1
|
Li J, Liu R, Liu X, Yang Q, Zhang S. Organic matter removal and CH 4 production performance recoveries and microbial community changes in upflow anaerobic biofilter after long term starvation. J Environ Sci (China) 2025; 156:735-746. [PMID: 40412971 DOI: 10.1016/j.jes.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 05/27/2025]
Abstract
The organic matter in municipal wastewater can be recovered by anaerobic biological treatment, making further resource utilization of municipal wastewater, which meets the requirements of sustainable development. An upflow anaerobic biofilter (UAF) treating municipal wastewater was established. The performances of stable operation and recovery operation of UAF after long-term starvation (234 days) and the changes of microbial community structure were researched. By gradually reducing HRT from 10 h to 4 h, the UAF achieved the treatment performance of pre-starvation after only 50 days recovery operation, in which total COD and soluble COD removal efficiencies reached 66 % and 69 %, respectively, and the CH4 production rate was 0.21 L CH4/g CODremoval. The recovery performance of UAF after long term starvation showed that the recovery sequence of three main anaerobic processes was hydrolytic acidification, hydrogen-acetate production and methanogenesis. High-throughput sequencing results indicated that dominant bacteria associated with hydrolytic acidification process changed from Moduliflexaceae and Trichococcus in stable operation stage to Trichococcus and Romboutsia in recovery stage. Besides, the dominant archaea changed from Methanosaeta (hydrotrophic methanogens) to Methanobacterium (acetotrophic methanogens), showing Methanobacterium was more resistant to starvation environment. Therefore, by using UAF for biological treatment of organic matter, even after a long period of starvation, the system would not be completely destroyed. Once it resumed operation, the treatment performance could be restored in a short period of time.
Collapse
Affiliation(s)
- Jianmin Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Beijing Enterprises Water Group Limited, Beijing 100102, China
| | - Runyu Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; China IPPR International Engineering Co., Ltd., Beijing 100089, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shiyong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Ji X, Chen Z, Shen Y, Liu L, Chen R, Zhu J. Hexanoic acid production and microbial community in anaerobic fermentation: Effects of inorganic carbon addition. BIORESOURCE TECHNOLOGY 2024; 403:130881. [PMID: 38788806 DOI: 10.1016/j.biortech.2024.130881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Carbon dioxide (CO2) plays a crucial role in carbon chain elongation with ethanol serving as an electron donor. In this study, the impacts of various carbonates on CO2 concentration, hexanoic acid production, and microbial communities during ethanol-butyric acid fermentation were explored. The results showed that the addition of MgCO3 provided sustained inorganic carbon and facilitated interspecific electron transfer, thereby increasing hexanoic acid yield by 58%. MgCO3 and NH4HCO3 inhibited the excessive ethanol oxidation and decreased the yield of acetic acid by 51% and 42%, respectively. The yields of hexanoic acid and acetic acid in the CaCO3 group increased by 19% and 15%, respectively. The NaHCO3 group exhibited high headspace CO2 concentration, promoting acetogenic bacteria enrichment while reducing the abundance of Clostridium_sensu_stricto_12. The batch addition of NaHCO3 accelerated the synthesis of hexanoic acid and increased its production by 26%. The relative abundance of Clostridium_sensus_stricto_12 was positively correlated with hexanoic acid production.
Collapse
Affiliation(s)
- Xiaofeng Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Zhengang Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yingmeng Shen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Longlong Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
3
|
Dauptain K, Trably E, Santa-Catalina G, Carrere H. Biomass acid pretreatment impacts on metabolic routes and bacterial composition of dark fermentation process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:211-219. [PMID: 38648723 DOI: 10.1016/j.wasman.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Complex organic matter represents a suitable substrate to produce hydrogen through dark fermentation (DF) process. To increase H2 yields, pretreatment technology is often required. The main objective of the present work was to investigate thermo-acid pretreatment impact on sugar solubilization and biotic parameters of DF of sorghum or organic fraction of municipal solid waste (OFMSW). Biochemical hydrogen potential tests were carried out without inoculum using raw or thermo-acid pretreated substrates. Results showed an improvement in sugar solubilization after thermo-acid pretreatments. Pretreatments led to similar DF performances (H2 and total metabolite production) compared to raw biomasses. Nevertheless, they were responsible for bacterial shifts from Enterobacteriales towards Clostridiales and Bacillales as well as metabolic changes from acetate towards butyrate or ethanol. The metabolic changes were attributed to the biomass pretreatment impact on indigenous bacteria as no change in the metabolic profile was observed after performing thermo-acid pretreatments on irradiated OFMSW (inactivated indigenous bacteria and inoculum addition). Consequently, acid pretreatments were inefficient to improve DF performances but led to metabolic and bacterial community changes due to their impact on indigenous bacteria.
