1
|
Li S, Duan L, Zhang H, Zhao Y, Li M, Jia Y, Gao Q, Yu H. Critical review on salt tolerance improvement and salt accumulation inhibition strategies of osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2024; 406:130957. [PMID: 38876283 DOI: 10.1016/j.biortech.2024.130957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The osmotic membrane bioreactor (OMBR) is a novel wastewater treatment and resource recovery technology combining forward osmosis (FO) and membrane bioreactor. It has attracted attention for its low energy consumption and high contaminant removal performance. However, in the long-term operation, OMBR faces the problem of salt accumulation due to high salt rejection and reverse salt flux, which affects microbial activity and contaminants removal efficiency. This review analyzed the feasibility of screening salt-tolerant microorganisms and determining salinity thresholds to improve the salt tolerance of OMBR. Combined with recent research, the inhibition strategies for salt accumulation were reviewed, including the draw solution, FO membrane, operating conditions and coupling with other systems. It is hoped to provide a theoretical basis and practical guidance for the further development of OMBR. Finally, future research directions were prospected. This review provides new insights for achieving stable operation of OMBR and promotes its wide application.
Collapse
Affiliation(s)
- Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
2
|
Özkan M, Yılmaz H, Ergenekon P, Erdoğan EM, Erbakan M. Microbial membrane transport proteins and their biotechnological applications. World J Microbiol Biotechnol 2024; 40:71. [PMID: 38225445 PMCID: PMC10789880 DOI: 10.1007/s11274-024-03891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Because of the hydrophobic nature of the membrane lipid bilayer, the majority of the hydrophilic solutes require special transportation mechanisms for passing through the cell membrane. Integral membrane transport proteins (MTPs), which belong to the Major Intrinsic Protein Family, facilitate the transport of these solutes across cell membranes. MTPs including aquaporins and carrier proteins are transmembrane proteins spanning across the cell membrane. The easy handling of microorganisms enabled the discovery of a remarkable number of transport proteins specific to different substances. It has been realized that these transporters have very important roles in the survival of microorganisms, their pathogenesis, and antimicrobial resistance. Astonishing features related to the solute specificity of these proteins have led to the acceleration of the research on the discovery of their properties and the development of innovative products in which these unique properties are used or imitated. Studies on microbial MTPs range from the discovery and characterization of a novel transporter protein to the mining and screening of them in a large transporter library for particular functions, from simulations and modeling of specific transporters to the preparation of biomimetic synthetic materials for different purposes such as biosensors or filtration membranes. This review presents recent discoveries on microbial membrane transport proteins and focuses especially on formate nitrite transport proteins and aquaporins, and advances in their biotechnological applications.
Collapse
Affiliation(s)
- Melek Özkan
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye.
| | - Hilal Yılmaz
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Pınar Ergenekon
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Esra Meşe Erdoğan
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Mustafa Erbakan
- Biosystem Engineering Department, Bozok University, Yozgat , 66900, Türkiye
| |
Collapse
|
3
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
4
|
Chen Y, Ren X, Huang M, Li Y. Evaluation of aquaporin based biomimetic forward osmosis membrane in terms of rejection performance for contaminants in greywater and its membrane fouling properties. CHEMOSPHERE 2023; 333:138983. [PMID: 37207899 DOI: 10.1016/j.chemosphere.2023.138983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Forward osmosis (FO) technology is regarded as an alternative to wastewater treatment due to its high permeate flux, excellent solute selectivity and low fouling tendency. In this study, two novel aquaporin based biomimetic membranes (ABMs) were used for comparison in short-term experiments to investigate the impact of membrane surface properties on greywater treatment. The impact of feed solution (FS) temperature on the filtration performance and membrane fouling behavior of ABM was further analyzed in the sequential batch experiments. Results indicated that the membranes with rough surface morphology and low zeta potential (absolute value) facilitated the adsorption of linear alklybezene sulfonates (LAS), thus improving the water flux and the rejection of Ca2+ and Mg2+. The increase in FS temperature enhanced the diffusion of organic matter and the water flux. In addition, sequential batch experiments showed that the membrane fouling layer was mainly in the form of organic and inorganic composite fouling, which was mitigated at FS temperature of 40 °C. Microbial community analysis revealed that the increase in FS temperature affected the diversity of microbial communities. More heterotrophic nitrifying bacteria were enriched in the fouling layer at FS 40 °C than at FS 20 °C. This study provides a novel strategy for employing ABM FO in greywater treatment and reuse.
Collapse
Affiliation(s)
- Yifeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xiao Ren
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Manhong Huang
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
5
|
Silva AFR, Lebron YAR, Moreira VR, Ribeiro LA, Koch K, Amaral MCS. High-retention membrane bioreactors for sugarcane vinasse treatment: Opportunities for environmental impact reduction and wastewater valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117001. [PMID: 36565496 DOI: 10.1016/j.jenvman.2022.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ethanol production has increased over the years, and Brazil ranking second in the world using sugarcane as the main raw material. However, 10-15 L of vinasse are generated per liter of ethanol produced. Besides large volumes, this wastewater has high polluting potential due to its low pH and high concentrations of organic matter and nutrients. Given the high biodegradability of the organic matter, the treatment of this effluent by anaerobic digestion and membrane separation processes results in the generation of high value-added byproducts such as volatile fatty acids (VFAs), biohydrogen and biogas. Membrane bioreactors have been widely evaluated due to the high efficiency achieved in vinasse treatment. In recent years, high retention membrane bioreactors, in which high retention membranes (nanofiltration, reverse osmosis, forward osmosis and membrane distillation) are combined with biological processes, have gained increasing attention. This paper presents a critical review focused on high retention membrane bioreactors and the challenges associated with the proposed configurations. For nanofiltration membrane bioreactor (NF-MBR), the main drawback is the higher fouling propensity due to the hydraulic driving force. Nonetheless, the development of membranes with high permeability and anti-fouling properties is uprising. Regarding osmotic membrane bioreactor (OMBR), special attention is needed for the selection of a proper draw solution, which desirably should be low cost, have high osmolality, reduce reverse salt flux, and can be easily reconcentrated. Membrane distillation bioreactor (MDBR) also exhibit some shortcomings, with emphasis on energy demand, that can be solved with the use of low-grade and residual heat, or renewable energies. Among the configurations, MDBR seems to be more advantageous for sugarcane vinasse treatment due to the lower energy consumption provided by the use of waste heat from the effluent, and due to the VFAs recovery, which has high added value.
