1
|
Gao Q, Zhu F, Wang M, Shao S. A new perspective on the simultaneous removal of nitrogen, tetracycline, and phosphorus by moving bed biofilm reactor under co-metabolic substances. J Environ Sci (China) 2025; 155:431-441. [PMID: 40246478 DOI: 10.1016/j.jes.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 04/19/2025]
Abstract
With the burgeoning growth of aquaculture industry, high concentration of NH4+-N, phosphorus and tetracycline are the prevalent pollutants in aquaculture wastewater posing a significant health risk to aquatic organisms. Therefore, an effective method for treating aquaculture wastewater should be urgently explored. Simultaneous removal of NH4+-N, phosphorus, tetracycline, and chemical oxygen demand (COD) in aquaculture wastewater was developed by moving bed biofilm reactor (MBBR) under co-metabolic substances. The result showed that co-metabolism substances had different effects on MBBR performance, and 79.4 % of tetracycline, 68.2 % of NH4+-N, 61.3 % of total nitrogen, 88.3 % of COD, and 38.1 % of total phosphorus (TP) were synchronously removed with sodium acetate as a co-metabolic carbon source. Protein (PN), polysaccharide (PS), and electron transfer system activity were used to evaluate the MBBR performances, suggesting that PN/PS ratio was 1.48, 0.91, 1.07, 3.58, and 0.79 at phases I-V. Additionally, a mode of tetracycline degradation and TP removal was explored, and the cell apoptosis was evaluated by flow cytometry. The result suggested that 74 %, 83 %, and 83 % of tetracycline were degraded by extracellular extracts, intracellular extracts, and cell debris, and there was no difference between extracts and non-enzyme in TP removal. The ratio of viable and dead cells from biofilm reached 33.3 % and 7.68 % with sodium acetate as a co-metabolic carbon source. Furthermore, Proteobacteria and Bacteroidetes in biofilm were identified as the dominant phyla for tetracycline and nutrients removal. This study provides a new strategy for tetracycline and nutrients removal from aquaculture wastewater through co-metabolism.
Collapse
Affiliation(s)
- Qijuan Gao
- School of Computer and Artificial Intelligence, Hefei Normal University, Hefei 230061, China; Post-doctoral research station of Xie Yuda Tea Co., Ltd., Huangshan, Anhui 245999, China
| | - Fang Zhu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Minghui Wang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China.
| |
Collapse
|
2
|
Zhou S, Li Y, Yang S, Lin L, Deng T, Gan C, An W, Xu M. The role of electroactive biofilms in enhanced para-chlorophenol transformation collaborated with biosynthetic palladium nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126312. [PMID: 40288628 DOI: 10.1016/j.envpol.2025.126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Bioremediation is a cost-effective strategy for decomposition of chlorinated organic contaminants, but its application is often hindered by the generation of toxic chlorinated byproducts. Though the design of functional biofilms, incorporating microbially-inspired catalytic materials, has emerged as a promising solution for tackling the byproducts issues, the microbial mechanisms driving these processes remain inadequately understood. This study demonstrates a hybrid electroactive biofilm (EAB)-palladium nanoparticles (Pd NPs) system that effectively separates the dechlorination and mineralization of para-chlorophenol (4-CP), and most importantly, it provides new insights into the microbial and genetic roles of EABs in this process. Under an applied potential of -0.6 V, Pd NPs via palladate reduction were biogenically synthesized and deposited on the cytomembranes within the biofilm, achieving an 82 % decrease in 4-CP concentration within 48 h. The ultra-performance liquid chromatogram and mass spectrum confirmed that 4-CP was initially dechlorinated to phenol by the biogenic Pd NPs before undergoing further degradation by the biofilm, effectively preventing toxic chlorinated byproducts. The Dechloromonas, Pseudomonas, and Geobacter were identified as predominant genera in the system and the metagenomics analysis noted increased relative abundance of ring-cleavage genes like pcaG, dmpB/xylE, and catA. Importantly, the abundance of dmpB/xylE was primarily associated with Dechloromonas and Pseudomonas, further highlighted that the dmpB/xylE-pathway was important for rapid 4-CP decomposition in the system. This study advances the understanding of EAB-Pd NPs synergy, showcasing an innovative and sustainable approach for the efficient removal of halogenated pollutants.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yanjing Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tongchu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Cuifen Gan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Wenwen An
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
3
|
Li M, Bae S. Exploring the effects of polyethylene and polyester microplastics on biofilm formation, membrane Fouling, and microbial communities in Modified Ludzack-Ettinger-Reciprocation membrane bioreactors. BIORESOURCE TECHNOLOGY 2024; 414:131636. [PMID: 39414168 DOI: 10.1016/j.biortech.2024.131636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Microplastics (MPs) inevitably enter wastewater treatment plants (WWTPs), yet their impacts remain poorly understood. This study investigates the effects of MPs on system performance and membrane fouling in a Modified Ludzack-Ettinger (MLE)-Reciprocation Membrane Bioreactor (rMBR), an energy-efficient alternative to conventional membrane bioreactors. Additionally, the study examines changes in microbial community induced by different types and shapes of MPs-polyethylene (PE) pellets and polyester (PES) fibers- as well as biofilm formation on MPs, using next-generation sequencing. Results revealed that transmembrane pressure (TMP) increased 2-3 times faster in the presence of PE pellets, while TMP remained stable during the PES stage, implying that MP type and shape could influence biofouling behaviors. Furthermore, enhanced nitrate removal was observed in the aerobic tank due to denitrifying biofilm formation on MPs. However, PES MPs reduced nitrate removal efficiency from 99.6 ± 0.3 % to 90.9 ± 7.9 % and decreased the relative abundance of denitrifying bacteria. Numerous taxa showed affinity to PE pellets, including some pathogens, e.g., Norcadia and Mycobacterium. Notably, an uncultured phylum Candidatus Saccharibacteria dominated in membrane biofilm and MPs, reaching up to 37 % relative abundance. This study is the first to explore how different types and shapes of MPs affect membrane bioreactor systems, particularly with respect to microbial community structure and biofilm formation. The findings offer new insights into the influence of MPs on wastewater treatment processes and highlight the significance of the uncultured phylumCandidatus Saccharibacteriain membrane fouling.