Collapse
Affiliation(s)
- K Dauptain
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France
| | - E Trably
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France
| | - G Santa-Catalina
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France
| | - H Carrere
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France.
| |
Collapse
|
4
|
Chen R, Zhou X, Huang L, Ji X, Chen Z, Zhu J. Effects of yeast inoculation methods on caproic acid production and microbial community during anaerobic fermentation of Chinese cabbage waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120632. [PMID: 38531129 DOI: 10.1016/j.jenvman.2024.120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
To provide a sufficient supply of electron donors for the synthesis of caproic acid, yeast fermentation was employed to increase ethanol production in the anaerobic fermentation of Chinese cabbage waste (CCW). The results showed that the caproic acid yield of CCW with ethanol pre-fermentation was 7750.3 mg COD/L, accounting for 50.2% of the total volatile fatty acids (TVFAs), which was 32.5% higher than that of the CCW without yeast inoculation. The synchronous fermentation of yeast and seed sludge significantly promoted the growth of butyric acid consuming bacterium Bacteroides, resulting in low yields of butyric acid and caproic acid. With yeast inoculation, substrate competition for the efficient ethanol conversion in the early stage of acidogenic fermentation inhibited the hydrolysis and acidfication. Without yeast inoculation, the rapid accumulation of TVFAs severely inhibited the growth of Bacteroidetes. In the reactor with ethanol pre-fermentation, the key microorganism for caproic acid production, Clostridium_sensu_stricto_12, was selectively enriched.
Collapse
Affiliation(s)
- Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaonan Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaofeng Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zhengang Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
5
|
Ling Y, Li L, Zhou C, Li Z, Xu J, Shan Q, Hei D, Shi C, Zhang J, Jia W. Mechanism of improving anaerobic fermentation performance of kitchen waste pretreated by ionizing irradiation-part 1: rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25287-25298. [PMID: 38468001 DOI: 10.1007/s11356-024-32731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Ionizing irradiation, as a new pretreatment method for the anaerobic fermentation of organic pollutants, is featured with fast reaction speed, good treatment effect, no need to add any chemical reagents, and no secondary pollution. This study explores the mechanism of improving anaerobic fermentation performance of rice samples pretreated by cobalt-60 gamma irradiation through the influence on fermentation substrate, acidogenic phase and methanogenic phase. The results reveal that the soluble chemical oxygen demand of the irradiated rice sample at an absorbed dose of 9.6 kGy increases by 12.4 times due to the dissolution of small molecules of fat-soluble organic matter. The yield of biogas in the acidogenic phase increases by 22.2% with a slight increase in hydrogen gas content. The yield of biogas and methane gas content in the methanogenic phase increases by 27.3% and 15%, respectively. Microbial genome analysis, performed with MiSeq high-throughput sequencing and metagenomic methods, suggests the microbial abundance and metabolic functions in the anaerobic fermentation process change significantly as a result of the pretreatment by gamma irradiation.
Collapse
Affiliation(s)
- Yongsheng Ling
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215021, China
| | - Lingxi Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Chao Zhou
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Zhen Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jiahao Xu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Qing Shan
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Daqian Hei
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Chao Shi
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jiandong Zhang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wenbao Jia
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215021, China.
| |
Collapse
|
6
|
Baleeiro FCF, Varchmin L, Kleinsteuber S, Sträuber H, Neumann A. Formate-induced CO tolerance and methanogenesis inhibition in fermentation of syngas and plant biomass for carboxylate production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:26. [PMID: 36805806 PMCID: PMC9936662 DOI: 10.1186/s13068-023-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/29/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Production of monocarboxylates using microbial communities is highly dependent on local and degradable biomass feedstocks. Syngas or different mixtures of H2, CO, and CO2 can be sourced from biomass gasification, excess renewable electricity, industrial off-gases, and carbon capture plants and co-fed to a fermenter to alleviate dependence on local biomass. To understand the effects of adding these gases during anaerobic fermentation of plant biomass, a series of batch experiments was carried out with different syngas compositions and corn silage (pH 6.0, 32 °C). RESULTS Co-fermentation of syngas with corn silage increased the overall carboxylate yield per gram of volatile solids (VS) by up to 29% (0.47 ± 0.07 g gVS-1; in comparison to 0.37 ± 0.02 g gVS-1 with a N2/CO2 headspace), despite slowing down biomass degradation. Ethylene and CO exerted a synergistic effect in preventing methanogenesis, leading to net carbon fixation. Less than 12% of the electrons were misrouted to CH4 when either 15 kPa CO or 5 kPa CO + 1.5 kPa ethylene was used. CO increased the selectivity to acetate and propionate, which accounted for 85% (electron equivalents) of all products at 49 kPa CO, by favoring lactic acid bacteria and actinobacteria over n-butyrate and n-caproate producers. Inhibition of n-butyrate and n-caproate production by CO happened even when an inoculum preacclimatized to syngas and lactate was used. Intriguingly, the effect of CO on n-butyrate and n-caproate production was reversed when formate was present in the broth. CONCLUSIONS The concept of co-fermenting syngas and plant biomass shows promise in three aspects: by making anaerobic fermentation a carbon-fixing process, by increasing the yields of short-chain carboxylates (propionate and acetate), and by minimizing electron losses to CH4. Moreover, a model was proposed for how formate can alleviate CO inhibition in certain acidogenic bacteria. Testing the fermentation of syngas and plant biomass in a continuous process could potentially improve selectivity to n-butyrate and n-caproate by enriching chain-elongating bacteria adapted to CO and complex biomass.
