1
|
Rushimisha IE, Li X, Han T, Chen X, Abdoul Magid ASI, Sun Y, Li Y. Application of biochar on soil bioelectrochemical remediation: behind roles, progress, and potential. Crit Rev Biotechnol 2024; 44:120-138. [PMID: 36137569 DOI: 10.1080/07388551.2022.2119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Bioelectrochemical systems (BESs) that combine electrochemistry with biological methods have gained attention in the remediation of polluted environments, including wastewater, sludge, sediments, and soils. The most attractive advantage of BESs is that the solid electrode is used as an inexhaustible electron acceptor or donor, and biocurrent directly converted from organics can afford the reaction energy of contaminant breakdown, crossing the internal energy barrier of endothermic degradation, which achieves a continuous biodegradation process without the simultaneous use of exogenetic chemicals and bioelectricity recovery. However, soil BESs are hindered by expensive electrode materials, difficult pollutant and electron transfer, low microbial competitive activity, and biocompatibility in contamination remediation. Fortunately, introducing biochar into soil BESs could reveal a high potential in addressing these BES inadequacies. The characteristics of biochar, e.g., conductivity, transferability, high specific surface area, high porosity, large functional groups, and biocompatibility, can improve the performance of soil BESs. In fact, biochar not only carries electrons but also transfers nutrients, pollutants, and even bacteria by facilitating transmission in the bioelectric field of BESs. Consequently, the abilities of biochar make for better functionality of BESs. This review collates information on the roles, application, and progress of biochar in soil BESs, and future prospects are given. It is beneficial for environmental researchers and engineers to extend BES application in environmental remediation and to assist the progress of carbon sequestration and emission reduction based on the inertia of biochar and the blocking of electron flow to form methane.
Collapse
Affiliation(s)
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Tianjin, China
| | - Ting Han
- Agro-Environmental Protection Institute, Tianjin, China
| | - Xiaodong Chen
- Agro-Environmental Protection Institute, Tianjin, China
| | | | - Yan Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Munir R, Ali K, Naqvi SAZ, Muneer A, Bashir MZ, Maqsood MA, Noreen S. Green metal oxides coated biochar nanocomposites preparation and its utilization in vertical flow constructed wetlands for reactive dye removal: Performance and kinetics studies. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104167. [PMID: 36906994 DOI: 10.1016/j.jconhyd.2023.104167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 02/25/2023] [Indexed: 06/09/2023]
Abstract
Major causes of water pollution in the ecosystem are pollutants such as dyes which are noxious. The present study was based on the synthesis of the green nano-biochar composites from cornstalk and green metal oxide resulting in Copper oxide/biochar, Zinc oxide /biochar, Magnesium oxide/biochar, Manganese oxide/biochar, biochar for removal of dyes combined with the constructed wetland (CW). Biochar Augmentation in constructed wetland systems has improved dye removal efficiency to 95% in order of copper oxide/biochar > Magnesium oxide/biochar > Zinc oxide/biochar > Manganese oxide/biochar > biochar > control (without biochar) respectively in wetlands. It has increased the efficiency of pH by maintaining pH 6.9-7.4, while Total Suspended Solids (TSS) removal efficiency and Dissolved oxygen (DO) increased with the hydraulic retention time of about 7 days for 10 weeks. Chemical oxygen demand (COD) and colour removal efficiency increased with the hydraulic retention time of 12 days for 2 months and there was a low removal efficiency for total dissolved solids (TDS) from control (10.11%) to Copper oxide /biochar (64.44%) and Electrical conductivity (EC) from control (8%) to Copper oxide /biochar (68%) with the hydraulic retention time of about 7 days for 10 weeks. Colour and chemical oxygen demand removal kinetics followed second and first-order kinetic. A significant growth in the plants were also observed. These results proposed the use of agricultural waste-based biochar as part of a constructed wetland substratum can provide enhanced removal of textile dyes. That can be reused.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khuram Ali
- Department of Physics, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad 38000, Pakistan
| | | | - Muhammad Aamer Maqsood
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
3
|
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. CHEMOSPHERE 2022; 286:131856. [PMID: 34399268 DOI: 10.1016/j.chemosphere.2021.131856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.