Collapse
Affiliation(s)
- A F R Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Y A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - V R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L A Ribeiro
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - K Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Micropollutant removal capacity and stability of aquaporin incorporated biomimetic thin-film composite membranes. BIOTECHNOLOGY REPORTS 2022; 35:e00745. [PMID: 35719851 PMCID: PMC9204655 DOI: 10.1016/j.btre.2022.e00745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/22/2022]
Abstract
Aquaporins increase the micropollutant removal capacity of TFC nanofiltration membranes. Biomimetic membrane prepared with Halomonas elongata aquaporin is applicable for micropollutant rejection. Aquaporin incorporated membrane is stable for six months period. Type of aquaporin and pore size of the membrane affect micropollutant rejection rates.
Aquaporin incorporated nanofiltration membranes have high potential for future applications on separation processes. In this study, performance of biomimetic thin-film composite membranes containing Halomonas elongata and Escherichia coli aquaporins with different affinity tags for the removal of micropollutants was investigated.% rejection of the membranes for atrazine, terbutryn, triclosan, and diuron varied between 66.7% and 90.3% depending on the type of aquaporin and micropollutant. The highest removal rate was achieved with a membrane containing H. elongata aquaporin for atrazine and terbutryn which have methyl branching in their structure. Electrostatic interactions between micropollutants, thin-film layer of the membrane, and tags of aquaporins may also play important role in rejection of micropollutants. Stability experiments showed that biomimetic membranes can be used for six months period without a remarkable decrease in% rejection. Membrane used 24 times for atrazine removal for a year period lost most of its ability to repel atrazine.
Collapse
|
7
|
Xu Y, Zhu Y, Chen Z, Zhu J, Chen G. A Comprehensive Review on Forward Osmosis Water Treatment: Recent Advances and Prospects of Membranes and Draw Solutes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138215. [PMID: 35805879 PMCID: PMC9266909 DOI: 10.3390/ijerph19138215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023]
Abstract
Forward osmosis (FO) is an evolving membrane separation technology for water treatment and reclamation. However, FO water treatment technology is limited by factors such as concentration polarization, membrane fouling, and reverse solute flux. Therefore, it is of a great importance to prepare an efficient high-density porous membrane and to select an appropriate draw solute to reduce concentration polarization, membrane fouling, and reverse solute flux. This review aims to present a thorough evaluation of the advancement of different draw solutes and membranes with their effects on FO performance. NaCl is still widely used in a large number of studies, and several general draw solutes, such as organic-based and inorganic-based, are selected based on their osmotic pressure and water solubility. The selection criteria for reusable solutes, such as heat-recovered gaseous draw, magnetic field-recovered MNPs, and electrically or thermally-responsive hydrogel are primarily based on their industrial efficiency and energy requirements. CA membranes are resistant to chlorine degradation and are hydrophilic, while TFC/TFN exhibit a high inhibition of bio-adhesion and hydrolysis. AQPs are emerging membranes, due to proteins with complete retention capacity. Moreover, the development of the hybrid system combining FO with other energy or water treatment technologies is crucial to the sustainability of FO.
Collapse
|
8
|
He H, Xin X, Qiu W, Li D, Liu Z, Ma J. Role of nano-Fe 3O 4 particle on improving membrane bioreactor (MBR) performance: Alleviating membrane fouling and microbial mechanism. WATER RESEARCH 2022; 209:117897. [PMID: 34861438 DOI: 10.1016/j.watres.2021.117897] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
This study would investigate the effect of nano-Fe3O4 particles on the performance of membrane bioreactor (MBR), including membrane fouling, membrane rejection and microbial community. It can effectively alleviate membrane fouling and improve the effluent quality in MBR by bio-effect rather than nanoparticle adsorption. The lowest membrane fouling resistance was achieved at R4-MBR (sludge and membrane surface with nano-Fe3O4), which decreased by 46.08%. Meanwhile, R3-MBR (sludge with nano-Fe3O4) had the lowest concentration of COD in effluent which was below 20 mg/L in the stable phase of MBR operation. After applying nano-Fe3O4, the content of extracellular polymeric substances (EPS) and soluble microbial products (SMP) were both reduced with a lower molecular weight. From the microbial community analysis, the abundance of Proteobacteria increased from 25.06 to 45.11% at the phylum level in R3-MBR. It contributed to removing organic substances in MBRs. Moreover, the nano-Fe3O4 restricted Bacteroidetes growth, especially in R4-MBR, leading to a more excellent performance of membrane flux. Besides, the applied nano-Fe3O4 promoted the abundance of Quorum Quenching (QQ) microorganism, and declined the percentage of Quorum Sensing (QS) bacteria. Then, a lower content of N-Acyl-l-Homoserine Lactones (AHLs) in containing nano-Fe3O4 sludge. That was also prone to control membrane fouling. Overall, this study indicates the nano-Fe3O4 particle is appropriate for elevating MBR performance, such as membrane fouling and effluent quality, by bio-effect.
Collapse
Affiliation(s)
- Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhicen Liu
- School of Geosciences, The University of Edinburgh, Edinburgh EH8 9JU, UK
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Liu W, Song X, Na Z, Li G, Luo W. Strategies to enhance micropollutant removal from wastewater by membrane bioreactors: Recent advances and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126322. [PMID: 34785336 DOI: 10.1016/j.biortech.2021.126322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Membrane bioreactor (MBR) has been widely implemented to advance wastewater treatment and reuse. Nevertheless, conventional MBRs with porous microfiltration or ultrafiltration membranes are not designed for the removal of micropollutants, which ubiquitously occur in wastewater at trace concentrations, but potentially exert detrimental impacts to the ecosystem. Several effective strategies have been applied to improve MBR performance for micropollutant removal, particularly the hydrophilic and recalcitrant compounds. These strategies mainly include the optimization of operational conditions, employment of high-retention membranes to replace porous ones, addition of functional materials into bioreactor, and integration of effluent purification processes. In particular, effluent purification by advanced oxidation processes (AOPs) and high-retention membranes can complement MBR to secure almost complete removal of micropollutants. Nevertheless, further research is still necessary to evaluate the technical and economic feasibility of these strategies, especially for long-term treatment performance, to screen the suitable techniques for industrial MBR applications.