Collapse
Affiliation(s)
- Flávio C F Baleeiro
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Lukas Varchmin
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Anke Neumann
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany.
| |
Collapse
|
7
|
Basak B, Kumar R, Bharadwaj AVSLS, Kim TH, Kim JR, Jang M, Oh SE, Roh HS, Jeon BH. Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. BIORESOURCE TECHNOLOGY 2023; 369:128413. [PMID: 36462762 DOI: 10.1016/j.biortech.2022.128413] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The inherent recalcitrance of lignocellulosic biomass is a significant barrier to efficient lignocellulosic biorefinery owing to its complex structure and the presence of inhibitory components, primarily lignin. Efficient biomass pretreatment strategies are crucial for fragmentation of lignocellulosic biocomponents, increasing the surface area and solubility of cellulose fibers, and removing or extracting lignin. Conventional pretreatment methods have several disadvantages, such as high operational costs, equipment corrosion, and the generation of toxic byproducts and effluents. In recent years, many emerging single-step, multi-step, and/or combined physicochemical pretreatment regimes have been developed, which are simpler in operation, more economical, and environmentally friendly. Furthermore, many of these combined physicochemical methods improve biomass bioaccessibility and effectively fractionate ∼96 % of lignocellulosic biocomponents into cellulose, hemicellulose, and lignin, thereby allowing for highly efficient lignocellulose bioconversion. This review critically discusses the emerging physicochemical pretreatment methods for efficient lignocellulose bioconversion for biofuel production to address the global energy crisis.
Collapse
Affiliation(s)
- Bikram Basak
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - A V S L Sai Bharadwaj
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA Campus, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA Campus, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si 200-701, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Yin Y, Wang J. Enhanced medium-chain fatty acids production from Cephalosporin C antibiotic fermentation residues by ionizing radiation pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129714. [PMID: 35944433 DOI: 10.1016/j.jhazmat.2022.129714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic fermentation residues (AFRs) have been classified as hazardous waste in China. Anaerobic fermentation may be a good approach for AFRs treatment, through which value-added chemicals could be obtained simultaneously. This study firstly explored medium-chain fatty acids (MCFAs) production from AFRs through two-stage anaerobic fermentation, and gamma radiation was adopted for AFRs pretreatment. The results showed that both antibiotics removal and MCFAs production from AFRs were significantly promoted by gamma radiation pretreatment. No residual Cephalosporin C (CEP-C) was detected in gamma radiation treated groups after fermentation. Highest MCFAs concentration of 90.55 mmol C/L was obtained in 50 kGy treated group, which was 2.22 times of the control group. Genera that were positively correlated with MCFAs production were enriched in gamma radiation treated groups, like genus Paraclostridium, Terrisporobacter, Caproiciproducens and Sporanaerobacter, while genera that were negatively correlated with MCFAs production were diminished during the chain elongation process, like genus Bacteroides and NK4A214_group. Enzymes analysis suggested that the promoted MCFAs production was induced by the enrichment of functional enzymes involved in Acetyl-CoA formation and RBO pathway. This work suggested that gamma radiation pretreatment and two-stage anaerobic fermentation could achieve the dual benefits of AFRs treatment and value-added chemicals recovery.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Cao J, Xu C, Zhou R, Duan G, Lin A, Yang X, You S, Zhou Y, Yang G. Potato peel waste for fermentative biohydrogen production using different pretreated culture. BIORESOURCE TECHNOLOGY 2022; 362:127866. [PMID: 36049714 DOI: 10.1016/j.biortech.2022.127866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
How to manage potato peel waste sustainably has been an issue faced by the potato industry. This work explored the feasibility of potato peel waste for biohydrogen production via dark fermentation, and investigated the effects of various inoculum enrichment methods (acid, aeration, heat-shock and base) on the process efficiency. It was observed that the hydrogen production showed a great variation when using various inoculum enrichment methods, and the aeration enriched inoculum obtained the maximum hydrogen yield of 71.0 mL/g-VSadded and VS removal of 28.9 %. Different enriched cultures also exhibited huge variations in the bacterial community structure and metabolic pathway. The highest abundance of Clostridium sensu stricto fundamentally contributed to the highest process efficiency for the fermenter inoculated with aeration treated culture. This work puts forward a promising strategy for recycling potato peel waste, and fills a gap in the optimal inoculum preparation method for biohydrogen fermentation of potato peel waste.
