1
|
Ryu Y, Bouharras FE, Cha M, Mudondo J, Kim Y, Ramakrishnan SR, Shin S, Yu Y, Lee W, Park J, Song Y, Yum SJ, Cha HG, Ahn D, Kim SJ, Kim HT. Recent advancements in the evolution, production, and degradation of biodegradable mulch films: A review. ENVIRONMENTAL RESEARCH 2025; 277:121629. [PMID: 40250592 DOI: 10.1016/j.envres.2025.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Biomass-based plastic production systems play a crucial role in fostering a sustainable society. Biodegradable mulch films (BDMs) have emerged as a practical solution to environmental pollution in agriculture. Various types of BDMs, including polybutylene adipate-co-terephthalate, polybutylene succinate, and polybutylene succinate-co-adipate, have been developed, though many are still derived from fossil-fuel-based plastics. Furthermore, the adoption of biodegradable materials in agricultural practices remains limited. This review critically assesses the evolution and significance of mulch films, highlighting the transition from traditional polyethylene (PE) to BDMs in response to environmental challenges. We provide an overview of the biorefinery approach to producing biomass-derived BDMs, discussing biomass pretreatment, saccharification, production of plastic monomers using microbial cell factories, purification, and polymerization. The review also explores techniques to enhance the biodegradation capabilities of mulch films during polymerization. Additionally, we emphasize the necessity for advancements in controlling the degradation rates of BDMs. By addressing the environmental concerns associated with the disposal of these materials, this review underscores the importance of developing effective strategies for a more sustainable and environmentally friendly agricultural landscape.
Collapse
Affiliation(s)
- Yeonkyeong Ryu
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Fatima Ezzahra Bouharras
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Minseok Cha
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joyce Mudondo
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Younghoon Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Sudha Rani Ramakrishnan
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biotechnology, Anna University, Chennai, 600025, India
| | - Sangbin Shin
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea; Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Youngchang Yu
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Jiyoung Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yunjeong Song
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| | - Dowon Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Soo-Jung Kim
- Research Center for Biological Cybernetics and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Wu N, Wang W, Zhu J. Progress on production of malic acid and succinic acid by industrially-important engineered microorganisms. J Biotechnol 2025; 400:8-19. [PMID: 39923900 DOI: 10.1016/j.jbiotec.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Organic acids are widely used as additives in the food, pharmaceutical, chemical, and plastic industries. Currently, the industrial production methods of organic acids mainly include plant extraction and chemical synthesis. The latter mainly uses petroleum-based compounds as raw materials to synthesize organic acids through a series of chemical reactions. All of these methods have problems such as environmental pollution, high cost, and unsustainability. By contrast, microbial fermentation can effectively utilize a variety of carbon sources. Due to its low production cost, environmental friendliness, and high product purity, microbial fermentation has received increasing attention in recent years. However, the low yield and long fermentation cycle of microbial fermentation limits its industrial application. With the development of genomics, transcriptomics, and other omics technologies, the metabolic pathways of various strains producing organic acids have gradually been elucidated. Based on this, new technologies such as synthetic biology and high-throughput screening have also been extensively studied. This review summarizes the latest research progress in improving organic acid biosynthesis through metabolic engineering, focusing on L-malic acid (L-MA) and succinic acid (SA). Finally, we also discuss the challenges and future prospects of this field. This review has important reference value in the fields of food, pharmaceuticals, and chemicals, providing a theoretical basis for the study of organic acid biosynthesis.
Collapse
Affiliation(s)
- Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Wenxin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jianguo Zhu
- Suzhou Wecare Probiotics (Suzhou) Co., Ltd., Suzhou, China.