Collapse
Affiliation(s)
- Wancen Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoye Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing 100124,China
| | - Zhang Na
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing 100124,China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Lin Y, Chen Q, Wang Y, Sua K, Hao T. Enhancing the water flux and biological treatment in bilateral influent submerged FOMBR via applying the strategy of intermittent discharging salt. ENVIRONMENTAL TECHNOLOGY 2021; 42:3379-3389. [PMID: 32065050 DOI: 10.1080/09593330.2020.1730981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
The forward osmotic membrane bioreactor (FOMBR) is an emerging innovative technology with broad application prospects in the field of wastewater treatment. Its application is severely limited by concentration polarization, salinity accumulation, and evident water flux decline. Gradual salinity accumulation to a maximum conductivity of 19.7 mS cm-1 under continuous flow operation suppressed the activities of sludge and biodegradation efficiencies. The employment of the regulation of intermittent supernatant discharge was first investigated to alleviate inhibition caused via accumulated salinity in the bioreactor, and bilateral influent was examined with respect to the performance of the FOMBR. The preferable condition to be applied was FO orientation mode (i.e. active layer facing feed) with spacers added to the surface. Given the decreased salt concentration with 2 L of the supernatant removed per day, the water flux declined more slowly and sludge activities were recovered. When compared to the performance without discharging supernatant, the strategy of controlling salinity could improve the removal efficiencies of NH4+-N, PO43--P, and total organic carbon (TOC) by 15.1, 14.3, and 2.3%, respectively. Additionally, the sludge in the intermittent supernatant discharge bioreactor exhibited better sludge property, larger sludge particle size, and recovered sludge activities with the mixed liquid suspended solids (MLSS) stable at around 4.90 g L-1. Therefore, regulation of intermittent salt discharge and controlling the salinity concentration in bioreactor can be employed as an effective method to deal with concentration polarization and salinity accumulation in the FOMBR.
Collapse
Affiliation(s)
- Yuxin Lin
- School of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Qiwei Chen
- School of Civil Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yuyin Wang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Kuizu Sua
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, People's Republic of China
| | - Tianwei Hao
- Department of Civil & Environmental Engineering, University of Macau, Macau, People's Republic of China
| |
Collapse
|
11
|
Hosseinzadeh A, Zhou JL, Navidpour AH, Altaee A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. BIORESOURCE TECHNOLOGY 2021; 330:124998. [PMID: 33757679 DOI: 10.1016/j.biortech.2021.124998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Renewable energy, water conservation, and environmental protection are the most important challenges today. Osmotic membrane bioreactor (OMBR) is an innovative process showing superior performance in bioenergy production, eliminating contaminants, and low fouling tendency. However, salinity build-up is the main drawback of this process. Identifying the microbial community can improve the process in bioenergy production and contaminant treatment. This review aims to study the recent progress and challenges of OMBRs in contaminant removal, microbial communities and bioenergy production. OMBRs are widely reported to remove over 80% of total organic carbon, PO43-, NH4+ and emerging contaminants from wastewater. The most important microbial phyla for both hydrogen and methane production in OMBR are Firmicutes, Proteobacteria and Bacteroidetes. Firmicutes' dominance in anaerobic processes is considerably increased from usually 20% at the beginning to 80% under stable condition. Overall, OMBR process has great potential to be applied for simultaneous bioenergy production and wastewater treatment.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Amir H Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
12
|
Kedwell KC, Jørgensen MK, Quist-Jensen CA, Pham TD, Van der Bruggen B, Christensen ML. Selective electrodialysis for simultaneous but separate phosphate and ammonium recovery. ENVIRONMENTAL TECHNOLOGY 2021; 42:2177-2186. [PMID: 31750797 DOI: 10.1080/09593330.2019.1696410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Nutrients were extracted from digester supernatant sampled from a full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plant. A four-compartment selectrodialysis setup was used to extract ammonium and phosphate in two separate compartments. The initial phosphate recovery rate was measured to be 0.072 mmol m-2 s-1 and the initial ammonium recovery rate was measured to be 1.31 mmol m-2 s-1. The ammonium recovery rate was 18 times higher than that for phosphate, whereas the molar concentration of ammonium in the feed was 10 times higher than that of phosphate. An average recovery of 72 ± 1% and 90 ± 10% for ammonium and phosphate was observed after 3 h of operation. A monovalent anion selective (MVA) membrane was used to avoid ammonium and reduce the concentration of monovalent anions in the phosphorus stream. The pH in the phosphorus stream was kept at 10 so phosphate did not pass the MVA membrane. A membrane area of 26 m2 per m3 digester supernatant was required to recover 70% of phosphate and ammonium for the digester supernatant that contained 6 mM phosphate and 105 mM ammonium.
Collapse
Affiliation(s)
- Katie Charlotte Kedwell
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Mads Koustrup Jørgensen
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Cejna Anna Quist-Jensen
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Tien Duc Pham
- Department of Chemical Engineering (CIT), KU Leuven, Leuven, Belgium
| | - Bart Van der Bruggen
- Department of Chemical Engineering (CIT), KU Leuven, Leuven, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa
| | | |
Collapse
|
13
|
Li R, Braekevelt S, De Carfort JLN, Hussain S, Bollmann UE, Bester K. Laboratory and pilot evaluation of aquaporin-based forward osmosis membranes for rejection of micropollutants. WATER RESEARCH 2021; 194:116924. [PMID: 33618109 DOI: 10.1016/j.watres.2021.116924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Aquaporin-based forward osmosis (AQP FO) membranes were applied both in laboratory- and pilot-scale for removing micropollutants from water. The effect of operating parameters (feed flow, draw flow, and transmembrane pressure) on the i) rejection of micropollutants, ii) water flux, iii) reverse salt flux, and iv) water recovery of the AQP FO membrane modules was studied. Among the 21 micropollutants spiked, only four compounds, atenolol, propranolol, metoprolol, and citalopram, permeated through the AQP FO membranes to an extent that they could be quantified in the draw solutions of both the laboratory and pilot systems. The rejection rates, based on the full mass balance calculations, were between 96.1% and 99.7%, and all the other 17 compounds showed rejection exceeding 90% on both systems. The pilot AQP FO system was further employed for six days to treat effluent from a membrane bioreactor (MBR) treating municipal wastewater. 35 micropollutants were investigated. 27 of these were identified and quantified in the MBR effluent. Minute fractions of gabapentin, benzotriazole, and metoprolol were detected passing through the AQP FO membranes into the draw side with a constant rejection of around 99.2%, 95.4%, and 99.9%. Almost all other micropollutants' minimum rejection rates exceeded 80%.