Collapse
Affiliation(s)
- Jinman Cao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Rui Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow G12 8QQ, UK
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Yang G, Wang J. Enhanced antibiotic degradation and hydrogen production of deacetoxycephalosporin C fermentation residue by gamma radiation coupled with nano zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127439. [PMID: 34638079 DOI: 10.1016/j.jhazmat.2021.127439] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic fermentation residue (AFR) has been categorized as hazardous waste in China. Anaerobic biohydrogen fermentation may be a promising technology for handling AFR, which could achieve dual goals of waste treatment and clean energy production at the same time. However, the low hydrogen yield and low removal efficiency of residual antibiotics are two major factors limiting the AFR biohydrogen fermentation process. This work firstly applied gamma radiation (50 kGy) to remove the residual antibiotic in AFR and improve the bioavailability of organic matters, then adding nano zero-valent iron (nZVI) (100-1000 mg/L) to further enhance the AFR biohydrogen fermentation performance. Results showed that residual deacetoxycephalosporin C in AFR was removed with a high efficiency of 98.6%, and hydrogen yield achieved 20.45 mL/g-VSadded with the combined approach of gamma radiation pretreatment and 500 mg/L nZVI addition, which was 139.2% higher compared to the control experimental result. The combined approach also promoted the biohydrogen production rate, decreased the lag phase of hydrogen production, and increased the organics utilization. Microbiological analysis revealed that highly efficient hydrogen-producing genera Clostridium sensu stricto were enriched in much higher abundance with the combined approach, which might be the fundamental mechanism for the enhanced AFR fermentation performance.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
11
|
Li X, Sui K, Zhang J, Liu X, Xu Q, Wang D, Yang Q. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150347. [PMID: 34563898 DOI: 10.1016/j.scitotenv.2021.150347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Rhamnolipid (RL), as an environmentally compatible biosurfactant, has been used to enhance waste activated sludge (WAS) fermentation. However, the effect of RL on hydrogen accumulation in anaerobic fermentation remains unclear. Therefore, this work targets to investigate the mechanism of RL-based dark fermentation system on hydrogen production of WAS. It was found that the maximum yield of hydrogen increased from 1.76 ± 0.26 to 11.01 ± 0.30 mL/g VSS (volatile suspended solids), when RL concentration increased from 0 to 0.10 g/g TSS (total suspended solids). Further enhancement of RL level to 0.12 g/g TSS slightly reduced the production to 10.80 ± 0.28 mL/g VSS. Experimental findings revealed that although RL could be degraded to generate hydrogen, it did not play a major role in enhancing hydrogen accumulation. Mechanism analysis suggested that RL decreased the surface tension between sludge liquid and hydrophobic compounds, thus accelerating the solubilization of WAS, improving the proportion of biodegradable substances which could be used for subsequent hydrogen production. Regardless of the fact that adding RL suppressed all the fermentation processes, the inhibition effect of processes associated with hydrogen consumption was much severer than that of hydrogen production. Further investigations of microbial community revealed that RL enriched the relative abundance of hydrogen producers e.g., Romboutsia but reduced that of hydrogen consumers like Desulfobulbus and Caldisericum.
Collapse
Affiliation(s)
- Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Kexin Sui
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
12
|
Yu N, Guo B, Liu Y. Shaping biofilm microbiomes by changing GAC location during wastewater anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146488. [PMID: 33774284 DOI: 10.1016/j.scitotenv.2021.146488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The addition of granular activated carbon (GAC) to up-flow anaerobic sludge blanket (UASB) reactors treating synthetic wastewater enhanced methane production by stimulating direct interspecies electron transfer (DIET). A modified UASB reactor with GAC packed in plastic carriers that allowed the GAC to float in the upper reactor zone achieved enhanced performance compared to a UASB reactor with GAC settled at the bottom of the reactor. Microbial communities in the biofilms developed on settled or floated GAC were compared. Methanosarcina (56.3-73.3%) dominated the floated-GAC biofilm whereas Methanobacterium (84.9-85.1%) was greatly enriched in the settled-GAC biofilm. Methanospirillum and Methanocorpusculum were enriched in the floated-GAC biofilm (8.8-19.8% and 5.1-9.5%, respectively), but only existed in low abundances in the settled-GAC biofilm (3.4-3.6% and 0-0.4%, respectively). The floated GAC developed bacterial communities with higher diversity and more syntrophic bacteria enrichments on its surface, including Geobacter, Smithella, and Syntrophomonas, than the settled-GAC biofilm. Common hydrogen-donating syntrophs and hydrogenotrophic archaea, Methanospirillum and Methanoregula, were identified as potential electro-active microorganisms related to DIET.