| |
Collapse
|
3
|
Ding Q, Ji M, Yao B, Sheng K, Wang Y. Recent advances in biological synthesis of food additive succinate. Crit Rev Biotechnol 2025:1-14. [PMID: 40107767 DOI: 10.1080/07388551.2025.2472636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 03/22/2025]
Abstract
Succinate, a crucial bio-based chemical building block, has already found extensive applications in fields such as food additives, pharmaceutical intermediates, and the chemical materials industry. To efficiently and economically synthesize succinate, substantial endeavors have been executed to optimize fermentation processes and downstream operations. Nonetheless, there is still a need to enhance cost-effectiveness and competitiveness while considering environmental concerns, particularly in light of the escalating demands and challenges posed by global warming. This article primarily focuses on the application of metabolic engineering strategies to strengthen succinate biosynthesis. These strategies encompass fermentation regulation, metabolic regulation, cellular regulation, and model guidance. By leveraging advanced synthetic biology techniques, this review highlights the potential for developing robust microbial cell factories and shaping the future directions for the integration of microbes in industrial applications.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Mengqi Ji
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Buhan Yao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| |
Collapse
|
4
|
Li Y, Liu M, Yang C, Fu H, Wang J. Engineering microbial metabolic homeostasis for chemicals production. Crit Rev Biotechnol 2025; 45:373-392. [PMID: 39004513 DOI: 10.1080/07388551.2024.2371465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
Microbial-based bio-refining promotes the development of a biotechnology revolution to encounter and tackle the enormous challenges in petroleum-based chemical production by biomanufacturing, biocomputing, and biosensing. Nevertheless, microbial metabolic homeostasis is often incompatible with the efficient synthesis of bioproducts mainly due to: inefficient metabolic flow, robust central metabolism, sophisticated metabolic network, and inevitable environmental perturbation. Therefore, this review systematically summarizes how to optimize microbial metabolic homeostasis by strengthening metabolic flux for improving biotransformation turnover, redirecting metabolic direction for rewiring bypass pathway, and reprogramming metabolic network for boosting substrate utilization. Future directions are also proposed for providing constructive guidance on the development of industrial biotechnology.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingxiong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changyang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Wang L, Tan YS, Chen K, Ntakirutimana S, Liu ZH, Li BZ, Yuan YJ. Global regulator IrrE on stress tolerance: a review. Crit Rev Biotechnol 2024; 44:1439-1459. [PMID: 38246753 DOI: 10.1080/07388551.2023.2299766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 01/23/2024]
Abstract
Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from Deinococcus radiodurans enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of D. radiodurans. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.
Collapse
Affiliation(s)
- Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Yong-Shui Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
6
|
Zhao Z, You J, Shi X, Zhu R, Yang F, Xu M, Shao M, Zhang R, Zhao Y, Rao Z. Engineering Escherichia coli for l-Threonine Hyperproduction Based on Multidimensional Optimization Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356799 DOI: 10.1021/acs.jafc.4c07607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Exploring effective remodeling strategies to further improve the productivity of high-yield strains is the goal of biomanufacturing. However, the lack of insight into host-specific metabolic networks prevents timely identification of useful engineering targets. Here, multidimensional engineering strategies were implemented to optimize the global metabolic network for improving l-threonine production. First, the metabolic bottleneck for l-threonine synthesis was eliminated by synergistic utilization of NADH and an enhanced ATP supply. Carbon fluxes were redistributed into the TCA cycle by rationally regulating the GltA activity. Subsequently, the stress global response regulator UspA was identified to enhance l-threonine production by a transcriptomic analysis. Then, l-threonine productivity was improved by enhancing the host's stress resistance and releasing the inhibitory reaction of glucose utilization. Eventually, the l-threonine yield of THRH16 reached 170.3 g/L and 3.78 g/L/h in a 5 L bioreactor, which is the highest production index reported. This study provides rational guidance for increasing the productivity of other chemicals.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Xuanping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Rongshuai Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Fengyu Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Minglong Shao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Youxi Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Future Food Technology, Yixing, JITRI 214200, China
| |
Collapse
|
7
|
Yan X, Bu A, Yuan Y, Zhang X, Lin Z, Yang X. Engineering quorum sensing-based genetic circuits enhances growth and productivity robustness of industrial E. coli at low pH. Microb Cell Fact 2024; 23:256. [PMID: 39342182 PMCID: PMC11438209 DOI: 10.1186/s12934-024-02524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Microbial organisms hold significant potential for converting renewable substrates into valuable chemicals. Low pH fermentation in industrial settings offers key advantages, including reduced neutralizer usage and decreased wastewater generation, particularly in the production of amino acids and organic acids. Engineering acid-tolerant strains represents a viable strategy to enhance productivity in acidic environments. Synthetic biology provides dynamic regulatory tools, such as gene circuits, facilitating precise expression of acid resistance (AR) modules in a just-in-time and just-enough manner. RESULTS In this study, we aimed to enhance the robustness and productivity of Escherichia coli, a workhorse for amino acid and organic acid production, in industrial fermentation under mild acidic conditions. We employed an Esa-type quorum sensing circuit to dynamically regulate the expression of an AR module (DsrA-Hfq) in a just-in-time and just-enough manner. Through careful engineering of the critical promoter PesaS and stepwise evaluation, we developed an optimal Esa-PBD(L) circuit that conferred upon an industrial E. coli strain SCEcL3 comparable lysine productivity and enhanced yield at pH 5.5 compared to the parent strain at pH 6.8. CONCLUSIONS This study exemplifies the practical application of gene circuits in industrial environments, which present challenges far beyond those of well-controlled laboratory conditions.