Collapse
Affiliation(s)
- Mingcan Li
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungwoo Bae
- Department of Environmental System Engineering, Korea University, South Korea.
| |
Collapse
|
4
|
Chen B, Dong K, Xu Y, Jiang M, Zheng J, Zeng H, Zhang X, Chen Y, Li H. Biodegradation of nitrate and p-bromophenol using hydrogen-based membrane biofilm reactors in parallel. ENVIRONMENTAL TECHNOLOGY 2024; 45:4550-4564. [PMID: 37729639 DOI: 10.1080/09593330.2023.2259091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 09/22/2023]
Abstract
ABSTRACTP-bromophenol (4-BP) is a toxic halogenated phenolic organic compound. The conventional treatment processes for 4-BP elimination are costly and inefficient, with complete mineralization remaining a challenge for water treatment. To overcome these limitations, we investigated the treatment of 4-BP in a membrane biofilm reactor (MBfR) using hydrogen as an electron donor. The pathway of 4-BP degradation within the H2-MBfR was investigated through long-term operational experiments by considering the effect of nitrate and 4-BP concentrations, hydrogen partial pressure, static experiments, and microbial community diversity, which was studied using 16S rRNA. The results showed that H2-MBfR could quickly remove approximately 100% of 4-BP (up to 20 mg/L), with minimal intermediate product accumulation and 10 mg/L of nitrate continuously reduced. The microbial community structure showed that the presence of H2 created an anaerobic environment, and Thauera was the dominant functional genus involved in the degradation of 4-BP. The genes encoding related enzymes were further enhanced. This study provides an economically viable and environmentally friendly bioremediation technique for water bodies that contain 4-BP and nitrates.
Collapse
Affiliation(s)
- Bo Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, People's Republic of China
| | - Minmin Jiang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Junjian Zheng
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Yuchao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, People's Republic of China
| |
Collapse
|
5
|
Yang Y, Liu X, Huang S, Jia J, Wang C, Hu L, Li K, Deng H. Effects of Wildfire on Soil CO 2 Emission and Bacterial Community in Plantations. Microorganisms 2024; 12:1666. [PMID: 39203508 PMCID: PMC11357302 DOI: 10.3390/microorganisms12081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
In order to study the effects of wildfires on soil carbon dioxide (CO2) emissions and microbial communities in planted forests, Pinus massoniana Lamb. and Cunninghamia lanceolata (Lamb.) Hook. forests were selected as the research subjects. Through a culture test with 60 days of indoor constant temperature, the soil physical and chemical properties, organic carbon mineralization, organic carbon components, enzyme activity, and microbial community structure changes of the two plantations after fire were analyzed. The results showed that wildfires significantly reduced soil CO2 emissions from the Pinus massoniana forests and Cunninghamia lanceolata forests by 270.67 mg·kg-1 and 470.40 mg·kg-1, respectively, with Cunninghamia lanceolata forests exhibiting the greatest reduction in soil CO2 emissions compared to unburned soils. Bioinformatics analysis revealed that the abundance of soil Proteobacteria in the Pinus massoniana and Cunninghamia lanceolata forests decreased by 6.00% and 4.55%, respectively, after wildfires. Additionally, redundancy analysis indicated a significant positive correlation between Proteobacteria and soil CO2 emissions, suggesting that the decrease in Proteobacteria may inhibit soil CO2 emissions. The Cunninghamia lanceolata forests exhibited a significant increase in soil available nutrients and inhibition of enzyme activities after the wildfire. Additionally, soil CO2 emissions decreased more, indicating a stronger adaptive capacity to environmental changes following the wildfire. In summary, wildfire in the Cunninghamia lanceolata forests led to the most pronounced reduction in soil CO2 emissions, thereby mitigating soil carbon emissions in the region.
Collapse
Affiliation(s)
- Yu Yang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; (Y.Y.); (X.L.); (S.H.); (H.D.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Xuehui Liu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; (Y.Y.); (X.L.); (S.H.); (H.D.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Shilin Huang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; (Y.Y.); (X.L.); (S.H.); (H.D.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Jinchen Jia
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China; (J.J.); (C.W.)
| | - Chuangye Wang
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China; (J.J.); (C.W.)
| | - Lening Hu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; (Y.Y.); (X.L.); (S.H.); (H.D.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Ke Li
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China; (J.J.); (C.W.)
| | - Hua Deng
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; (Y.Y.); (X.L.); (S.H.); (H.D.)
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
6
|
Alshammari KF. Recent advances of piezo-catalysis and photocatalysis for efficient environmental remediation. LUMINESCENCE 2024; 39:e4808. [PMID: 38890122 DOI: 10.1002/bio.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The efficient degradation of organic pollutants in diverse environmental matrices can be achieved through the synergistic application of piezo-catalysis and photocatalysis. The focus of this study is on understanding the fundamental principles and mechanisms that govern the collaborative action of piezoelectric and photocatalytic materials. Piezoelectric nanomaterials, under mechanical stress, generate piezo-potential, which, when coupled with photocatalysts, enhances the generation and separation of charge carriers. The resulting cascade of redox reactions promotes the degradation of a wide spectrum of organic pollutants. The comprehensive investigation involves a variety of experimental techniques, including advanced spectroscopy and microscopy, to elucidate the intricate interplay between mechanical and photoinduced processes. The influence of key parameters, such as material composition, morphology, and external stimuli on the catalytic performance, is systematically explored. This study contributes to the increasing knowledge of environmental remediation and lays the foundation for the development of advanced technologies using piezo and photocatalysis for sustainable pollutant removal.
Collapse
Affiliation(s)
- Khaled F Alshammari
- Department of Criminal Justice and Forensics, King Fahad Security College, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Song J, Ma S, Huang Y, Lu K, Zhang J, Li Q. Mechanism of additional carrier with seasonal temperature changes enhanced ecological floating beds for non-point source pollution water treatment. ENVIRONMENTAL RESEARCH 2024; 242:117778. [PMID: 38036207 DOI: 10.1016/j.envres.2023.117778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The continuous performance and denitrification characteristics of carriers were investigated in two modified enhanced ecological floating beds (EFBs), one with only ceramsite and the other with ceramsite and extra additional stereo-elastic packing. Over a period of more than 414 days, the extra carrier was found to improve nitrogen removal while enhancing the system's resistance to seasonal temperature variations. The denitrification of all carriers in EFBs was inhibited in practice by seasonal temperature change, especially temperature rose from below 20 °C to above 20 °C and the inhibition rate of nitrous nitrogen (NO2--N) reduction was consistently above 91%, which was higher than that of nitrate nitrogen (NO3--N). However, the denitrification process including the rate and the resistance to temperature changes of ceramsite in the same EFBs with stereo-elastic packing at different temperatures, was consistently improved. The removal rate of NO3--N and NO2--N increased by up to 23.5% and 19.5%, respectively. The potential denitrification rates of all carriers increased with time which was also evidenced by in PICRUSt results, which showed that the abundances of predicted functional genes encoding NO3--N and NO2--N reductase increased over time. The dominant denitrifier also differed over time due to seasonal temperature changes.