Collapse
Affiliation(s)
- Najiaowa Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
13
|
Yin X, Wei L, Pan X, Liu C, Jiang J, Wang K. The Pretreatment of Lignocelluloses With Green Solvent as Biorefinery Preprocess: A Minor Review. FRONTIERS IN PLANT SCIENCE 2021; 12:670061. [PMID: 34168668 PMCID: PMC8218942 DOI: 10.3389/fpls.2021.670061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 06/02/2023]
Abstract
Converting agriculture and forestry lignocellulosic residues into high value-added liquid fuels (ethanol, butanol, etc.), chemicals (levulinic acid, furfural, etc.), and materials (aerogel, bioresin, etc.) via a bio-refinery process is an important way to utilize biomass energy resources. However, because of the dense and complex supermolecular structure of lignocelluloses, it is difficult for enzymes and chemical reagents to efficiently depolymerize lignocelluloses. Strikingly, the compact structure of lignocelluloses could be effectively decomposed with a proper pretreatment technology, followed by efficient separation of cellulose, hemicellulose and lignin, which improves the conversion and utilization efficiency of lignocelluloses. Based on a review of traditional pretreatment methods, this study focuses on the discussion of pretreatment process with recyclable and non-toxic/low-toxic green solvents, such as polar aprotic solvents, ionic liquids, and deep eutectic solvents, and provides an outlook of the industrial application prospects of solvent pretreatment.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Linshan Wei
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Xueyuan Pan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Chao Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| |
Collapse
|
14
|
Zhang J, Shao Y, Wang H, Liu G, Qi L, Xu X, Liu S. Current operation state of wastewater treatment plants in urban China. ENVIRONMENTAL RESEARCH 2021; 195:110843. [PMID: 33548300 DOI: 10.1016/j.envres.2021.110843] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plants (WWTPs) in urban China generally face operational difficulties. To comprehensively analyze the current operation status and determine the factors that caused difficulties in urban domestic WWTPs, we conducted a questionnaire survey, and 18 operating conditions of scale-level WWTPs in seven regions in China were investigated. The research results showed that, of the 467-urban domestic WWTPs surveyed in China, approximately 63.17% of the WWTPs' hydraulic loading rates (HLRs) are greater than 80%, 67.02% of the WWTPs have mixed liquor suspended solids (MLSS) concentrations greater than 4000 mg/L, and 95.93% of the WWTPs' mixed liquor volatile suspended solids to mixed liquor suspended solids (MLVSS/MLSS) ratios are lower than 0.7. The WWTP energy consumption accounts for approximately 1% of the national electricity consumption, and approximately 100,000 tons of various chemicals are consumed every year. A high HLR, a high activated sludge concentration and low sludge activity, design value mismatches with actual values, high energy and material consumption, etc. have become the main operational difficulties of urban domestic WWTPs. In this study, the main barriers that hinder improving the operating efficiency of WWTPs were investigated, the causes of operational dilemmas were analyzed, and pathways were jointly explored to solve them. This study may provide valuable implications for industry practitioners with a comprehensive grasp of the industry's current status and related policy formulation.
Collapse
Affiliation(s)
- Jingbing Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Yuting Shao
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Guohua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Xianglong Xu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Shuai Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
15
|
Dauptain K, Schneider A, Noguer M, Fontanille P, Escudie R, Carrere H, Trably E. Impact of microbial inoculum storage on dark fermentative H 2 production. BIORESOURCE TECHNOLOGY 2021; 319:124234. [PMID: 33254457 DOI: 10.1016/j.biortech.2020.124234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Complex organic substrates represent an important and relevant feedstock for producing hydrogen by Dark Fermentation (DF). Usually, an external microbial inoculum originated from various natural environments is added to seed the DF reactors. However, H2 yields are significantly impacted by the inoculum origin and the storage conditions as microbial community composition can fluctuate. This study aims to determine how the type and time of inoculum storage can impact the DF performances. Biochemical Hydrogen Potential tests were carried out using three substrates (glucose, the organic fraction of municipal solid waste, and food waste), inocula of three different origins, different storage conditions (freezing or freeze-drying) and duration. As a result, H2 production from glucose with the differently stored inocula was significantly impacted (positively or negatively) and was inoculum-origin-dependent. For complex substrates, hydrogen yields with the stored inocula were not statistically different from the fresh inocula, offering the possibility to store an inoculum.