Collapse
Affiliation(s)
- S Prathiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
4
|
Use of Biochar-Based Cathodes and Increase in the Electron Flow by Pseudomonas aeruginosa to Improve Waste Treatment in Microbial Fuel Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9111941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, we tested the combined use of a biochar-based material at the cathode and of Pseudomonas aeruginosa strain in a single chamber, air cathode microbial fuel cells (MFCs) fed with a mix of shredded vegetable and phosphate buffer solution (PBS) in a 30% solid/liquid ratio. As a control system, we set up and tested MFCs provided with a composite cathode made up of a nickel mesh current collector, activated carbon and a single porous poly tetra fluoro ethylene (PTFE) diffusion layer. At the end of the experiments, we compared the performance of the two systems, in the presence and absence of P. aeruginosa, in terms of electric outputs. We also explored the potential reutilization of cathodes. Unlike composite material, biochar showed a life span of up to 3 cycles of 15 days each, with a pH of the feedstock kept in a range of neutrality. In order to relate the electric performance to the amount of solid substrates used as source of carbon and energy, besides of cathode surface, we referred power density (PD) and current density (CD) to kg of biomass used. The maximum outputs obtained when using the sole microflora were, on average, respectively 0.19 Wm−2kg−1 and 2.67 Wm−2kg−1, with peaks of 0.32 Wm−2kg−1 and 4.87 Wm−2kg−1 of cathode surface and mass of treated biomass in MFCs with biochar and PTFE cathodes respectively. As to current outputs, the maximum values were 7.5 Am−2 kg−1 and 35.6 Am−2kg−1 in MFCs with biochar-based material and a composite cathode. If compared to the utilization of the sole acidogenic/acetogenic microflora in vegetable residues, we observed an increment of the power outputs of about 16.5 folds in both systems when we added P. aeruginosa to the shredded vegetables. Even though the MFCs with PTFE-cathode achieved the highest performance in terms of PD and CD, they underwent a fouling episode after about 10 days of operation, with a dramatic decrease in pH and both PD and CD. Our results confirm the potentialities of the utilization of biochar-based materials in waste treatment and bioenergy production.
Collapse
|
5
|
One-Step Preparation of Biochar Electrodes and Their Applications in Sediment Microbial Electrochemical Systems. Catalysts 2021. [DOI: 10.3390/catal11040508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biochar is a kind of carbon-rich material formed by pyrolysis of biomass at high temperature in the absence or limitation of oxygen. It has abundant pore structure and a large surface area, which could be considered the beneficial characteristics for electrodes of microbial electrochemical systems. In this study, reed was used as the raw material of biochar and six biochar-based electrode materials were obtained by three methods, including one-step biochar cathodes (BC 800 and BC 700), biochar/polyethylene composite cathodes (BP 5:5 and BP 6:4), and biochar/polyaniline/hot-melt adhesive composite cathode (BPP 5:1:4 and BPP 4:1:5). The basic physical properties and electrochemical properties of the self-made biochar electrode materials were characterized. Selected biochar-based electrode materials were used as the cathode of sediment microbial electrochemical reactors. The reactor with pure biochar electrode (BC 800) achieves a maximum output power density of 9.15 ± 0.02 mW/m2, which increases the output power by nearly 80% compared with carbon felt. When using a biochar/polyaniline/hot-melt adhesive (BPP 5:1:4) composite cathode, the output power was increased by 2.33 times. Under the premise of ensuring the molding of the material, the higher the content of biochar, the better the electrochemical performance of the electrodes. The treatment of reed powder before pyrolysis is an important factor for the molding of biochar. The one-step molding biochar cathode had satisfactory performance in sediment microbial electrochemical systems. By exploring the biochar-based electrode, waste biomass could be reused, which is beneficial for the environment.