Collapse
Affiliation(s)
- Jia Song
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Huang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kaige Lu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingjing Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qian Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China.
| |
Collapse
|
8
|
Kipgen L, Singha NA, Lyngdoh WJ, Nongdhar J, Singh AK. Degradation and metagenomic analysis of 4-chlorophenol utilizing multiple metal tolerant bacterial consortium. World J Microbiol Biotechnol 2024; 40:56. [PMID: 38165520 DOI: 10.1007/s11274-023-03855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Chlorophenols are persistent environmental pollutants used in synthesizing dyes, drugs, pesticides, and other industrial products. The chlorophenols released from these processes seriously threaten the environment and human health. The present study describes 4-chlorophenol (4-CP) degradation activity and metagenome structure of a bacterial consortium enriched in a 4-CP-containing medium. The consortium utilized 4-CP as a single carbon source at a wide pH range, temperature, and in the presence of heavy metals. The immobilized consortium retained its degradation capacity for an extended period. The 4-aminoantipyrine colorimetric analysis revealed complete mineralization of 4-CP up to 200 mg/L concentration and followed the zero-order kinetics. The addition of glycerol and yeast extract enhanced the degradation efficiency. The consortium showed both ortho- and meta-cleavage activity of catechol dioxygenase. Whole genome sequence (WGS) analysis revealed the microbial compositions and functional genes related to xenobiotic degradation pathways. The identified genes were mapped on the KEGG database to construct the 4-CP degradation pathway. The results exhibited the high potential of the consortium for bioremediation of 4-CP contaminated sites. To our knowledge, this is the first report on WGS analysis of a 4-CP degrading bacterial consortium.
Collapse
Affiliation(s)
- Lhinglamkim Kipgen
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Ningombam Anjana Singha
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Waniabha J Lyngdoh
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Jopthiaw Nongdhar
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
9
|
Swain G, Maurya KL, Kumar M, Sonwani RK, Singh RS, Jaiswal RP, Nath Rai B. The Biodegradation of 4-Chlorophenol in a Moving Bed Biofilm Reactor Using Response Surface Methodology: Effect of Biogenic Substrate and Kinetic Evaluation. Appl Biochem Biotechnol 2023; 195:5280-5298. [PMID: 35606635 DOI: 10.1007/s12010-022-03954-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
Abstract
4-Chlorophenol (4-CP) is a persistent organic pollutant commonly found in petrochemical effluents. It causes toxic, carcinogenic and mutagenic effects on human beings and aquatic lives. Therefore, an environmentally benign and cost-effective approach is needed against such pollutants. In this direction, the chlorophenol degrading bacterial consortium consisting of Bacillus flexus GS1 IIT (BHU) and Bacillus cereus GS2 IIT (BHU) was isolated from a refinery site. A composite biocarrier namely polypropylene-polyurethane foam (PP-PUF) was developed for bacterial cells immobilization purpose. A lab-scale moving bed biofilm reactor (MBBR) packed with Bacillus sp. immobilized PP-PUF biocarrier was employed to analyse the effect of peptone on biodegradation of 4-CP. The statistical tool, i.e. response surface methodology (RSM), was used to optimize the process variables (4-CP concentration, peptone concentration and hydraulic retention time). The higher values of peptone concentration and hydraulic retention time were found to be favourable for maximum removal of 4-CP. At the optimized process conditions, the maximum removals of 4-CP and chemical oxygen demand (COD) were obtained to be 91.07 and 75.29%, respectively. In addition, three kinetic models, i.e. second-order, Monod and modified Stover-Kincannon models, were employed to investigate the behaviour of MBBR during 4-CP biodegradation. The high regression coefficients obtained by the second-order and modified Stover-Kincannon models showed better accuracy for estimating substrate degradation kinetics. The phytotoxicity study supported that the Vigna radiata seeds germinated in treated wastewater showed higher growth (i.e. radicle and plumule) than the untreated wastewater.
Collapse
Affiliation(s)
- Ganesh Swain
- Department of Chemical Engineering & Technology IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Kanhaiya Lal Maurya
- Department of Chemical Engineering & Technology IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Mohit Kumar
- Department of Chemical Engineering & Technology IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - R K Sonwani
- Department of Chemical Engineering & Technology IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - R S Singh
- Department of Chemical Engineering & Technology IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Ravi P Jaiswal
- Department of Chemical Engineering & Technology IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology IIT (BHU), Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
10
|
Li Y, Jiang J, Chen Y, Qie W, Zhu W, Xu N, Zhao J. Effects of salinity on the performance, microbial community, and functional genes among 4-chlorophenol wastewater treatment. BIORESOURCE TECHNOLOGY 2023:129282. [PMID: 37277007 DOI: 10.1016/j.biortech.2023.129282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Chlorophenols frequently occur alongside salinity in industrial wastewater; thus, the effects of low concentrations of salinity (NaCl, 100 mg/L) on sludge performance, microbial community, and functional genes were deeply analyzed among 4-chlorophenol (4-CP, 2.4-4.0 mg/L) wastewater treatment. The influent 4-CP was effectively degraded, but the efficiencies for PO43--P, NH4+-N, and organics reduction were slightly inhibited by NaCl stress. Long-term NaCl and 4-CP stress significantly stimulated the secretion of extracellular polymeric substances (EPS). The abundances of predominant microbes at different taxonomic levels were affected by NaCl, and the increased relative abundances of functional genes encoding proteins contributed to resist NaCl and 4-CP stress. The functional genes associated with phosphorus metabolism and nitrogen metabolism in nitrification were unaffected, but the functional genes in denitrification increased in diversity under NaCl stress in 4-CP wastewater treatment. This finding acquires useful insight into the wastewater treatment with low chlorophenols and low salinity.