Collapse
Affiliation(s)
- K Dauptain
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - A Schneider
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - M Noguer
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - P Fontanille
- Université de Clermont Auvergne, Institut Pascal, TSA 60026, 63178 Aubière, France
| | - R Escudie
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - H Carrere
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - E Trably
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France.
| |
Collapse
|
16
|
Antonopoulou G. Designing Efficient Processes for Sustainable Bioethanol and Bio-Hydrogen Production from Grass Lawn Waste. Molecules 2020; 25:molecules25122889. [PMID: 32586042 PMCID: PMC7355486 DOI: 10.3390/molecules25122889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/04/2022] Open
Abstract
The effect of thermal, acid and alkali pretreatment methods on biological hydrogen (BHP) and bioethanol production (BP) from grass lawn (GL) waste was investigated, under different process schemes. BHP from the whole pretreatment slurry of GL was performed through mixed microbial cultures in simultaneous saccharification and fermentation (SSF) mode, while BP was carried out through the C5yeast Pichia stipitis, in SSF mode. From these experiments, the best pretreatment conditions were determined and the efficiencies for each process were assessed and compared, when using either the whole pretreatment slurry or the separated fractions (solid and liquid), the separate hydrolysis and fermentation (SHF) or SSF mode, and especially for BP, the use of other yeasts such as Pachysolen tannophilus or Saccharomyces cerevisiae. The experimental results showed that pretreatment with 10 gH2SO4/100 g total solids (TS) was the optimum for both BHP and BP. Separation of solid and liquid pretreated fractions led to the highest BHP (270.1 mL H2/g TS, corresponding to 3.4 MJ/kg TS) and also BP (108.8 mg ethanol/g TS, corresponding to 2.9 MJ/kg TS) yields. The latter was achieved by using P. stipitis for the fermentation of the hydrolysate and S. serevisiae for the solid fraction fermentation, at SSF.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, 26504 Patras, Greece
| |
Collapse
|
17
|
Yan X, Cheng JR, Wang YT, Zhu MJ. Enhanced lignin removal and enzymolysis efficiency of grass waste by hydrogen peroxide synergized dilute alkali pretreatment. BIORESOURCE TECHNOLOGY 2020; 301:122756. [PMID: 31981908 DOI: 10.1016/j.biortech.2020.122756] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Pretreatment process plays a key role in biofuel production from lignocellulosic feedstocks. A study on dilute NaOH pretreatment supplemented with H2O2 under mild condition was conducted to overcome the recalcitrance of grass waste (GW). The optimized process could selectively increase lignin removal (73.2%), resulting in high overall recovery of holocellulose (73.8%) as well as high enzymolysis efficiency (83.5%) compared to H2O2 or NaOH pretreatment. The analyses by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) revealed that supplementary H2O2 disrupted the structure of GW to facilitate the removal of lignin by NaOH, and exhibited synergistic effect on lignin removal and enzymolysis with dilute NaOH. Moreover, high titer of ethanol (100.7 g/L) was achieved by SSCF on 30% (w/v) pretreated GW loading. The present study suggests that the established synergistic pretreatment is a simple, efficient, and promising process for GW biorefinery.
Collapse
Affiliation(s)
- Xing Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China.
| | - Jing-Rong Cheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China.
| |
Collapse
|
18
|
Antonopoulou G, Vayenas D, Lyberatos G. Biogas Production from Physicochemically Pretreated Grass Lawn Waste: Comparison of Different Process Schemes. Molecules 2020; 25:molecules25020296. [PMID: 31940836 PMCID: PMC7024254 DOI: 10.3390/molecules25020296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
Various pretreatment methods, such as thermal, alkaline and acid, were applied on grass lawn (GL) waste and the effect of each pretreatment method on the Biochemical Methane Potential was evaluated for two options, namely using the whole slurry resulting from pretreatment or the separate solid and liquid fractions obtained. In addition, the effect of each pretreatment on carbohydrate solubilization and lignocellulossic content fractionation (to cellulose, hemicellulose, lignin) was also evaluated. The experimental results showed that the methane yield was enhanced with alkaline pretreatment and, the higher the NaOH concentration (20 g/100 gTotal Solids (TS)), the higher was the methane yield observed (427.07 L CH4/kg Volatile Solids (VS), which was almost 25.7% higher than the BMP of the untreated GL). Comparing the BMP obtained under the two options, i.e., that of the whole pretreatment slurry with the sum of the BMPs of both fractions, it was found that direct anaerobic digestion without separation of the pretreated biomass was favored, in almost all cases. A preliminary energy balance and economic assessment indicated that the process could be sustainable, leading to a positive net heat energy only when using a more concentrated pretreated slurry (i.e., 20% organic loading), or when applying NaOH pretreatment at a lower chemical loading.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- Correspondence: ; Tel.: +30-26-1096-5318
| | - Dimitrios Vayenas
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- Department of Chemical Engineering, University of Patras, GR 26500 Patras, Greece
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
19
|
Nabi M, Zhang G, Zhang P, Tao X, Wang S, Ye J, Zhang Q, Zubair M, Bao S, Wu Y. Contribution of solid and liquid fractions of sewage sludge pretreated by high pressure homogenization to biogas production. BIORESOURCE TECHNOLOGY 2019; 286:121378. [PMID: 31048265 DOI: 10.1016/j.biortech.2019.121378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 05/21/2023]