Collapse
|
6
|
Deng L, Zhao Y, Zhang J, Bello A, Sun Y, Han Y, Wang B, Uzoamaka Egbeagu U, Li D, Jong C, Xu X. Insight to nitrification during cattle manure-maize straw and biochar composting in terms of multi-variable interaction. BIORESOURCE TECHNOLOGY 2021; 323:124572. [PMID: 33370679 DOI: 10.1016/j.biortech.2020.124572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This study investigated nitrification process during cattle manure-maize straw (CM) and biochar (CMB) composting in terms of multi-variable interaction (MVI) among environmental parameters, ammonia-oxidizing archaea (AOA) and bacteria (AOB) community structure, nitrogen-related enzymes as well as substrates using structural equation model (SEM). Results showed that adding biochar significantly reduced potential ammonia oxidation rates. SEM analysis revealed that AOB was affected by temperature and pH, which stimulated the release of urease, increased NH4+-N concentration and finally exerted influence on nitrification in CM. Temperature (0.755) and NO2--N (-0.994) were identified as the main factors mediating nitrification in CM and CMB, respectively. Moreover, MVI analysis indicated that nitrification and denitrification occurred simultaneously. Mutual verification of SEM and quantitative analyses (RNA level) confirmed that AOB predominated nitrification. The above results indicated that nitrification could be better explained by MVI using SEM during composting.
Collapse
Affiliation(s)
- Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jizhou Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Detian Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chol Jong
- College of Agriculture, Kimjewon Agricultural University, Haeju City, Hwanghae South Province 999093, Democratic People's Republic of Korea
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Li J, Ly QV, Nguyen TAH, Tran VS. Applying a new pomelo peel derived biochar in microbial fell cell for enhancing sulfonamide antibiotics removal in swine wastewater. BIORESOURCE TECHNOLOGY 2020; 318:123886. [PMID: 32732066 DOI: 10.1016/j.biortech.2020.123886] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
A sequential anode-cathode double-chamber microbial fuel cell (MFC) is a promising system for simultaneously removing contaminants, recovering nutrients and producing energy from swine wastewater. To improve sulfonamide antibiotics (SMs)'s removal in the continuous operating of MFC, one new pomelo peel-derived biochar was applied in the anode chamber in this study. Results demonstrated that SMs can be absorbed onto the heterogeneous surfaces of biochar through pore-filling and π-π EDA interaction. Adding biochar to a certain concentration (500 mg/L) could enhance the efficiency in removing sulfamethoxazole, sulfadiazine and sulfamethazine to 82.44-88.15%, 53.40-77.53% and 61.12-80.68%, respectively. Moreover, electricity production, COD and nutrients removal were improved by increasing the concentration of biochar. Hence, it is proved that adding biochar in MFC could effectively improve the performance of MFC in treating swine wastewater containing SMs.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Jianxin Li
- State Key Laboratory of Separation Membrane and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Quang Viet Ly
- State Key Laboratory of Separation Membrane and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Thi An Hang Nguyen
- Vietnam Japan University (VNU-VJU), Vietnam National University, Hanoi, Luu Huu Phuoc St., Nam Tu Liem Dist., Hanoi 101000, Viet Nam
| | - Van Son Tran
- Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, Hanoi, Viet Nam
| |
Collapse
|
8
|
Zhang Y, Zhang Z, Liu W, Chen Y. New applications of quinone redox mediators: Modifying nature-derived materials for anaerobic biotransformation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140652. [PMID: 32693271 DOI: 10.1016/j.scitotenv.2020.140652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Due to their wide-distribution, high-biocompatibility and low-cost, nature-derived quinone redox mediators (NDQRM) have shown great potential in bioremediation through mediating electron transfers between microorganisms and between microorganisms and contaminants in anaerobic biotransformation processes. It is obvious that their performance in bioremediation was limited by the availability of quinone-based groups in NDQRM. A sustainable solution is to enhance the electron transfer capacity and retention capacity by the modification of NDQRM. Therefore, this review comprehensively summarized the modification techniques of NDQRM according to their multiple roles in anaerobic biotransformation systems. In addition, their potential applications in greenhouse gas mitigation, contaminant degradation in anaerobic digestion, contaminant bioelectrochemical remediation and energy recovery were discussed. And the problems that need to be addressed in the future were pointed out. The obtained knowledge would promote the exploration of novel NDQRM, and provide suggestions for the design of anaerobic consortia in biotransformation systems.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Weiguo Liu