Collapse
Affiliation(s)
- Yahe Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Jianan Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yili Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wandi Qie
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wenrong Zhu
- Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Nianjun Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jianguo Zhao
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Yuan D, Bai M, He L, Zhou Q, Kou Y, Li J. Removal performance and dissolved organic matter biodegradation characteristics in advection ecological permeable dam reactor. ENVIRONMENTAL TECHNOLOGY 2023; 44:2288-2299. [PMID: 34989328 DOI: 10.1080/09593330.2022.2026489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/11/2021] [Indexed: 06/04/2023]
Abstract
In this present study, an advection ecological permeable dam (AEPD) based on a biofilm reactor was established to investigate pollution control performance and dissolved organic matter (DOM) bio-degradation. The AEPD achieved optimal efficiency-chemical oxygen demand, 6-53 mg/L; total nitrogen concentration, 1.47-6.89 mg/L; total phosphorus concentration, 0.53-3.93 mg/L, and increases in values for ultraviolet-visible parameters-SUVA254, from 0.392 to 0.673-1.438; E4/E6, from 1.09 to 1.11-1.26; A240-400, from 12.06 to 13.09-19.95; and A253-203, from 0.03 to 0.04-0.23. This showed that DOM degradation promoted its humification, aromatisation, and unsaturation as well as increased the number of polar functional groups in the organic aromatic rings of DOM. Synchronous fluorescence and parallel factor analyses indicated that AEPD could effectively degrade tyrosine-like and tryptophan-like compounds, which showed the most significant decrease in fluorescence intensity. Additionally, AEPD displayed some stable dominant bacterial genera (e.g. Proteobacteria_unclassified, Bacteroidetes_unclassified, Gemmobacter, Pseudofulvimonas, Flavobacterium, Pseudomonas, and Nitrospira), although their relative abundance differed under variable hydraulic loading rates. This research provided further technical support for the application of AEPD in the treatment of water environment pollution.
Collapse
Affiliation(s)
- Donghai Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Minghui Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Liansheng He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Qiang Zhou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yingying Kou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
12
|
Han Y, Lu X, Liu Y, Deng Y, Zan F, Mao J, Hao T, Cao C, Wu X. Achieving superior nitrogen removal in an air-lifting internal circulating reactor for municipal wastewater treatment: Performance, kinetic analysis, and microbial pathways. BIORESOURCE TECHNOLOGY 2023; 371:128599. [PMID: 36632854 DOI: 10.1016/j.biortech.2023.128599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Anticipated growth in living standards has accentuated higher requirements for effluent quality from municipal wastewater treatment. In this study, an air-lifting internal circulating reactor with a high internal circulation ratio (36:1) was established to treat municipal wastewater with a long-term operation. In the bioreactor, the average effluent chemical oxygen demand, total nitrogen, and ammonium nitrogen could be 13.1, 5.7, and lower than 1 mg/L, respectively. Further analysis of nitrogen removal showed that traditional nitrification and denitrification, simultaneous nitrification and denitrification (SND), and nitrogen assimilation accounted for 27.4 %, 68.7 %, and 3.9 % respectively. The proportion of aerobic bacteria (Saprospiraceae) and facultative bacteria (Comamonadaceae) were significantly increased, indicating a higher capacity for organic degradation in the reactor. The relative abundance of denitrifying bacteria and bacterial groups with SND (Comamonadaceae) increased. These results suggested the air-lifting internal circulating reactor could be a viable and efficient option for superior nitrogen removal in wastewater treatment.
Collapse
Affiliation(s)
- Yi Han
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China.
| | - Yang Liu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Mao
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Cheng Cao
- Skyray Environment Technology (Xiantao) Co., Ltd, Xiantao, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Li H, Luo QP, Zhao S, Zhou YY, Huang FY, Yang XR, Su JQ. Effect of phenol formaldehyde-associated microplastics on soil microbial community, assembly, and functioning. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130288. [PMID: 36335899 DOI: 10.1016/j.jhazmat.2022.130288] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Increasing investigations explore the effects of plastic pollutants on bacterial communities, diversity, and functioning in various ecosystems. However, the impact of microplastics (MPs) on the eukaryotic community, microbial assemblages, and interactions is still limited. Here, we investigated bacterial and micro-eukaryotic communities and functioning in soils with different concentrations of phenol formaldehyde-associated MPs (PF-MPs), and revealed the factors, such as soil properties, microbial community assembly, and interactions between microbes, influencing them. Our results showed that a high concentration (1%) of PF-MPs decreased the microbial interactions and the contribution of deterministic processes to the community assembly of microbes, and consequently changed the communities of bacteria, but not eukaryotes. A significant and negative relationship was determined between N2O emission rate and functional genes related to nitrification, indicating that the competitive interactions between functional microbes would affect the nitrogen cycling of soil ecosystem. We further found that vegetable biomass weakly decreased in treatments with a higher concentration of PF-MPs and positively related to the diversity of micro-eukaryotic communities and functional diversity of bacterial communities. These results suggest that a high concentration of the PF-MPs would influence crop growth by changing microbial communities, interactions, and eukaryotic and functional diversity. Our findings provide important evidence for agriculture management of phenol formaldehyde and suggest that we must consider their threats to microbial community compositions, diversity, and assemblage in soils due to the accumulation of PF-MPs widely used in the field.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
| | - Qiu-Ping Luo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Sha Zhao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yan-Yan Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
14
|
Tang Y, Li T, Xu Y, Ren H, Huang H. Effects of electrical stimulation on purification of secondary effluent containing chlorophenols by denitrification biofilter. ENVIRONMENTAL RESEARCH 2023; 216:114535. [PMID: 36223835 DOI: 10.1016/j.envres.2022.114535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The coexistence of chlorophenols (CPs) and total nitrogen (TN) is common in advanced purification of industrial secondary effluent, which brings challenges to conventional denitrification biofilters (DNBFs). Electrical stimulation is an effective method for the degradation of CPs, However, the application of electrical stimulation in DNBFs to enhance the treatment of secondary effluent containing CPs remains largely unknown. Herein, this study conducted a systematic investigation towards the effects of electrical stimulation on DNBF through eight lab-scale reactors at room and low temperatures and different hydraulic retention times (HRTs). Results showed that the electrical stimulation effect was not greatly affected by temperature and the optimal applied voltage was 3 V. Overall, the removal rates of TN and CPs were increased by 114%-334% and 2.68%-34.79% respectively after electrical stimulation. When the influent concentration of NO3--N, COD and each CP of 25 mg/L, 50 mg/L and 5 mg/L, about 15 mg/L of effluent TN could be achieved and the removals of p-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol were increased by 10.58%, 5.78% and 34.79% respectively, under the voltage of 3 V and HRT of 4 h. However, the reduction rate of biotoxicity was decreased and could not achieve low toxicity grade in general. Electrical stimulation promoted the elevation of Hydrogenophaga and thus enhanced the removal of TN, and the increase of Microbacterium and Ahniella was significantly associated with the improvement of CPs removal rate. In addition, the obvious accumulation of nitrite was found to be significantly negatively correlated with the abundance of Nitrospira. This study highlighted a further need for the optimization of electrical stimulation in DNBFs treating industrial secondary effluent containing CPs to achieve the goal of pollutant removal and toxicity reduction simultaneously.