Collapse
Affiliation(s)
- Rui Li
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | | | - Johan Le Nepvou De Carfort
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Soltofts Plads 229, DK-2800 Kgs. Lyngby, Denmark
| | - Shazad Hussain
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Soltofts Plads 229, DK-2800 Kgs. Lyngby, Denmark
| | - Ulla E Bollmann
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark.
| |
Collapse
|
14
|
Karthigadevi G, Manikandan S, Karmegam N, Subbaiya R, Chozhavendhan S, Ravindran B, Chang SW, Awasthi MK. Chemico-nanotreatment methods for the removal of persistent organic pollutants and xenobiotics in water - A review. BIORESOURCE TECHNOLOGY 2021; 324:124678. [PMID: 33461128 DOI: 10.1016/j.biortech.2021.124678] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
While the technologies available today can generate high-quality water from wastewater, the majority of the wastewater treatment plants are not intended to eliminate emerging xenobiotic pollutants, pharmaceutical and personal care items. Most endocrine disrupting compounds (EDCs) and personal care products (PPCPs) are more arctic than most regulated pollutants, and several of them have acid or critical functional groups. Together with the trace occurrence, EDCs and PPCPs create specific challenges for removal and subsequent improvements of wastewater treatment plants. Various technologies have been investigated extensively because they are highly persistent which leads to bioaccumulation. Researchers are increasingly addressing the human health hazards of xenobiotics and their removal. The emphasis of this review was on the promising methods available, especially nanotechnology, for the treatment of xenobiotic compounds that are accidentally released into the setting. In terms of xenobiotic elimination, nanotechnology provides better treatment than chemical treatments and their degradation mechanisms are addressed.
Collapse
Affiliation(s)
- Guruviah Karthigadevi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China; Department of Biotechnology, Sri Venkateswara College of Engineering, (Autonomous), Sriperumbudur TK - 602 117, Tamil Nadu, India
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem - 636 007, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P.O. Box. 21692, Kitwe, Zambia
| | | | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Ashraf A, Ramamurthy R. WITHDRAWN: Progress in the removal of organic microcontaminants from wastewater using high retention membrane bioreactors: A critical review. ENVIRONMENTAL RESEARCH 2021:110930. [PMID: 33640499 DOI: 10.1016/j.envres.2021.110930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Adil Ashraf
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands; Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Racchana Ramamurthy
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands; Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Yang YL, Wu Y, Lu YX, Cai Y, He Z, Yang XL, Song HL. A comprehensive review of nutrient-energy-water-solute recovery by hybrid osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 320:124300. [PMID: 33129093 DOI: 10.1016/j.biortech.2020.124300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 05/26/2023]
Abstract
Hybrid osmotic membrane bioreactor (OMBR) takes advantage of the cooperation of varying biological or desalination processes and can achieve NEWS (nutrient-energy-water-solute) recovery from wastewater. However, a lack of universal parameters hinders our understanding. Herein, system configurations and new parameters are systematically investigated to help better evaluate recovery performance. High-quality water can be produced in reverse osmosis/membrane distillation-based OMBRs, but high operation cost limits their application. Although bioelectrochemical system (BES)/electrodialysis-based OMBRs can effectively achieve solute recovery, operation parameters should be optimized. Nutrients can be recovered from various wastewater by porous membrane-based OMBRs, but additional processes increase operation cost. Electricity recovery can be achieved in BES-based OMBRs, but energy balances are negative. Although anaerobic OMBRs are energy-efficient, salinity accumulation limits methane productions. Additional efforts must be made to alleviate membrane fouling, control salinity accumulation, optimize recovery efficiency, and reduce operation cost. This review will accelerate hybrid OMBR development for real-world applications.
Collapse
Affiliation(s)
- Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yun Cai
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
17
|
Xu Z, Song X, Xie M, Wang Y, Huda N, Li G, Luo W. Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Manikandan S, Karmegam N, Subbaiya R, Karthiga Devi G, Arulvel R, Ravindran B, Kumar Awasthi M. Emerging nano-structured innovative materials as adsorbents in wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 320:124394. [PMID: 33220545 DOI: 10.1016/j.biortech.2020.124394] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Water supply around the globe is struggling to meet the rapidly increasing demand by the population, drastic changes in climate and degrading water quality. Even though, many large-scale methods are employed for wastewater treatment they display several negative impacts owing to the presence of pollutants. Technological innovation is required for integrated water management with different groups of nanomaterials for the removal of toxic metal ions, microbial disease, organic and inorganic solutes. The method of manipulating atoms on a nanoscale is nanotechnology. Nanomembranes are used in nanotechnology to soften water and eliminate physical, chemical and biological pollutants. The present review concentrates on various nanotechnological approaches in wastewater remedy, mechanisms involved to promote implementation, benefits and limitations in comparison with current processes, properties, barriers and commercialization research needs. Also the review identifies opportunities for further exploiting the exclusive features for green water management by following the advances in nanotechnology.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Guruviah Karthiga Devi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ramaswamy Arulvel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Jafarinejad S. Forward osmosis membrane technology for nutrient removal/recovery from wastewater: Recent advances, proposed designs, and future directions. CHEMOSPHERE 2021; 263:128116. [PMID: 33297109 DOI: 10.1016/j.chemosphere.2020.128116] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
In recent years, the concept of nutrient removal/recovery has been applied as a sustainable solution to develop and design various modern wastewater treatment technologies for recovering nutrients from waste streams and is one of the high-priority research areas. Forward osmosis (FO) technology has received increasing interests as a potential low-fouling membrane process and a new approach to remove/recover nutrients from wastewater and sludge. The main objective of this review is to summarize the state of FO technology for nutrient removal/recovery from wastewater and sludge in order to identify areas of future improvements. In this study, nutrient removal processes, FO membrane technology, main factors affecting the FO process performance, the source water for nutrient recovery, the previous studies on the FO membrane process for nutrient removal/recovery from wastewater and sludge, membrane fouling, and recent advances in FO membranes for nutrient removal/recovery were briefly and critically reviewed. Then, the proposed possible designs to apply FO process in conventional wastewater treatment plants (WWTPs) were theoretically presented. Finally, based on the gaps identified in the area, challenges ahead, future perspectives, and conclusions were discussed. Further investigations on the properties of FO associated with real wastewater, wastewater pre-treatment, the long-term low fouling operation, membrane cleaning strategies, water flux and the economic feasibility of the FO process are still desirable to apply FO technology for nutrient removal/recovery at full-scale (decentralized or centralized) in the future.