- College of Resources and Environment Science, Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
9
|
Chakraborty I, Sathe SM, Dubey BK, Ghangrekar MM. Waste-derived biochar: Applications and future perspective in microbial fuel cells. BIORESOURCE TECHNOLOGY 2020; 312:123587. [PMID: 32480350 DOI: 10.1016/j.biortech.2020.123587] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Application of microbial fuel cell (MFC) is coming to the forefront as a dual-purpose system for wastewater treatment and energy recovery. Future research should emphasize on developing low-cost field-scale MFCs for removal of organic matter, nutrients, xenobiotic and recalcitrant compounds from wastewaters and powering low energy devices. For achieving this, low-cost electrodes, low-cost yet efficient cathode catalysts and proton exchange membrane (PEM) should be developed from waste-based resources to salvage the waste-derived material as much as possible, thereby reducing the fabrication cost of this device. Biochar is one such low-cost material, which has wide range of applications. This review discusses different applications of biochar in MFC, viz. in the form of standalone electrodes, electrocatalyst and material for PEM in light of different characteristics of biochar. Further emphasis is given on the future direction of research for implementation of biochar-based PEMs and electrodes in field-scale MFCs.
Collapse
Affiliation(s)
- Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
10
|
Sonu K, Syed Z, Sogani M. Up-scaling microbial fuel cell systems for the treatment of real textile dye wastewater and bioelectricity recovery. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/00207233.2020.1736438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kumar Sonu
- Department of Civil Engineering, Manipal University Jaipur, Jaipur, India
| | - Zainab Syed
- Department of Civil Engineering, Manipal University Jaipur, Jaipur, India
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Monika Sogani
- Department of Civil Engineering, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
11
|
A Review of Non-Soil Biochar Applications. MATERIALS 2020; 13:ma13020261. [PMID: 31936099 PMCID: PMC7013903 DOI: 10.3390/ma13020261] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Biochar is the solid residue that is recovered after the thermal cracking of biomasses in an oxygen-free atmosphere. Biochar has been used for many years as a soil amendment and in general soil applications. Nonetheless, biochar is far more than a mere soil amendment. In this review, we report all the non-soil applications of biochar including environmental remediation, energy storage, composites, and catalyst production. We provide a general overview of the recent uses of biochar in material science, thus presenting this cheap and waste-derived material as a high value-added and carbonaceous source.
Collapse
|
12
|
Chakraborty I, Sathe S, Khuman C, Ghangrekar M. Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2020; 3:104-115. [DOI: 10.1016/j.mset.2019.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Adsorption of an Anionic Azo Dye Using Moringa oleifera Seed Protein-Montmorillonite Composite. J CHEM-NY 2019. [DOI: 10.1155/2019/8464815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, Moringa oleifera seed protein-montmorillonite (MOSP-MMT) composite was synthetized using the impregnation method. The MOSP-MMT adsorbent was characterized using scanning electron microscope, X-ray diffraction, infrared spectroscopy, surface area analysis, and thermogravimetric analysis. The removal of water-soluble reactive red 2 (RR-2) from artificial wastewater by the MOSP-MMT composite was carried out in a batch system. The results indicated that RR-2 adsorption increased with contact time, and the pseudo-second-order equation was best to describe the adoption process among the three models. The RR-2 adsorption decreased from 7.60 to 5.92 mg/g as pH increased from 3.2 to 9.1 and increased from 15.2 to 17.1 mg/g as NaCl concentration increased from 0 to 30 g/L. The Freundlich isotherm model provided the better fit of the experimental data than the Langmuir model. The result showed that the MOSP-MMT composite could be a potential adsorbent for the treatment of wastewater containing RR-2.
Collapse
|
14
|
Mahmoodi NM, Taghizadeh M, Taghizadeh A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: Preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|