Collapse
Affiliation(s)
- Yingying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Tong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yujin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
15
|
Li X, Wang T, Fu B, Mu X. Improvement of aquaculture water quality by mixed Bacillus and its effects on microbial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69731-69742. [PMID: 35576039 DOI: 10.1007/s11356-022-20608-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Microbial remediation, especially the application of probiotics, has recently gained popularity in improving water quality and maintaining aquatic animal health. The efficacy and mechanism of mixed Bacillus for improvement of water quality and its effects on aquatic microbial community structure remain unknown. To elucidate these issues, we applied two groups of mixed Bacillus (Bacillus megaterium and Bacillus subtilis (A0 + BS) and Bacillus megaterium and Bacillus coagulans (A0 + BC)) to the aquaculture system of Crucian carp. Our results showed that the improvement effect of mixed Bacillus A0 + BS on water quality was better than that of A0 + BC, and the NH4+-N, NO2--N, NO3--N, and total phosphorus (TP) concentrations were reduced by 46.3%, 76.3%, 35.6%, and 80.3%, respectively. In addition, both groups of mixed Bacillus increased the diversity of the bacterial community and decreased the diversity of the fungal community. Microbial community analysis showed that mixed Bacillus A0 + BS increased the relative abundance of bacteria related with nitrogen and phosphorus removal, such as Proteobacteria, Actinobacteria, Comamonas, and Stenotrophomonas, but decreased the relative abundance of pathogenic bacteria (Acinetobacter and Pseudomonas) and fungi (Epicoccum and Fusarium). Redundancy analysis showed that NH4+-N, NO2--N, and TP were the primary environmental factors affecting the microbial community in aquaculture water. PICRUST analysis indicated that all functional pathways in the A0 + BS group were richer than those in other groups. These results indicated that mixed Bacillus A0 + BS addition produced good results in reducing nitrogenous and phosphorus compounds and shaped a favorable microbial community structure to further improve water quality.
Collapse
Affiliation(s)
- Xue Li
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, People's Republic of China
| | - Tianjie Wang
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Baorong Fu
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, People's Republic of China
| |
Collapse
|
16
|
Li X, Qin R, Yang W, Su C, Luo Z, Zhou Y, Lin X, Lu Y. Effect of asparagine, corncob biochar and Fe(II) on anaerobic biological treatment under low temperature: Enhanced performance and microbial community dynamic. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115348. [PMID: 35660832 DOI: 10.1016/j.jenvman.2022.115348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
To ensure the efficiency of anaerobic biological treatment technology at lower temperature will expand the application of anaerobic reactor in practical industrial wastewater treatment. Through a batch experiment, asparagine, corncob biochar and Fe2+ were selected as strengthening measures to analyze the effects on the anaerobic sludge characteristics, microbial community and functional genes in the low temperature (15 °C). Results showed that after 21 days, asparagine began to promote chemical oxygen demand (COD) removal by the anaerobic treatment, with highest COD removal rate (81.65%) observed when the asparagine concentration was 1 mmol/L. When adding 3 g biochar, 25 mg/L Fe2+, and the combination of biochar and Fe2+, the COD removal rates reached to 82%, 92% and 97%, respectively. In the presence of asparagine, both biochar and Fe2+ alone or in combination increased the activity of protease (16.35%-120.71%) and coenzyme F420 (5.63%-130.2%). The relative abundance of Proteobacteria and Methanobacterium increased in the presence of biochar and Fe2+. In addition, the KEGG results showed that the combined addition of biochar and Fe2+ enhanced bacterial replication and repair and promoted amino acid metabolism of archaea.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Wenjing Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Zehua Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xiangfeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yingqi Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
17
|
Li Y, Dong R, Guo J, Wang L, Zhao J. Effects of Mn 2+ and humic acid on microbial community structures, functional genes for nitrogen and phosphorus removal, and heavy metal resistance genes in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115028. [PMID: 35398637 DOI: 10.1016/j.jenvman.2022.115028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Considering the wide occurrence of Mn2+ and humic acid (HA) in environmental media, the effects of Mn2+ (5-16 mg/L) and HA (10 mg/L) on microbial community structures, functional genes for nitrogen and phosphorus removal, and heavy metal resistance genes (HMRGs) were investigated in wastewater treatment using sequencing batch bioreactors (SBRs). The treatment efficiencies of influent chemical oxygen demands (COD), NH4+-N, and PO43--P were unaffected during the entire operational processes irrespective of whether Mn2+ and HA were supplied. Although the functional prediction of genetic information via sequencing analysis showed that the microbial activity was not influenced by Mn2+ and HA from different SBRs, the abundance of dominant phyla (Proteobacteria, Actinobacteriota, Firmicutes, and Bacteroidota), classes (Saccharimonadia, Gammaproteobacteria, and Bacilli), and genera (unidentified_Chloroplast, TM7a, Micropruina, Candidatus_Competibacter, Lactobacillus, OLB12, and Pediococcus) was different. Compared to the SBR without Mn2+ and HA supplementation, the abundance of functional genes for nitrogen and phosphorus removal (narG, nirS, nosZ, ppk, and phoD) and HMRGs (corA and mntA) significantly increased under Mn2+ stress, but significantly decreased with the addition of HA except for genes nirS and ppk. The abundance of genes corA and mntA was related to the partially dominant microbes and functional genes, and might be reduced by supplying HA. This study provides insight into the effects of Mn2+ and HA on functional genes for nitrogen and phosphorus removal and HMRGs in wastewater treatment.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, 471934, China
| | - Rong Dong
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiaxin Guo
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Liu Y, Zhao Z, Yang H, Fu L, Zhou D. Trace phenolic acids simultaneously enhance degradation of chlorophenol and biofuel production by Chlorella regularis. WATER RESEARCH 2022; 218:118524. [PMID: 35526356 DOI: 10.1016/j.watres.2022.118524] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Coupling the cultivation of microalgae with wastewater treatment is a promising technology to recover bioresources from wastewater. However, toxic pollutants in wastewater seriously inhibit the growth of microalgae and the removal of pollutants. Phenolic acids are similar to phytohormones, could potentially relieve the toxicity to microalgae and simultaneously promote pollutant degradation and lipid accumulation. Chlorella and 4-chlorophenol (4-CP) were utilized to simulate the toxic wastewater treatment, and the roles of two typical phenolic acids, such as p-hydroxybenzoic acid (p-HBA) and caffeic acid (CA), were explored. The 0.2 μM concentration of p-HBA or CA improved the specific growth rate by 7.6% by enhancing photosynthesis and DNA replication. The oxidative damage caused by 4-CP was reduced by 30.3-49.7% via the synthesis of more antioxidant enzymes and the direct scavenging of free radicals by phenolic acids. Furthermore, the 4-CP removal rate increased by 27.0%, and toxic 4-CP was degraded into non-toxic compounds. The phenolic acids did not change the 4-CP degradation pathway but accelerated its removal and detoxification by enhancing the expression of 4-CP degradation enzymes. Simultaneously, lipid production increased by 20.5-23.1% due to the upregulation of enzymes related to fatty acid and triacylglycerol synthesis. Trace phenolic acids stimulated the mitogen-activated protein kinase signaling cascade and the calcium signaling pathway to regulate the physiology of the microalgae and protect cells from toxic stress. This study provides a promising new strategy for toxic wastewater treatment and bioresource recovery.