Collapse
Affiliation(s)
- Shahryar Jafarinejad
- Department of Chemical Engineering, College of Engineering, Tuskegee University, Tuskegee, AL, USA.
| |
Collapse
|
20
|
Xu J, Tran TN, Lin H, Dai N. Modeling the transport of neutral disinfection byproducts in forward osmosis: Roles of reverse salt flux. WATER RESEARCH 2020; 185:116255. [PMID: 32771562 DOI: 10.1016/j.watres.2020.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The rejection of disinfection byproducts (DBPs) is an important consideration for the application of forward osmosis (FO) in wastewater recycling. However, the transport of organic compounds in FO is not well predicted by existing models, partially because these models have not incorporated the effect of reverse salt flux, a phenomenon previously shown to influence the transport of pharmaceutical compounds. In this study, we investigated the effects of reverse salt flux on DBP transport in FO and the corresponding mechanisms. We used a commercial Aquaporin membrane and tested sixteen DBPs relevant to wastewater recycling. Using draw solutions constituted by NaCl, MgSO4, or glucose in a bench-scale FO system, we first confirmed that higher reverse salt flux resulted in lower DBP permeance. By integrating results from the bench-scale FO system and those from diffusion cell tests, we showed that two mechanisms contributed to the hindered DBP transport: the steric hindrance in the active layer caused by the presence of the draw solute and the retarded diffusion of DBPs in the support layer via a "salting-out" effect. Lastly, we developed a modified solution-diffusion model incorporating these two mechanisms by accounting for the free volume occupied by draw solute molecules in the active layer and by introducing the Setschenow constant, respectively. The modified model significantly improved the prediction of permeance for halogenated DBPs, and revealed the relative importance of steric hindrance (dominant for large DBPs) and retarded diffusion (dominant for hydrophobic DBPs). The modified model did not accurately predict the permeance of nitrosamines, attributable to their extremely high hydrophilicity or large size.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, NY, 14260, United States
| | - Thien Ngoc Tran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, NY, 14260, United States.
| |
Collapse
|
21
|
Yao M, Duan L, Wei J, Qian F, Hermanowicz SW. Carbamazepine removal from wastewater and the degradation mechanism in a submerged forward osmotic membrane bioreactor. BIORESOURCE TECHNOLOGY 2020; 314:123732. [PMID: 32629375 DOI: 10.1016/j.biortech.2020.123732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
A submerged forward osmotic membrane bioreactor (FOMBR) was used to reveal the removal and degradation mechanism of carbamazepine (CBZ) from wastewater. The results showed that the removal mechanism consisted of the rejection of the forward osmotic (FO) membrane and biodegradation of the activated sludge. The removal efficiencies of COD, NH4+-N, and CBZ by the FOMBR were approximately 94.77%-97.45%, 93.56%-99.28%, and 88.20%-94.45%, respectively. Moreover, the COD and NH4+-N removal efficiencies were positively correlated with the increased CBZ concentrations. The results of the soluble microbial products (SMP) and extracellular polymeric substances (EPS) tests illustrated that the membrane fouling potential of EPS may be higher than that of SMP. According to the identified 14 degradation products, oxidation, hydroxylation, and decarboxylation were defined as the primary CBZ degradation mechanism. In addition, the RNA results showed that Delftia could be the characteristic bacteria in the CBZ degradation process.
Collapse
Affiliation(s)
- Meichen Yao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Feng Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Slawomir W Hermanowicz
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518071, China; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
23
|
Luján-Facundo M, Mendoza-Roca J, Soler-Cabezas J, Bes-Piá A, Vincent-Vela M, Cuartas-Uribe B, Pastor-Alcañiz L. Management of table olive processing wastewater by an osmotic membrane bioreactor process. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Meng M, Liu S, Wang X. Pressure retarded osmosis coupled with activated sludge process for wastewater treatment: Performance and fouling behaviors. BIORESOURCE TECHNOLOGY 2020; 307:123224. [PMID: 32224427 DOI: 10.1016/j.biortech.2020.123224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
A novel hybrid technology integrating pressure retarded osmosis with activated sludge process (denoted as PRO-MBR) was proposed in this study for wastewater treatment. Here, performance and fouling behaviors of PRO-MBR were investigated. Excellent contaminants removal and power production were simultaneously achieved in the PRO-MBR. A significant drop of water flux in the PRO-MBR was mainly due to the severe fouling of the support layer in forward osmosis (FO) membrane including internal fouling and external fouling. Although the external fouling was identified to be the major type of fouling, the internal fouling dominated the overall decline of water flux. In addition, organic foulants and biofoulants were the dominant foulants for the external fouling while inorganic foulants were equal to organic foulants and biofoulants for the internal fouling. According to the variations of water flux in the PRO-MBR, the development of support layer fouling was divided into three stages.
Collapse
Affiliation(s)
- Manli Meng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuyue Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
25
|
Sengur-Tasdemir R, Pekgenc E, Urper-Bayram GM, Ergon-Can T, Tutuncu HE, Zeytuncu B, Gul-Karaguler N, Ates-Genceli E, Koyuncu I. Determination of the effect of proteoliposome concentration on Aquaporin Z incorporated nanofiltration membranes. ENVIRONMENTAL TECHNOLOGY 2020; 41:2229-2239. [PMID: 30574839 DOI: 10.1080/09593330.2018.1561756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
We report on the fabrication of AqpZ immobilized flat sheet membranes. The effects of interfacial polymerization conditions as well as proteoliposome concentration were evaluated. Commercial AqpZ were used as positive control for cloned AqpZ. Specific permeate flux of membranes at higher proteoliposome concentrations increased up to 25 times higher than thin film composite membranes; however; MgSO4 rejection is lowered almost to 1.5%. FTIR and SEM confirm immobilization of proteoliposomes. Thermal analysis showed that increasing proteoliposome concentration has no positive effect on the incorporation of proteoliposomes into polyamide structures. On the contrary, at lower proteoliposome concentrations, incorporation of proteoliposomes was found better. When combined membrane performances were compared in terms of specific permeate flux; MgSO4 and humic rejection and flux recovery after humic acid filtration, the performance of cloned AqpZ incorporated membranes (having 0.1 mg/mL proteoliposome concentration and polyamide formed with 2 min piperazine reaction time) improved 1.7 times regarding TFC membranes. According to the results, increasing proteoliposome concentration did not improve nanofiltration membrane performance. On the contrary, lower proteoliposome concentrations were found to be more effective in increasing membrane performance.