Abstract
High pressure homogenization (HPH) pretreatment can effectively enhance anaerobic sludge digestion. In order to understand the corresponding mechanisms, different homogenization pressures were applied on sewage sludge, and solid and liquid fractions were separately digested to clarify contribution of solid and liquid fractions to biogas production. Results showed that the methane was mainly produced from solid fraction, and methane yield was increased with the increase of pretreatment pressure. The biogas and methane production from sludge (digested without solid-liquid separation) was 17% and 45% higher than the sum of that from solid and liquid fractions (digested separately) under a pressure of 40 MPa, respectively. This indicated that the sludge liquid fraction synergistically improved the biodegradation of sludge solids. The improvement of anaerobic digestion was attributed to organic release by sludge disintegration, sludge disruption and further increase of particle surface area. The methane production was linear with effectiveness of HPH pretreatment.
Collapse
Affiliation(s)
- Mohammad Nabi
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China; College of Environmental Science & Engineering, Hunan University, Changsha 410082, China.
| | - Xue Tao
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Siqi Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Junpei Ye
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qian Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Muhammad Zubair
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuai Bao
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Wu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| |
Collapse
|
20
|
Yu J, Huang Z, Wu P, Zhao M, Miao H, Liu C, Ruan W. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia. BIORESOURCE TECHNOLOGY 2019; 284:398-405. [PMID: 30959377 DOI: 10.1016/j.biortech.2019.03.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The regulation of two-stage caproate fermentation from fruit and vegetable waste (FVW) via anaerobic microbial consortia was investigated in this study. The results showed the highest caproate production achieved 14.9 g/L at the optimal inoculum to substrate ratio (ISR) of 2:1, ethanol to acid ratio (E/A) of 4:1, and pH of 7.5. The caproate yield and selectivity respectively reached 0.62 g/g and 80.8% (as COD). In acidification stage, an appropriate ISR provided a high conversion efficiency and more acetate formation, which was beneficial to caproate biosynthesis. In caproate production stage, chain elongation performance was sensitive to E/A and pH condition. Butyrate became the main by-product at low E/A or acidic conditions, while excessive ethanol or alkaline condition seriously suppressed substrate conversion. The caproate fermentation was dominated by Clostridium kluyveri. Furthermore, caproate formation was uncoupled with Clostridium kluyveri proliferation, which was mainly generated during the middle and late stages of growth.
Collapse
Affiliation(s)
- Jiangnan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingxing Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Chunmei Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| |
Collapse
|
21
|
Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels. SUSTAINABILITY 2019. [DOI: 10.3390/su11133604] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various methods of physical, chemical and combined physicochemical pre-treatments for lignocellulosic biomass waste valorisation to value-added feedstock/solid fuels for downstream processes in chemical industries have been reviewed. The relevant literature was scrutinized for lignocellulosic waste applicability in advanced thermochemical treatments for either energy or liquid fuels. By altering the overall naturally occurring bio-polymeric matrix of lignocellulosic biomass waste, individual components such as cellulose, hemicellulose and lignin can be accessed for numerous downstream processes such as pyrolysis, gasification and catalytic upgrading to value-added products such as low carbon energy. Assessing the appropriate lignocellulosic pre-treatment technology is critical to suit the downstream process of both small- and large-scale operations. The cost to operate the process (temperature, pressure or energy constraints), the physical and chemical structure of the feedstock after pre-treatment (decomposition/degradation, removal of inorganic components or organic solubilization) or the ability to scale up the pre-treating process must be considered so that the true value in the use of bio-renewable waste can be revealed.
Collapse
|
22
|
Yang G, Wang J. Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2019; 275:10-18. [PMID: 30572258 DOI: 10.1016/j.biortech.2018.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 05/20/2023]
Abstract
In this study, the dilute acid pretreatment combined with ultrasound was applied to improve fermentative hydrogen production from grass. The experimental results indicated that SCOD and soluble carbohydrate contents of grass was improved by 98.6% and 236.9% after the combined treatment, respectively. Surface morphology (SEM and AFM) and crystallinity analysis revealed that the combined pretreatment process could effectively destroyed the biomass structure and increased their surface area. Owing to the increased soluble organics proportion and better enzymatic accessibility of residual solids, the hydrogen yield reached 42.2 mL/g-dry grass after the combined treatment, which was 311.7%, 190.0% and 35.0% higher in comparison with the control, individual ultrasound and acid pretreated groups, respectively. Meanwhile, the combined treatment also increased the substrate utilization efficiency and induced a more efficient fermentation pathway. Bacterial community analysis revealed that more enrichment of Clostridium and less enrichment of Enterococcus contributed to the improved hydrogen production.