Collapse
Affiliation(s)
- Yang Liu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Zhenhao Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Huiwen Yang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China.
| |
Collapse
|
19
|
Wang M, Li J, Ning S, Fu X, Wang X, Tan L. Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153452. [PMID: 35093373 DOI: 10.1016/j.scitotenv.2022.153452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Operation performance and membrane fouling of a novel static magnetic field membrane bioreactor (SMFMBR) for treatment of hypersaline azo dye wastewater was investigated. The results showed that SMFMBRs possessed higher efficiency of dye decolorization, COD removal and detoxification than the control MBR without SMF. The (3#) SMFMBR equipped with 305.0 mT (the highest intensity) SMF displayed the best treatment performance among all the four reactors (named as 0#-3#, equipped with SMFs of 0 mT, 95.0 mT, 206.3 mT and 305.0 mT, respectively). Potentially effective microbes belonging to Rhodanobacter, Saccharibacteria genera incertae sedis, Defluviimonas, Cellulomonas, Cutaneotrichosporon, Candida and Pichia were enriched in three SMFMBRs, in both of suspended sludge and bio-cakes. The relative abundance of Candida and Pichia in suspended sludge of 3# SMFMBR was the highest among all the four reactors, suggesting their successful colonization and potentially persistent effect of bioaugmentation. On the other hand, SMF of higher intensity effectively mitigated membrane fouling. Less production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), lower protein/polysaccharide (PN/PS) ratio in SMP and EPS, looser structure of bio-cakes on membrane surface, as well as lower relative abundance of potential fouling causing microbes (mainly bacteria) in microbial communities were determined in 3# SMFMBR than the other three groups.
Collapse
Affiliation(s)
- Meining Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Jiamin Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Shuxiang Ning
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaohan Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Liang Tan
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China.
| |
Collapse
|
20
|
Biodegradation Kinetics of Phenol and 4-Chlorophenol in the Presence of Sodium Salicylate in Batch and Chemostat Systems. Processes (Basel) 2022. [DOI: 10.3390/pr10040694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The biodegradation of phenol, sodium salicylate (SA), and 4-chlorophenol (4-CP) by Pseudomonas putida (P. putida) was evaluated by batch and chemostat experiments in single and binary substrate systems. The Haldane kinetics model for cell growth was chosen to describe the batch kinetic behavior to determine kinetic parameters in the single or binary substrates system. In the single phenol and SA system, the kinetic constants of μm,P = 0.423 h−1, μm,A = 0.247 h−1, KS,P = 48.1 mg/L, KS,A = 71.7 mg/L, KI,P = 272.5 mg/L, and KI,A = 3178.2 mg/L were evaluated. Experimental results indicate that SA was degraded more rapidly by P. putida cells compared to phenol because SA has a much larger KI value than phenol, which makes the cells less sensitive to substrate inhibition even though the μm,P value is larger compared to μm,A. The ratio of inhibition of phenol degradation due to the presence of SA (IA1) to the inhibition of SA degradation due to the presence of phenol (IA2) is 2.3, indicating that SA has a higher uncompetitive inhibition on phenol biodegradation compared to that of phenol on SA biodegradation in the binary substrate system. In the ternary substrate system, the time required for the complete degradation of SA and phenol was 14 and 11.5 d and an approximately 90% removal efficiency for 4-CP was achieved within 14 d. In the chemostat system, the removal rates of phenol and SA were 96.6 and 97.0%, while those of SA and 4-CP were 91.4% and 95.2%, respectively. The model prediction agreed satisfactorily with the experimental results of the chemostat system.
Collapse
|
21
|
Baideme M, Long C, Chandran K. Enrichment of a denitratating microbial community through kinetic limitation. ENVIRONMENT INTERNATIONAL 2022; 161:107113. [PMID: 35134715 DOI: 10.1016/j.envint.2022.107113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Denitratation, or the intentionally engineered accumulation of nitrite (NO2-) from selective reduction of nitrate (NO3-), can be combined with downstream anammox to reduce chemical and energy use associated with conventional nitrification and denitrification. This study aimed to enrich a denitratating microbial community capable of significant NO2- accumulation by applying added kinetic limitation to an already stoichiometrically-limited, glycerol-driven denitratation process. Operation at solids residence time, SRT=3.0 d, resulted in optimal denitratation performance and a microbial community dominated by NO3--respirers, noted by one order of magnitude lower total copy numbers of nirS and nirK gene transcripts compared to longer SRTs. Selective NO3- reduction to NO2- was achieved at all SRTs although longer SRTs (less kinetic limitation) supported microbial communities more capable of full denitrification as described by a lower NO2- accumulation ratio (NAR=42±5%) and higher steady-state nitrous oxide (1.5 mg/L N2O-N) accumulation. Shorter SRTs (more kinetic limitation) led to higher observed yields (Y=0.63 mg-COD/mg-COD) with more electrons dedicated for cell synthesis (fs=0.56±0.10), which potentially contributed to the accumulation of NO3-. Enrichment of a denitratating-dominant microbial community by optimizing kinetic limitation operating parameters could support significant NO2- accumulation and reduce chemical and energy use for biological nitrogen removal when combined with downstream anammox.