Collapse
Affiliation(s)
- Reyhan Sengur-Tasdemir
- Nanoscience and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Enise Pekgenc
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Gulsum Melike Urper-Bayram
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Tulay Ergon-Can
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Havva Esra Tutuncu
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Turkey
| | - Bihter Zeytuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Nevin Gul-Karaguler
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Turkey
| | - Esra Ates-Genceli
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ismail Koyuncu
- Nanoscience and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
26
|
Omir A, Satayeva A, Chinakulova A, Kamal A, Kim J, Inglezakis VJ, Arkhangelsky E. Behaviour of Aquaporin Forward Osmosis Flat Sheet Membranes during the Concentration of Calcium-Containing Liquids. MEMBRANES 2020; 10:E108. [PMID: 32456094 PMCID: PMC7281773 DOI: 10.3390/membranes10050108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
This study aims to examine the scaling and performance of flat sheet aquaporin FO membranes in the presence of calcium salts. Experiments showed that the application of calcium sulphate (CaSO4) resulted in an 8%-78% decline in the water flux. An increase in the cross-flow velocity from 3 to 12 cm/s reduced the decline in the flux by 16%. The deposition of salt crystals on the membrane surface led to the alteration in the membrane's intrinsic properties. Microscopy, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and X-Ray fluorescence (XRF) analyses confirmed measurements of the zeta potential and contact angle. The use of a three-salt mixture yielded severe scaling as compared with the application of calcium sulphate dehydrate (CaSO4 × 2H2O), i.e., a result of two different crystallisation mechanisms. We found that the amount of sodium chloride (NaCl), saturation index, cross-flow velocity, and flow regime all play an important role in the scaling of aquaporin FO flat sheet membranes.
Collapse
Affiliation(s)
- Alibek Omir
- Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.O.); (A.K.); (J.K.)
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
| | - Aliya Satayeva
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
| | - Aigerim Chinakulova
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Arailym Kamal
- Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.O.); (A.K.); (J.K.)
| | - Jong Kim
- Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.O.); (A.K.); (J.K.)
| | - Vassilis J. Inglezakis
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
- Department of Chemical & Materials Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Elizabeth Arkhangelsky
- Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.O.); (A.K.); (J.K.)
- Environmental Science & Technology Group (ESTg), Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (A.C.); (V.J.I.)
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
27
|
Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ubiquitous presence of organic micropollutants (OMPs) in the environment as a result of continuous discharge from wastewater treatment plants (WWTPs) into water matrices—even at trace concentrations (ng/L)—is of great concern, both in the public and environmental health domains. This fact essentially warrants developing and implementing energy-efficient, economical, sustainable and easy to handle technologies to meet stringent legislative requirements. Membrane-based processes—both stand-alone or integration of membrane processes—are an attractive option for the removal of OMPs because of their high reliability compared with conventional process, least chemical consumption and smaller footprint. This review summarizes recent research (mainly 2015–present) on the application of conventional aerobic and anaerobic membrane bioreactors used for the removal of organic micropollutants (OMP) from wastewater. Integration and hybridization of membrane processes with other physicochemical processes are becoming promising options for OMP removal. Recent studies on high retention membrane bioreactors (HRMBRs) such as osmotic membrane bioreactor (OMBRs) and membrane distillation bioreactors (MDBRs) are discussed. Future prospects of membrane bioreactors (MBRs) and HRMBRs for improving OMP removal from wastewater are also proposed.
Collapse
|
28
|
Li Y, Xu Z, Xie M, Zhang B, Li G, Luo W. Resource recovery from digested manure centrate: Comparison between conventional and aquaporin thin-film composite forward osmosis membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Liu C, Takagi R, Cheng L, Saeki D, Matsuyama H. Enzyme-aided forward osmosis (E-FO) process to enhance removal of micropollutants from water resources. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Huy Tran V, Lim S, Jun Park M, Suk Han D, Phuntsho S, Park H, Matsuyama H, Kyong Shon H. Fouling and performance of outer selective hollow fiber membrane in osmotic membrane bioreactor: Cross flow and air scouring effects. BIORESOURCE TECHNOLOGY 2020; 295:122303. [PMID: 31675518 DOI: 10.1016/j.biortech.2019.122303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
This study assessed impacts of cross-flow velocity (CFV) and air scouring on the performance and membrane fouling mitigation of a side-stream module containing outer-selective hollow fiber thin film composite forward osmosis membrane in osmosis membrane bioreactor (OMBR) system for urban wastewater treatment. CFV of draw solution was optimized, followed by the impact assessment of three CFVs on feed solution (FS) stream and periodic injection of air scouring into the side-stream module. Overall, the OMBR system exhibited high and stable performance with initial water flux of approximately 15 LMH, high removal efficiencies of bulk organic matter and nutrients. While FS's CFVs insignificantly affected the performance and membrane fouling, regular air scouring showed substantial impact with better performance and high efficiency in mitigating membrane fouling. These results indicated that periodic air scouring can be applied into the side-stream membrane module for efficient fouling mitigation without interruption the operation of the OMBR system.
Collapse
Affiliation(s)
- Van Huy Tran
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Sungil Lim
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Myoung Jun Park
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Dong Suk Han
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia.
| |
Collapse
|
31
|
Viet ND, Cho J, Yoon Y, Jang A. Enhancing the removal efficiency of osmotic membrane bioreactors: A comprehensive review of influencing parameters and hybrid configurations. CHEMOSPHERE 2019; 236:124363. [PMID: 31325824 DOI: 10.1016/j.chemosphere.2019.124363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/30/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The amount of research conducted on osmotic membrane bioreactors (OMBRs) has increased over the past decade because of the advantages of these reactors over conventional membrane bioreactors (MBRs). OMBR process is a hybrid process involving a forward osmosis membrane and biologically activated sludge. It is a promising technology to reduce membrane fouling, enhance effluent water quality, and lower energy consumption compared to conventional MBR processes. Eleven years since the OMBR process was first proposed, about 60 papers regarding the OMBR process have been published. In this article, we address recent advances in OMBR technology based on a review of the literature. Typical factors that influence the performance of the OMBR process are discussed to provide a clear understanding of the current state of this technology. We also provide a critical review of OMBR applications in organic matter, nutrient, and micropollutant removal as well as direct recovery of nutrients from wastewater. We propose several hybrid configurations that can enhance the removal efficiency of OMBR systems. Finally, we present potential research directions for future OMBR research.
