses wastewater in butyrate-type, ethanol-type and propionate-type fermentations. Butyrate-type fermentation was the most appropriate fermentation type for the synergistic system and exhibited the accumulative hydrogen volume of 658.3 mL L-1 and hydrogen yield of 131.7 mL g-1 COD. By-products from dark fermentation (mainly acetate and butyrate) were further used to cultivate oleaginous microalgae. The maximum algal biomass and lipid content reached 1.01 g L-1 and 38.5%, respectively. In continuous operation, the synergistic system was stable and efficient, and energy production increased from 8.77 kJ L-1 d-1 (dark fermentation) to 17.3 kJ L-1 d-1 (synergistic system). Total COD, TN and TP removal efficiencies in the synergistic system reached 91.1%, 89.1% and 85.7%, respectively. This study shows the potential of the synergistic system in energy recovery and wastewater treatment.
Collapse
Affiliation(s)
- Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|