Collapse
Affiliation(s)
- Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Anqi Bu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yanfei Yuan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- School of Biomedicine, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
8
|
Zhou D, Fei Z, Liu G, Jiang Y, Jiang W, Lin CSK, Zhang W, Xin F, Jiang M. The bioproduction of astaxanthin: A comprehensive review on the microbial synthesis and downstream extraction. Biotechnol Adv 2024; 74:108392. [PMID: 38825214 DOI: 10.1016/j.biotechadv.2024.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.
Collapse
Affiliation(s)
- Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengyue Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Guannan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
9
|
Wang X, Li D, Yue S, Yuan Z, Li S. A Rare Mono-Rhamnolipid Congener Efficiently Produced by Recombinant Pseudomonas aeruginosa YM4 via the Expression of Global Transcriptional Regulator irrE. Molecules 2024; 29:1992. [PMID: 38731483 PMCID: PMC11085080 DOI: 10.3390/molecules29091992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Rhamnolipids (RLs) are widely used biosurfactants produced mainly by Pseudomonas aeruginosa and Burkholderia spp. in the form of mixtures of diverse congeners. The global transcriptional regulator gene irrE from radiation-tolerant extremophiles has been widely used as a stress-resistant element to construct robust producer strains and improve their production performance. A PrhlA-irrE cassette was constructed to express irrE genes in the Pseudomonas aeruginosa YM4 of the rhamnolipids producer strain. We found that the expression of irrE of Deinococcus radiodurans in the YM4 strain not only enhanced rhamnolipid production and the strain's tolerance to environmental stresses, but also changed the composition of the rhamnolipid products. The synthesized rhamnolipids reached a maximum titer of 26 g/L, about 17.9% higher than the original, at 48 h. The rhamnolipid production of the recombinant strain was determined to be mono-rhamnolipids congener Rha-C10-C12, accounting for 94.1% of total products. The critical micelle concentration (CMC) value of the Rha-C10-C12 products was 62.5 mg/L and the air-water surface tension decreased to 25.5 mN/m. The Rha-C10-C12 products showed better emulsifying activity on diesel oil than the original products. This is the first report on the efficient production of the rare mono-rhamnolipids congener Rha-C10-C12 and the first report that the global regulator irrE can change the components of rhamnolipid products in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Xinying Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (X.W.); (D.L.)
| | - Dongmei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (X.W.); (D.L.)
| | - Shenghui Yue
- Research Institute of Petroleum Engineering and Technology, Sinopec Shengli Oilfield, Co., Ltd., Dongying 257000, China; (S.Y.); (Z.Y.)
| | - Zhangzhong Yuan
- Research Institute of Petroleum Engineering and Technology, Sinopec Shengli Oilfield, Co., Ltd., Dongying 257000, China; (S.Y.); (Z.Y.)
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (X.W.); (D.L.)
| |
Collapse
|
10
|
Jiang J, Luo Y, Fei P, Zhu Z, Peng J, Lu J, Zhu D, Wu H. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation. BIORESOUR BIOPROCESS 2024; 11:34. [PMID: 38647614 PMCID: PMC10997558 DOI: 10.1186/s40643-024-00749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Escherichia coli MLB (MG1655 ΔpflB ΔldhA), which can hardly grow on glucose with little succinate accumulation under anaerobic conditions. Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production. The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation. Then, the adaptive laboratory evolution (ALE) of growing on acetate was applied here. We assumed that the activities of succinate production related enzymes might be further improved in this study. E. coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate. Interestingly, in MLB46-05, the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly. According to transcriptome analysis, upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield. And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate. Finally, strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose. SYNOPSIS.
Collapse
Affiliation(s)
- Jiaping Jiang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhengtong Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Peng
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Juefeng Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Du Zhu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
11
|
Gao S, Liao Y, He H, Yang H, Yang X, Xu S, Wang X, Chen K, Ouyang P. Advance of tolerance engineering on microbes for industrial production. Synth Syst Biotechnol 2023; 8:697-707. [PMID: 38025766 PMCID: PMC10656194 DOI: 10.1016/j.synbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Industrial microbes have become the core of biological manufacturing, which utilized as the cell factory for production of plenty of chemicals, fuels and medicine. However, the challenge that the extreme stress conditions exist in production is unavoidable for cell factory. Consequently, to enhance robustness of the chassis cell lays the foundation for development of bio-manufacturing. Currently, the researches on cell tolerance covered various aspects, involving reshaping regulatory network, cell membrane modification and other stress response. In fact, the strategies employed to improve cell robustness could be summarized into two directions, irrational engineering and rational engineering. In this review, the metabolic engineering technologies on enhancement of microbe tolerance to industrial conditions are summarized. Meanwhile, the novel thoughts emerged with the development of biological instruments and synthetic biology are discussed.