Collapse
Affiliation(s)
- Nguyen Duc Viet
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jaeweon Cho
- School of Urban and Environmental Engineering, Ulsan Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 689-798, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
32
|
Chang HM, Sun YC, Chien IC, Chang WS, Ray SS, Cao DTN, Cong Duong C, Chen SS. Innovative upflow anaerobic sludge osmotic membrane bioreactor for wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 287:121466. [PMID: 31108413 DOI: 10.1016/j.biortech.2019.121466] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
A novel upflow anaerobic sludge-forward osmotic membrane bioreactor was developed for simultaneous wastewater treatment, membrane fouling reduction, and nutrient recovery. An upflow anaerobic sludge blanket (UASB) reactor was incorporated into the system, suspending the anaerobic sludge at the bottom of the reactor. A forward osmosis membrane replaced the traditional three-phase separator of the UASB technology. The removals of chemical oxygen demand, PO43-, and NH4+ were all more than 95% with low membrane fouling in this system. Halotolerant Fusibacter, which can ferment organics to acetate, was increased rapidly from 0.1% to 5% in this saline environment. Acetoclastic Methanosaeta was the most dominant prokaryotes and responsible for majority of methane production. Reduction of membrane fouling in this system was verified by the fluorescence excitation-emission matrix spectrophotometry. Furthermore, phosphorus recovery and salinity build-up mitigation were achieved using periodic microfiltration to recover 57-105 mg/L phosphorus from pH 9 to 12.
Collapse
Affiliation(s)
- Hau-Ming Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Yung-Chun Sun
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - I-Chieh Chien
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, Taiwan
| | | | - Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Dan Thanh Ngoc Cao
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Chinh Cong Duong
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan; Southern Institute of Water Resources Research, Ho Chih Ming City, Viet Nam
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
33
|
Juntawang C, Rongsayamanont C, Khan E. Entrapped-cells-based anaerobic forward osmosis membrane bioreactor treating medium-strength domestic wastewater: Fouling characterization and performance evaluation. CHEMOSPHERE 2019; 225:226-237. [PMID: 30877917 DOI: 10.1016/j.chemosphere.2019.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/07/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
A novel entrapped cells-based-anaerobic forward osmosis membrane bioreactor (E-FOMBR) was developed. Its performance and fouling were investigated in comparison with suspended cells-based-anaerobic forward osmosis membrane bioreactor (S-FOMBR). E-FOMBR and S-FOMBR were operated under the same conditions with two widely used draw solutions (NaCl and (NH4)2SO4). The membrane fouling especially irreversible fouling in S-FOMBR was more severe than that in E-FOMBR regardless of the type of draw solution. The permeate flux of E-FOMBR were 1.79 and 1.85 LMH while those of S-FOMBR were 1.49 and 1.14 LMH with NaCl and (NH4)2SO4 as draw solutions, respectively. More deterioration of biological activity (suggested by lower organic removal) due to accumulation of salt was observed in S-FOMBR compared to E-FOMBR. Proteobacteria dominated in both FOMBRs but was more abundant in E-FOMBR than S-FOMBR. The superiority of E-FOMBR over S-FOMBR included higher and stable system performance, higher flux, and longer operation time.
Collapse
Affiliation(s)
- Chaipon Juntawang
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Chaiwat Rongsayamanont
- Research Center for Environmental Assessment and Technology for Hazardous Waste Management, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
34
|
Kedwell KC, Christensen ML, Quist-Jensen CA, Jørgensen MK. Effect of reverse sodium flux and pH on ammoniacal nitrogen transport through biomimetic membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Biomimetic Membranes with Transmembrane Proteins: State-of-the-Art in Transmembrane Protein Applications. Int J Mol Sci 2019; 20:ijms20061437. [PMID: 30901910 PMCID: PMC6472214 DOI: 10.3390/ijms20061437] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
In biological cells, membrane proteins are the most crucial component for the maintenance of cell physiology and processes, including ion transportation, cell signaling, cell adhesion, and recognition of signal molecules. Therefore, researchers have proposed a number of membrane platforms to mimic the biological cell environment for transmembrane protein incorporation. The performance and selectivity of these transmembrane proteins based biomimetic platforms are far superior to those of traditional material platforms, but their lack of stability and scalability rule out their commercial presence. This review highlights the development of transmembrane protein-based biomimetic platforms for four major applications, which are biosensors, molecular interaction studies, energy harvesting, and water purification. We summarize the fundamental principles and recent progress in transmembrane protein biomimetic platforms for each application, discuss their limitations, and present future outlooks for industrial implementation.
Collapse
|
36
|
Liang Z, Yun Y, Wang M, Liu G, Lu P, Yang W, Li C. Performance evaluation of interfacial polymerisation-fabricated aquaporin-based biomimetic membranes in forward osmosis. RSC Adv 2019; 9:10715-10726. [PMID: 35515303 PMCID: PMC9062497 DOI: 10.1039/c9ra00787c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/18/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
Aquaporins play a promising role in the fabrication of high-performance biomimetic membranes. Interfacial polymerisation is a promising strategy for synthesizing aquaporin-based membranes. In this study, robust and high-performance aquaporin-based biomimetic membranes were successfully fabricated by interfacial polymerisation, and the membrane separation performance and interfacial polymerisation method were systematically evaluated. The effects of modification methods on the performance of aquaporins-based biomimetic membranes, including sodium hypochlorite and thermal post-treatment, protein-to-lipid ratio, liposome concentration and the addition arrangement of aquaporins were also investigated. Morphological observation suggested that the introduced proteoliposomes were completely embedded in the polyamide layer and that their spherical shape was preserved. Sodium hypochlorite post-treatment and thermal treatment were beneficial in improving the water flux and salt rejection of the resultant membrane without sacrificing the aquaporin activity. The biomimetic membranes had a high water flux and salt rejection, which were almost twice that of the control membranes, after aquaporin-based proteoliposomes were incorporated with an appropriated protein-to-lipid ratio and liposome concentration. The addition arrangement of aquaporins during the interfacial polymerisation procedure significantly influence the obtained membrane's structure. Lastly, this article introduces valuable and systematic research on interfacial polymerisation fabricated aquaporin-based biomimetic membranes with outstanding separation performance. Aquaporins play a promising role in the fabrication of high-performance biomimetic membranes.![]()
Collapse
Affiliation(s)
- Zhixia Liang
- School of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Yanbin Yun
- School of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Manxiang Wang
- Center for Energy Storage Research
- Green City Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Guicheng Liu
- Department of Physics
- Dongguk University
- Seoul 04620
- Republic of Korea
| | - Peng Lu
- College of Material Science and Chemical Engineering
- Ningbo University
- Zhejiang 315211
- China
| | - Woochul Yang
- Department of Physics
- Dongguk University
- Seoul 04620
- Republic of Korea
| | - Chunli Li
- College of Material Science and Chemical Engineering
- Ningbo University
- Zhejiang 315211
- China
| |
Collapse
|
37
|
Qin L, Zhang Y, Xu Z, Zhang G. Advanced membrane bioreactors systems: New materials and hybrid process design. BIORESOURCE TECHNOLOGY 2018; 269:476-488. [PMID: 30139558 DOI: 10.1016/j.biortech.2018.08.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 05/26/2023]
Abstract
Membrane bioreactor (MBR) is deemed as one of the most powerful technologies for efficient municipal and industrial wastewater treatment around the world. However, low microbial activity of activated sludge and serious membrane fouling still remain big challenges in worldwide application of MBR technology. Nowadays, more and more progresses on the research and development of advanced MBR with new materials and hybrid process are just on the way. In this paper, an overview on the perspective of high efficient strains applied into MBR for biological activity enhancement and fouling reduction is provided first. Secondly, as emerging fouling control strategy, design and fabrication of novel anti-fouling composited membranes are comprehensively highlighted. Meanwhile, hybrid MBR systems integrated with some novel dynamic membrane modules and/or with other technologies like advanced oxidation processes (AOPs) are introduced and compared. Finally, the challenges and opportunities of advanced MBRs combined with bioenergy production in wastewater treatment are discussed.