Collapse
Affiliation(s)
- Matthew Baideme
- Department of Earth and Environmental Engineering, 500 W. 120th St., Columbia University, New York, NY 10027, USA.
| | - Chenghua Long
- Department of Earth and Environmental Engineering, 500 W. 120th St., Columbia University, New York, NY 10027, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, 500 W. 120th St., Columbia University, New York, NY 10027, USA
| |
Collapse
|
22
|
Li Y, Zhao J, Li Y, Jin B, Wang L, Li Y. Effects of combined 4-chlorophenol and Cu 2+ on functional genes for nitrogen and phosphorus removal and heavy metal resistance genes in sequencing batch bioreactors. BIORESOURCE TECHNOLOGY 2022; 346:126666. [PMID: 34990861 DOI: 10.1016/j.biortech.2021.126666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The effects of combined 4-chlorophenol (4-CP) and Cu2+ on microbial community structures, functional genes for nitrogen and phosphorus removal, and heavy metal resistance genes (HMRGs) were explored in wastewater treatment using sequencing batch bioreactors (SBRs). Compared to influent 4-CP (2.3-4.5 mg/L), the removal of pollutants including chemical oxygen demands (COD), NH4+-N, PO43--P, and 4-CP was inhibited under Cu2+ stress (5 mg/L). The effects of Cu2+ on microbial community structures were more significant than those of 4-CP with respect to operational time, while the dominant function from gene information was not affected with or without influent 4-CP and Cu2+ via sequencing analysis. The influent 4-CP and Cu2+ largely influenced the dynamic changes of functional genes and HMRGs, and the abundance of partial HMRGs was correlated to the functional genes and dominant genera. This study provides insights into the treatment of combined chlorophenols and Cu2+ in wastewater.
Collapse
Affiliation(s)
- Yahe Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
23
|
Meena M, Yadav G, Sonigra P, Shah MP. A comprehensive review on application of bioreactor for industrial wastewater treatment. Lett Appl Microbiol 2022; 74:131-158. [PMID: 34469596 DOI: 10.1111/lam.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
In the recent past, wastewater treatment processes performed a pivotal role in accordance with maintaining the sustainable environment and health of mankind at a proper hygiene level. It has been proved indispensable by government regulations throughout the world on account of the importance of preserving freshwater bodies. Human activities, predominantly from industrial sectors, generate an immeasurable amount of industrial wastewater loaded with toxic chemicals, which not only cause dreadful environmental problems, but also leave harmful impacts on public health. Hence, industrial wastewater effluent must be treated before being released into the environment to restrain the problems related to industrial wastewater discharged to the environment. Nowadays, biological wastewater treatment methods have been considered an excellent approach for industrial wastewater treatment process because of their cost-effectiveness in the treatment, high efficiency and their potential to counteract the drawbacks of conventional wastewater treatment methods. Recently, the treatment of industrial effluent through bioreactor has been proved as one of the best methods from the presently available methods. Reactors are the principal part of any biotechnology-based method for microbial or enzymatic biodegradation, biotransformation and bioremediation. This review aims to explore and compile the assessment of the most appropriate reactors such as packed bed reactor, membrane bioreactor, rotating biological contactor, up-flow anaerobic sludge blanket reactor, photobioreactor, biological fluidized bed reactor and continuous stirred tank bioreactor that are extensively used for distinct industrial wastewater treatment.
Collapse
Affiliation(s)
- M Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - G Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - P Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - M P Shah
- Environmental Technology Lab, Bharuch, Gujarat, India
| |
Collapse
|
24
|
Jin B, Liu Y, Li X, Hou J, Bai Z, Niu J, Wang L, Zhao J. New insights into denitrification and phosphorus removal with degradation of polycyclic aromatic hydrocarbons in two-sludge system. BIORESOURCE TECHNOLOGY 2022; 346:126610. [PMID: 34954360 DOI: 10.1016/j.biortech.2021.126610] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have led to failure of waste water treatment plant operations. In this study, a two-sludge system was used to solve this problem of simultaneously removing phosphorus, nitrogen, and PAHs. The results showed that increasing the maximum PAHs concentration to 15 mg/L did not have any negative effect on the removal rates of total nitrogen (79.68%) and chemical oxygen demand (75.94%); however, the phosphorus removal efficiency decreased to 61.16%. The system exhibited a stronger degradation ability for phenanthrene. Thauera, Hydrogenophaga, and Hyphomicrobium were enriched, which resulted in good denitrification, and contributed to PAHs removal. PAHs mixture promoted PAHs functional genes but restrained denitrification functional genes. However, single naphthalene enhanced denitrification functional genes, which confirmed the feasibility of denitrification coupled with PAHs degradation. In conclusion, for the removal of pollutants from sewage treatment, nitrogen and phosphorus removal coupled with PAHs could be maintained by selecting a two-sludge system.
Collapse
Affiliation(s)
- Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Ye Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xia Li
- Huaxin College of Hebei Geo University, Shijiazhuang 050700, China
| | - Jiahui Hou
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhixuan Bai
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jintao Niu
- Henan Hengan Environmental Protection Technology Co., Ltd, Zhengzhou 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
25
|
Cheng Y, Li JY, Ren X, Li Y, Kou YY, Chon K, Hwang MH, Ko MH. High efficiency of simultaneous nitrification, denitrification, and organics removal in the real-scale treatment of high C/N ratio food-processing wastewater using micro-aerobic reactors. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Abstract
Biological processes have high removal efficiencies and low operational costs, but the secondary effluent of coking wastewater (CWW), even at a low concentration, is difficult for microorganisms to degrade directly. In this study, glucose was used as a carbon source and co-metabolic substrate for microbial acclimation in order to enhance the advanced treatment of coking wastewater (CWW). The removal performance of the pollutants, especially recalcitrant compounds, was studied and the changes in the microbial community structure after activated sludge acclimation were analyzed. The effect of glucose addition on the secondary biochemical effluent of coking wastewater (SBECW) treatment by the acclimated sludge was further studied by a comparison between the performance of two parallel reactors seeded with the acclimated sludge. Our results showed that the concentrations of chemical oxygen demand (COD), total organic carbon (TOC), and UV absorption at 254 nm (UV254) of the wastewater decreased in the acclimation process. Refractory organic matter, such as polycyclic aromatic hydrocarbons and nitrogen-containing heterocyclics, in the SBECW was effectively degraded by the acclimated sludge. High-throughput sequencing revealed that microbes with a strong ability to degrade recalcitrant compounds were enriched after acclimation, such as Thauera (8.91%), Pseudomonas (3.35%), and Blastocatella (10.76%). Seeded with the acclimated sludge, the reactor with the glucose addition showed higher COD removal efficiencies than the control system without glucose addition (p < 0.05). Collectively, glucose addition enhanced the advanced treatment of coking wastewater (CWW).