Collapse
Affiliation(s)
- Siyuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yang Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Hao He
- Petrochemical Research Institute of PetroChina Co. Ltd., Beijing, 102206, China
| | - Huiling Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xuewei Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
12
|
Dai K, Qu C, Feng J, Lan Y, Fu H, Wang J. Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:155. [PMID: 37865803 PMCID: PMC10589968 DOI: 10.1186/s13068-023-02402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/21/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Sucrose-rich sugarcane trash surpasses 28 million tons globally per year. Effective biorefinery systems could convert these biomasses to bioproducts, such as bioethanol from sugarcane sucrose in Brazil. Thermophilic microbes for biofuels have attracted great attention due to their higher fermentation temperature and wide substrate spectrum. However, few thermophiles using sucrose or molasses for biofuels production was reported. Thermoanaerobacterium aotearoense SCUT27 has been considered as an efficient ethanol producer, but it cannot directly utilize sucrose. In this study, various sucrose metabolic pathways were introduced and analyzed in Thermoanaerobaterium. RESULTS The sucrose-6-phosphate hydrolase (scrB), which was from a screened strain Thermoanaerobacterium thermosaccharolyticum G3-1 was overexpressed in T. aotearoense SCUT27 and endowed this strain with the ability to utilize sucrose. In addition, overexpression of the sucrose-specific PTS system (scrA) from Clostridium acetobutylicum accelerated the sucrose transport. To strengthen the alcohols production and substrates metabolism, the redox-sensing transcriptional repressor (rex) in T. aotearoense was further knocked out. Moreover, with the gene arginine repressor (argR) deleted, the ethanologenic mutant P8S10 showed great inhibitors-tolerance and finally accumulated ~ 34 g/L ethanol (a yield of 0.39 g/g sugars) from pretreated cane molasses in 5 L tank by fed-batch fermentation. When introducing butanol synthetic pathway, 3.22 g/L butanol was produced by P8SB4 with a yield of 0.44 g alcohols/g sugars at 50℃. This study demonstrated the potential application of T. aotearoense SCUT27 for ethanol and butanol production from low cost cane molasses. CONCLUSIONS Our work provided strategies for sucrose utilization in thermophiles and improved biofuels production as well as stress tolerances of T. aotearoense SCUT27, demonstrating the potential application of the strain for cost-effective biofuels production from sucrose-based feedstocks.
Collapse
Affiliation(s)
- Kaiqun Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Science and Technology of Lingnan Special Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yang Lan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Healy LE, Zhu X, Pojić M, Sullivan C, Tiwari U, Curtin J, Tiwari BK. Biomolecules from Macroalgae-Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules 2023; 13:386. [PMID: 36830755 PMCID: PMC9953460 DOI: 10.3390/biom13020386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Seaweed is in the spotlight as a promising source of nutrition for humans as the search for sustainable food production systems continues. Seaweed has a well-documented rich nutritional profile containing compounds such as polyphenols, carotenoids and polysaccharides as well as proteins, fatty acids and minerals. Seaweed processing for the extraction of functional ingredients such as alginate, agar, and carrageenan is well-established. Novel pretreatments such as ultrasound assisted extraction or high-pressure processing can be incorporated to more efficiently extract these targeted ingredients. The scope of products that can be created using seaweed are wide ranging: from bread and noodles to yoghurt and milk and even as an ingredient to enhance the nutritional profile and stability of meat products. There are opportunities for food producers in this area to develop novel food products using seaweed. This review paper discusses the unique properties of seaweed as a food, the processes involved in seaweed aquaculture, and the products that can be developed from this marine biomass. Challenges facing the industry such as consumer hesitation around seaweed products, the safety of seaweed, and processing hurdles will also be discussed.
Collapse
Affiliation(s)
- Laura E. Healy
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, D02 V583 Dublin, Ireland
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Carl Sullivan
- Faculty of Computing, Digital and Data, School of Mathematics and Statistics, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Uma Tiwari
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - James Curtin
- Faculty of Engineering & Built Environment, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | | |
Collapse
|
14
|
Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bioplastics are polymers made from sustainable bio-based feedstocks. While the potential of producing bio-based monomers in microbes has been investigated for decades, their economic feasibility is still unsatisfactory compared with petroleum-derived methods. To improve the overall synthetic efficiency of microbial cell factories, three main strategies were summarized in this review: firstly, implementing approaches to improve the microbial utilization ability of cheap and abundant substrates; secondly, developing methods at enzymes, pathway, and cellular levels to enhance microbial production performance; thirdly, building technologies to enhance microbial pH, osmotic, and metabolites stress tolerance. Moreover, the challenges of, and some perspectives on, exploiting microorganisms as efficient cell factories for producing bio-based monomers are also discussed.