Collapse
Affiliation(s)
- Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yufan Zhang
- College of Engineering, University of California, Berkeley, CA 94720, USA; Department of Mechanical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
38
|
Water permeation in polymeric membranes: Mechanism and synthetic strategy for water-inhibiting functional polymers. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Song X, Liu L, Bing W, Pan J, Qi S, Tang CY, Gao C. REMOVED: Porous forward osmosis membranes for polishing biologically treated wastewater: Condition optimization and draw solution recovery. BIORESOURCE TECHNOLOGY 2018; 263:192-198. [PMID: 29747095 DOI: 10.1016/j.biortech.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Xiaoxiao Song
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Lifen Liu
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wu Bing
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798
| | - Jiefeng Pan
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Saren Qi
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798
| | - Chuyang Y Tang
- The University of Hong Kong, Department of Civil Engineering, Pokfulam, Hong Kong
| | - Congjie Gao
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
40
|
Biomimetic Membranes as a Technology Platform: Challenges and Opportunities. MEMBRANES 2018; 8:membranes8030044. [PMID: 30018213 PMCID: PMC6161077 DOI: 10.3390/membranes8030044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
Biomimetic membranes are attracting increased attention due to the huge potential of using biological functional components and processes as an inspirational basis for technology development. Indeed, this has led to several new membrane designs and applications. However, there are still a number of issues which need attention. Here, I will discuss three examples of biomimetic membrane developments within the areas of water treatment, energy conversion, and biomedicine with a focus on challenges and applicability. While the water treatment area has witnessed some progress in developing biomimetic membranes of which some are now commercially available, other areas are still far from being translated into technology. For energy conversion, there has been much focus on using bacteriorhodopsin proteins, but energy densities have so far not reached sufficient levels to be competitive with state-of-the-art photovoltaic cells. For biomedical (e.g., drug delivery) applications the research focus has been on the mechanism of action, and much less on the delivery 'per se'. Thus, in order for these areas to move forward, we need to address some hard questions: is bacteriorhodopsin really the optimal light harvester to be used in energy conversion? And how do we ensure that biomedical nano-carriers covered with biomimetic membrane material ever reach their target cells/tissue in sufficient quantities? In addition to these area-specific questions the general issue of production cost and scalability must also be treated in order to ensure efficient translation of biomimetic membrane concepts into reality.
Collapse
|
41
|
Luo W, Arhatari B, Gray SR, Xie M. Seeing is believing: Insights from synchrotron infrared mapping for membrane fouling in osmotic membrane bioreactors. WATER RESEARCH 2018; 137:355-361. [PMID: 29574245 DOI: 10.1016/j.watres.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
We employed synchrotron infrared (IR) mapping to resolve forward osmosis (FO) membrane fouling in osmotic membrane bioreactor (OMBR). Synchrotron IR mapping offers a unique perspective to elucidate the fouling mechanisms and associated consequences in OMBR operation. We demonstrated the spatial distribution and relative intensity of carbohydrate and protein longitudinally along of the fouled FO membrane at the conclusion of OMBR operation. Both transmission and attenuated total reflection (ATR) modes were used to map the cross-section and surface of the fouled FO membrane. Micro X-ray computed tomography revealed patchy, "sand-dune" features on the membrane surface at the conclusion of OMBR operation. Synchrotron IR-ATR mapping demonstrated that the development of membrane fouling layer in OMBR operation was initiated by polysaccharide-like carbohydrate, followed by layering with protein-like substance, resulting in a characteristic "sand-dune" three dimensional feature. Synchrotron FTIR mapping shed light on foulant occurrence and accumulation in the draw solution. Strong penetration of protein-like substance into membrane matrix was visualised, resulting the detection of protein adsorption in the region of membrane supporting layer.
Collapse
Affiliation(s)
- Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Benedicta Arhatari
- ARC Centre of Excellence for Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Stephen R Gray
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
42
|
Song X, Xie M, Li Y, Li G, Luo W. Salinity build-up in osmotic membrane bioreactors: Causes, impacts, and potential cures. BIORESOURCE TECHNOLOGY 2018; 257:301-310. [PMID: 29500063 DOI: 10.1016/j.biortech.2018.02.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with biological treatment, has been developed to advance wastewater treatment and reuse. OMBR is superior to conventional MBR, particularly in terms of higher effluent quality, lower membrane fouling propensity, and higher membrane fouling reversibility. Nevertheless, advancement and future deployment of OMBR are hindered by salinity build-up in the bioreactor (e.g., up to 50 mS/cm indicated by the mixed liquor conductivity), due to high salt rejection of the FO membrane and reverse diffusion of the draw solution. This review comprehensively elucidates the relative significance of these two mechanisms towards salinity build-up and its associated effects in OMBR operation. Recently proposed strategies to mitigate salinity build-up in OMBR are evaluated and compared to highlight their potential in practical applications. In addition, the complementarity of system optimization and modification to effectively manage salinity build-up are recommended for sustainable OMBR development.
Collapse
Affiliation(s)
- Xiaoye Song
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Yun Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Forward osmosis with high-performing TFC membranes for concentration of digester centrate prior to phosphorus recovery. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|