Collapse
Affiliation(s)
- Guang Yang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
23
|
Yin Y, Wang J. Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. BIORESOURCE TECHNOLOGY 2018; 268:52-59. [PMID: 30071413 DOI: 10.1016/j.biortech.2018.07.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Suitable pretreatment can effectively enhance the fermentative hydrogen production from algae biomass. In this study, combined microwave-acid pretreatment was applied to disintegrate the biomass of macroalgae L. japonica, and dark fermentation in batch mode was conducted for hydrogen production. The results showed that combining microwave pretreatment at 140 °C and 2450 MHz with 1% H2SO4 for 15 min could effectively disrupt macroalgal cells and release the organic matters, and soluble chemical oxygen demand (SCOD) concentration increased by 1.92-fold and achieved 5.12 g/L. During the fermentation process, both polysaccharides and proteins were consumed. Hydrogen production process was dominated by acetate-type fermentation, and the dominance of genus Clostridium contributed to more efficient hydrogen production. After the pretreatment, hydrogen yield increased from 15 mL/g TSadded to 28 mL/g TSadded, and energy conversion efficiency increased from 9.5% to 23.8%. Combined microwave-acid pretreatment is potential in enhancing hydrogen production from the biomass of L. japonica.
Collapse
Affiliation(s)
- Yanan Yin
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
24
|
Yang G, Wang J. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. BIORESOURCE TECHNOLOGY 2018; 266:413-420. [PMID: 29982065 DOI: 10.1016/j.biortech.2018.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 05/09/2023]
Abstract
This paper investigated the improving mechanisms and microbial community dynamics of using zero-valent iron nanoparticles (Fe0 NPs) in hydrogen fermentation of grass. Results showed that Fe0 NPs supplement improved microbial activity and changed dominant microbial communities from Enterobacter sp. to Clostridium sp., which induced a more efficient metabolic pathway towards higher hydrogen production. Meanwhile, it is also proposed that Fe0 NPs could accelerate electron transfer between ferredoxin and hydrogenase, and promote the activity of key enzymes by the released Fe2+. The maximal hydrogen yield and hydrogen production rate were 64.7 mL/g-dry grass and 12.1 mL/h, respectively at Fe0 NPs dosage of 400 mg/L, which were 73.1% and 128.3% higher compared with the control group. Fe0 NPs also shorten the lag time and facilitated the hydrolysis and utilization of grass. This study demonstrated that Fe0 NPs could effectively improve hydrogen production and accelerate the fermentation process of grass.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
25
|
Yang G, Sun Y, Li L, Lv P, Kong X, Huang D. Hydrolysis dynamics for batch anaerobic digestion of elephant grass. RSC Adv 2018; 8:22670-22675. [PMID: 35539704 PMCID: PMC9081458 DOI: 10.1039/c8ra01115j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
Elephant grass might be a potential source of fine chemical precursors and bioenergy.
Collapse
Affiliation(s)
- Gaixiu Yang
- Guangzhou Institute of Energy Conversion
- Key Laboratory of Renewable Energy
- Guangdong Key Laboratory of New and Renewable Energy Research and Development
- Chinese Academy of Sciences
- Guangzhou 510640
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion
- Key Laboratory of Renewable Energy
- Guangdong Key Laboratory of New and Renewable Energy Research and Development
- Chinese Academy of Sciences
- Guangzhou 510640
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion
- Key Laboratory of Renewable Energy
- Guangdong Key Laboratory of New and Renewable Energy Research and Development
- Chinese Academy of Sciences
- Guangzhou 510640
| | - Pengmei Lv
- Guangzhou Institute of Energy Conversion
- Key Laboratory of Renewable Energy
- Guangdong Key Laboratory of New and Renewable Energy Research and Development
- Chinese Academy of Sciences
- Guangzhou 510640
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion
- Key Laboratory of Renewable Energy
- Guangdong Key Laboratory of New and Renewable Energy Research and Development
- Chinese Academy of Sciences
- Guangzhou 510640
| | - Dalong Huang
- Guangzhou Institute of Energy Conversion
- Key Laboratory of Renewable Energy
- Guangdong Key Laboratory of New and Renewable Energy Research and Development
- Chinese Academy of Sciences
- Guangzhou 510640
| |
Collapse
|