Collapse
|
15
|
Lu Y, Yang L, An Y, Liu D, Yang G, He Q. Salt tolerance and ester production mechanisms of Candida etchellsii in Chinese horse bean-chili-paste. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Guo F, Wu M, Zhang S, Feng Y, Jiang Y, Jiang W, Xin F, Zhang W, Jiang M. Improved succinic acid production through the reconstruction of methanol dissimilation in Escherichia coli. BIORESOUR BIOPROCESS 2022; 9:62. [PMID: 38647636 PMCID: PMC10991533 DOI: 10.1186/s40643-022-00547-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Synthetic biology has boosted the rapid development on using non-methylotrophy as chassis for value added chemicals production from one-carbon feedstocks, such as methanol and formic acid. The one-carbon dissimilation pathway can provide more NADH than monosaccharides including glucose, which is conducive for reductive chemicals production, such as succinic acid. In this study, the one-carbon dissimilation pathway was introduced in E. coli Suc260 to enhance the succinic acid production capability. Through the rational construction of methanol dissimilation pathway, the succinic acid yield was increased from 0.91 to 0.95 g/g with methanol and sodium formate as auxiliary substrates in anaerobic fed-batch fermentation. Furthermore, the metabolic flux of by-product pyruvate was redirected to succinic acid together with the CO2 fixation. Finally, through the immobilization on a specially designed glycosylated membrane, E. coli cells are more resistant to adverse environments, and the final yield of succinic acid was improved to 0.98 g/g. This study proved the feasibility of endowing producers with methanol dissimilation pathway to enhance the production of reductive metabolites.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Min Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
17
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Feng Y, Gu D, Wang Z, Lu C, Fan J, Zhou J, Wang R, Su X. Comprehensive evaluation and analysis of the salinity stress response mechanisms based on transcriptome and metabolome of Staphylococcus aureus. Arch Microbiol 2021; 204:28. [PMID: 34921629 DOI: 10.1007/s00203-021-02624-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus possesses an extraordinary ability to deal with a wide range of osmotic pressure. This study performed transcriptomic and metabolomic analyses on the potential mechanism of gradient salinity stress adaptation in S. aureus ZS01. The results revealed that CPS biosynthetic protein genes were candidate target genes for directly regulating the phenotypic changes of biofilm. Inositol phosphate metabolism was downregulated to reduce the conversion of functional molecules. The gluconeogenesis pathway and histidine synthesis were downregulated to reduce the production of endogenous glucose. The pyruvate metabolism pathway was upregulated to promote the accumulation of succinate. TCA cycle metabolism pathway was downregulated to reduce unnecessary energy loss. L-Proline was accumulated to regulate osmotic pressure. Therefore, these self-protection mechanisms can protect cells from hypertonic environments and help them focus on survival. In addition, we identified ten hub genes. The findings will aid in the prevention and treatment strategies of S. aureus infections.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,College of Life Sciences, Tonghua Normal University, Tonghua, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Dizhou Gu
- College of Life Sciences, Tonghua Normal University, Tonghua, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China. .,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China.
| |
Collapse
|
19
|
Ma X, Ma L, Huo YX. Reconstructing the transcription regulatory network to optimize resource allocation for robust biosynthesis. Trends Biotechnol 2021; 40:735-751. [PMID: 34895933 DOI: 10.1016/j.tibtech.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
An ideal microbial cell factory (MCF) should deliver maximal resources to production, which conflicts with the microbe's native growth-oriented resource allocation strategy and can therefore lead to early termination of the high-yield period. Reallocating resources from growth to production has become a critical factor in constructing robust MCFs. Instead of strengthening specific biosynthetic pathways, emerging endeavors are focused on rearranging the gene regulatory network to fundamentally reprogram the resource allocation pattern. Combining this idea with transcriptional regulation within the hierarchical regulatory network, this review discusses recent engineering strategies targeting the transcription machinery, module networks, regulatory edges, and bottom network layer. This global view will help to construct a production-oriented phenotype that fully harnesses the potential of MCFs.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Lianjie Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China.
| |
Collapse
|
20
|
Production and characterization of insoluble α-1,3-linked glucan and soluble α-1,6-linked dextran from Leuconostoc pseudomesenteroides G29. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Luo JM, Zhu WC, Cao ST, Lu ZY, Zhang MH, Song B, Shen YB, Wang M. Improving Biotransformation Efficiency of Arthrobacter simplex by Enhancement of Cell Stress Tolerance and Enzyme Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:704-716. [PMID: 33406824 DOI: 10.1021/acs.jafc.0c06592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arthrobacter simplex exhibits excellent Δ1-dehydrogenation ability, but the acquisition of the desirable strain is limited due to lacking of comprehensive genetic manipulation. Herein, a promoter collection for fine-tuning gene expression was achieved. Next, the expression level was enhanced and directed evolution of the global transcriptional factor (IrrE) was applied to enhance cell viability in systems containing more substrate and ethanol, thus contributing to higher production. IrrE promotes a stronger antioxidant defense system, more energy generation, and changed signal transduction. Using a stronger promoter, the enzyme activities were boosted but their positive effects on biotransformation performance were inferior to cell stress tolerance when exposed to challenging systems. Finally, an optimal strain was created by collectively reinforcing cell stress tolerance and catalytic enzyme activity, achieving a yield 261.8% higher relative to the initial situation. Our study provided effective methods for steroid-transforming strains with high efficiency.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wen-Cheng Zhu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shu-Ting Cao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhi-Yi Lu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Meng-Han Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bo Song
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
22
|
Wang L, Wang X, He ZQ, Zhou SJ, Xu L, Tan XY, Xu T, Li BZ, Yuan YJ. Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:193. [PMID: 33292418 PMCID: PMC7706047 DOI: 10.1186/s13068-020-01833-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Stress tolerance is one of the important desired microbial traits for industrial bioprocesses, and global regulatory protein engineering is an efficient approach to improve strain tolerance. In our study, IrrE, a global regulatory protein from the prokaryotic organism Deinococcus radiodurans, was engineered to confer yeast improved tolerance to the inhibitors in lignocellulose hydrolysates or high temperatures. RESULTS Three IrrE mutations were developed through directed evolution, and the expression of these mutants could improve the yeast fermentation rate by threefold or more in the presence of multiple inhibitors. Subsequently, the tolerance to multiple inhibitors of single-site mutants based on the mutations from the variants were then evaluated, and 11 mutants, including L65P, I103T, E119V, L160F, P162S, M169V, V204A, R244G, Base 824 Deletion, V299A, and A300V were identified to be critical for the improved representative inhibitors, i.e., furfural, acetic acid and phenol (FAP) tolerance. Further studies indicated that IrrE caused genome-wide transcriptional perturbation in yeast, and the mutant I24 led to the rapid growth of Saccharomyces cerevisiae by primarily regulating the transcription level of transcription activators/factors, protecting the intracellular environment and enhancing the antioxidant capacity under inhibitor environments, which reflected IrrE plasticity. Meanwhile, we observed that the expression of the wild-type or mutant IrrE could also protect Saccharomyces cerevisiae from the damage caused by thermal stress. The recombinant yeast strains were able to grow with glucose at 42 ℃. CONCLUSIONS IrrE from Deinococcus radiodurans can be engineered as a tolerance-enhancer for Saccharomyces cerevisiae. Systematic research on the regulatory model and mechanism of a prokaryotic global regulatory factor IrrE to increase yeast tolerance provided valuable insights for the improvements in microbial tolerance to complex industrial stress conditions.
Collapse
Affiliation(s)
- Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu P.R. China
| | - Zhi-Qiang He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Si-Jie Zhou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Li Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Xiao-Yu Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Tao Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| |
Collapse
|
23
|
Luo J, Li X, Zhang J, Feng A, Xia M, Zhou M. Global regulator engineering enhances bioelectricity generation in Pseudomonas aeruginosa-inoculated MFCs. Biosens Bioelectron 2020; 163:112269. [PMID: 32568691 DOI: 10.1016/j.bios.2020.112269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 01/24/2023]
Abstract
The electricigens with high-electroactivity is essential for resolving the low electricity power output (EPT) of microbial fuel cells (MFCs). However, the manipulation by single functional genes shows limitation because electroactivity is a complex phenotype controlled by multiple genes. Herein, global regulator engineering (GRE) was developed to optimize the electroactivity of an isolated strain (Pseudomonas aeruginosa P3-A-11) using an exogenous global regulator IrrE (ionizing radiation resistance E linkage group) as an object. The GRE was implemented through in vitro random mutagenesis by error-prone PCR and in vivo high-through screening comprised of cultures color assay, PYO measurement and MFCs operation. Four mutants with higher electroactivity were obtained, among which, the mutant 11/M2-59 not only displayed the maximal power density, but also exhibited stronger salt tolerance, consequently showing good performance of MFCs in the presence of salt. Apart from the reduced internal resistance, the increase in phenazines amounts primarily contributed to EPT improvement, which was realized by enhancing the core biosynthesis pathway and affecting other pathways (such as central metabolism pathway, quorum sensing system, regulatory network). Notably, IrrE exerted its positive effect on electroactivity even without native regulators (such as PmpR and RpoS). In addition, the significant fluctuations in expression levels of stress-responsive genes mediated by GRE were closely associated with the enhanced salt tolerance. This work demonstrated that GRE was an effective approach for simultaneously optimizing multiple phenotypes (such as electroactivity and stress tolerance), and thus would provide more opportunities to create high-efficiency electricigens and further promoted the practical application of MFCs.
Collapse
Affiliation(s)
- Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Xiao Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jingmei Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - An Feng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
24
|
Sohn YJ, Kim HT, Baritugo K, Jo SY, Song HM, Park SY, Park SK, Pyo J, Cha HG, Kim H, Na J, Park C, Choi J, Joo JC, Park SJ. Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnol J 2020; 15:e1900489. [DOI: 10.1002/biot.201900489] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Jung Sohn
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hee Taek Kim
- Biobased Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology P.O.Box 107, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Kei‐Anne Baritugo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Seo Young Jo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hye Min Song
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Se Young Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Su Kyeong Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Jiwon Pyo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hyun Gil Cha
- Bio‐based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Hoyong Kim
- Bio‐based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Jeong‐Geol Na
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbumro Mapo‐gu Seoul 04107 Republic of Korea
| | - Chulhwan Park
- Department of Chemical EngineeringKwangwoon University 98‐2, Seokgye‐ro Nowon‐gu Seoul Republic of Korea
| | - Jong‐Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and BiomaterialsChonnam National University Gwangju 61186 Republic of Korea
| | - Jeong Chan Joo
- Biobased Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology P.O.Box 107, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| |
Collapse
|
25
|
Zhu F, San K, Bennett GN. Improved succinate production from galactose‐rich feedstocks by engineeredEscherichia coliunder anaerobic conditions. Biotechnol Bioeng 2020; 117:1082-1091. [DOI: 10.1002/bit.27254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 12/14/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Fayin Zhu
- Department of BioSciences Rice University Houston Texas
| | - Ka‐Yiu San
- Department of Bioengineering Rice University Houston Texas
- Department of Chemical and Biomolecular Engineering Rice University Houston Texas
| | - George N. Bennett
- Department of BioSciences Rice University Houston Texas
- Department of Chemical and Biomolecular Engineering Rice University Houston Texas
| |
Collapse
|
26
|
Sensitive Detection of E. coli in Artificial Seawater by Aptamer-Coated Magnetic Beads and Direct PCR. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ‘One Health’ approach recommended by WHO recognizes the inseparable link between human, animal and environmental health [...]
Collapse
|
27
|
Qi HZ, Wang WZ, He JY, Ma Y, Xiao FZ, He SY. Antioxidative system of Deinococcus radiodurans. Res Microbiol 2019; 171:45-54. [PMID: 31756434 DOI: 10.1016/j.resmic.2019.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Deinococcus radiodurans is famous for its extreme resistance to various stresses such as ionizing radiation (IR), desiccation and oxidative stress. The underlying mechanism of exceptional resistance of this robust bacterium still remained unclear. However, the antioxidative system of D. radiodurans has been considered to be the determinant factor for its unparalleled resistance and protects the proteome during stress, then the DNA repair system and metabolic system exert their functions to restore the cell to normal physiological state. The antioxidative system not only equipped with the common reactive oxygen species (ROS) scavenging enzymes (e.g., catalase and superoxide dismutase) but also armed with a variety of non-enzyme antioxidants (e.g., carotenoids and manganese species). And the small manganese complexes play an important role in the antioxidative system of D. radiodurans. Recent studies have characterized several regulators (e.g., PprI and PprM) in D. radiodurans, which play critical roles in the protection of the bacteria from various stresses. In this review, we offer a panorama of the progress regarding the characteristics of the antioxidative system in D. radiodurans and its application in the future.
Collapse
Affiliation(s)
- Hui-Zhou Qi
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Function Laboratory Center, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Wu-Zhou Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Jun-Yan He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Fang-Zhu Xiao
- Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Shu-Ya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
28
|
Zhang W, Yang Q, Wu M, Liu H, Zhou J, Dong W, Ma J, Jiang M, Xin F. Metabolic Regulation of Organic Acid Biosynthesis in Actinobacillus succinogenes. Front Bioeng Biotechnol 2019; 7:216. [PMID: 31620431 PMCID: PMC6759810 DOI: 10.3389/fbioe.2019.00216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus succinogenes is one of the most promising strains for succinic acid production; however, the lack of efficient genetic tools for strain modification development hinders its further application. In this study, a markerless knockout method for A. succinogenes using in-frame deletion was first developed. The resulting ΔpflA (encode pyruvate formate lyase 1-activating protein) strain displayed distinctive organic acid synthesis capacity under different cultivation modes. Additional acetate accumulation was observed in the ΔpflA strain relative to that of the wild type under aerobic conditions, indicating that acetate biosynthetic pathway was activated. Importantly, pyruvate was completely converted to lactate under anaerobic fermentation. The transcription analysis and enzyme assay revealed that the expression level and specific activity of lactate dehydrogenase (LDH) were significantly increased. In addition, the mRNA expression level of ldh was nearly increased 85-fold compared to that of the wild-type strain during aerobic-anaerobic dual-phase fermentation, resulting in 43.05 g/L lactate. These results demonstrate that pflA plays an important role in the regulation of C3 flux distribution. The deletion of pflA leads to the improvement of acetic acid production under aerobic conditions and activates lactic acid biosynthesis under anaerobic conditions. This study will help elaborate the mechanism governing organic acid biosynthesis in A. succinogenes.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Qiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Min Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Haojie Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| |
Collapse
|
29
|
Lv Z, Zhou J, Zhang Y, Zhou X, Xu N, Xin F, Ma J, Jiang M, Dong W. Techniques for enhancing the tolerance of industrial microbes to abiotic stresses: A review. Biotechnol Appl Biochem 2019; 67:73-81. [PMID: 31206805 DOI: 10.1002/bab.1794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
The diversity of stress responses and survival strategies evolved by microorganism enables them to survive and reproduce in a multitude of harsh environments, whereas the discovery of the underlying resistance genes or mechanisms laid the foundation for the directional enhancement of microbial tolerance to abiotic stresses encountered in industrial applications. Many biological techniques have been developed for improving the stress resistance of industrial microorganisms, which greatly benefited the bacteria on which industrial production is based. This review introduces the main techniques for enhancing the resistance of microorganisms to abiotic stresses, including evolutionary engineering, metabolic engineering, and process engineering, developed in recent years. In addition, we also discuss problems that are still present in this area and offer directions for future research.
Collapse
Affiliation(s)
- Ziyao Lv
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Yue Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Xinhai Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, Peoples' Republic of China
| |
Collapse
|
30
|
Production of succinate by recombinant Escherichia coli using acetate as the sole carbon source. 3 Biotech 2018; 8:421. [PMID: 30305992 DOI: 10.1007/s13205-018-1456-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Acetate is a potential low-cost carbon source that can be generated by biological and chemical processes. In this study, deletion of sdhAB encoding succinate dehydrogenase, iclR encoding the isocitrate lyase regulator, and maeB encoding the malic enzyme, and overexpression of acs encoding acetyl-CoA synthetase, gltA encoding citrate synthase, and acnB encoding aconitate hydratase in the wild-type Escherichia coli MG1655 strain yielded the recombinant E. coli strain WCY-7, which could synthesize succinate from acetate. After 48 h batch fermentation, this strain accumulated 11.23 mM succinate from 50 mM sodium acetate. This work indicates that microbial fermentation using acetate as the sole carbon source may be a suitable route to produce high yields of the valuable chemicals.
Collapse
|
31
|
Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M. Current advance in bioconversion of methanol to chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:260. [PMID: 30258494 PMCID: PMC6151904 DOI: 10.1186/s13068-018-1265-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/19/2018] [Indexed: 05/25/2023]
Abstract
Methanol has become an attractive substrate for biotechnological applications due to its abundance and low-price. Chemicals production from methanol could alleviate the environmental concerns, costs, and foreign dependency associated with the use of petroleum feedstock. Recently, a growing fraction of research has focused on metabolites production using methanol as sole carbon and energy source or as co-substrate with carbohydrates by native or synthetic methylotrophs. In this review, we summarized the recent significant progress in native and synthetic methylotrophs and their application for methanol bioconversion into various products. Moreover, strategies for improvement of methanol metabolism and new perspectives on the generation of desired products from methanol were also discussed, which will benefit for the development of a methanol-based economy.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Meng Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
| | - Qiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Pukou District Nanjing, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800 People’s Republic of China
| |
Collapse
|