Collapse
|
27
|
Wang J, Sun Z. Successful application of municipal domestic wastewater as a co-substrate in 2,4,6-trichlorophenol degradation. CHEMOSPHERE 2021; 280:130707. [PMID: 33971410 DOI: 10.1016/j.chemosphere.2021.130707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Wastewater containing 2,4,6-trichlorophenol (2,4,6-TCP) is highly toxic and causes harmful effects on aquatic ecosystems and human health. In this study, wastewater containing high levels of 2,4,6-TCP was successfully co-metabolized by introducing municipal domestic wastewater (MDW) as the co-catabolic carbon source. The concentration of degraded 2,4,6-TCP increased from 0 to 208.71 mg/L by adjusting the influent MDW volume during a 150-day-long operation. An MDW dose of 500 mL was found optimal, with an average concentration of 250 mgCOD/L. Unlike the long-term experiment, changing the MDW adding mode in a typical cycle further increased the concentration of 2,4,6-TCP removed to 317 mg/L. The main MDW components, such as the sugars, VFAs, and slowly biodegradable organic substances, improved 2,4,6-TCP degradation, achieving a TOC removal efficiency of 90.98% and a dechlorination efficiency of 100%. The MDW level did not change the 2,4,6-TCP degradation rate (μTCP) in a typical cycle compared to the single carbon source, and the μTCP remained at a high level of 50 mg 2,4,6-TCP/h. Macrogenetic analysis demonstrated that MDW addition promoted the growth of 43 bacterial genera (41.49%) responsible for 2,4,6-TCP degradation and intermediates' metabolism. The key genes for 2,4,6-TCP metabolism (pcpA, chqB, mal-r, pcaI, pcaF, and fadA) were detected in the activated sludge, which were distributed among the 43 genera. To conclude, this study proposes a new carbon source for co-metabolism to treat 2,4,6-TCP-polluted wastewater.
Collapse
Affiliation(s)
- Jianguang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
28
|
Liu F, Hu X, Zhao X, Gao Y. Effect of carrier particle size on enrichment and shift in nitrifier community behaviors for treating increased strength wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1959-1968. [PMID: 33797157 DOI: 10.1002/wer.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In activated sludge systems, adding carriers can improve nitrifier enrichment. Different attachment area induced by different particle sizes of carriers may result in different nitrifier community. This research investigated the effect of different particle sizes of coal ash on nitrifier enrichment treating increased strength wastewater. Results indicated efficient nitrifying coal ash was obtained with smaller coal ash. The ammonia removal rates reached over 98%, which outclassed that in negative control (63.28%), and no nitrite accumulated in these systems under high nitrogen concentration of 1123.35 mg N/L. The high-throughput sequencing assays indicated carriers changed the microbial community structure significantly, thus facilitated the nitrification capacity. Increase abundance of nitrifier has a negative correlation with particle size of carriers. Nitrosomonas became the biggest beneficiary, which maximum composed 50.29% in fillers system and only 13.69% in negative control, whereas the number of Nitrobacter (less than 3.04%) became much lower than ammonia-oxidizing bacteria (AOB). However, the shift of microbial structures, large number of Dokdonella for instance, may guarantee the complete nitrification in systems with smaller carriers. Batch experiments showed a high dissolved oxygen (DO) concentration (4 mg/L) and slightly alkaline condition (pH 8.0) had a positive effect on nitrifying coal ash. PRACTITIONER POINTS: The increase size of nitrifier has a negative correlation with particle size of coal ash. The smaller coal ash reduces the adverse effect of high nitrogen on nitrification. The ammonia removal rate reached 99.82% with influent of 1123.35 mg NH 4 + - N /L in the smallest carriers system.
Collapse
Affiliation(s)
- Fang Liu
- Department of Environmental Engineering, School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, China
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang, China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang, China
| | - Yong Gao
- Department of Environmental Engineering, School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
29
|
Xu Y, Hu F, Wang X, Qu Y, Xu L, Liu Q. Improvement of phosphorus release from sludge by combined electrochemical-EDTA treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1824-1833. [PMID: 33905355 DOI: 10.2166/wst.2021.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, combined with the addition of ethylenediaminetetraacetic acid (EDTA), the electrochemical treatment of waste activated sludge (WAS) was investigated to explore its effect on the release of phosphorus (P) from WAS. The results showed that during the electrochemical treatment, the addition of EDTA could significantly promote the release of P from the WAS to the supernatant, the optimal amount of EDTA was 0.4 g/g total suspended solids (TSS), when the release of total dissolved phosphorus (TDP), organic phosphorus (OP) and molybdate reactive phosphorus (PO43--P) were 187.30, 173.84 and 13.46 mg/L, respectively. OP was the most likely form of P to be released during this process. Moreover, combined electrochemical-EDTA treatment could promote the release of P and metal ions from extracellular polymeric substances (EPSs) to the supernatant, and increase the solubility and disintegration of sludge. EDTA chelated the metal ions of sludge flocs and phosphate precipitates to cause sludge floc decomposition, thereby promoting the release of P from WAS.
Collapse
Affiliation(s)
- Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Rd, Shanghai 200444, China E-mail:
| | - Fanglu Hu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Rd, Shanghai 200444, China E-mail:
| | - Xin Wang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Rd, Shanghai 200444, China E-mail:
| | - Yangwei Qu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Rd, Shanghai 200444, China E-mail:
| | - Lu Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Rd, Shanghai 200444, China E-mail:
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Rd, Shanghai 200444, China E-mail:
| |
Collapse
|
30
|
Guo Y, Shi W, Zhang B, Li W, Lens PNL. Effect of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116604. [PMID: 33548671 DOI: 10.1016/j.envpol.2021.116604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The effects of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge (AGS) system were investigated over a period of 15 weeks. Results revealed that the application outcomes of iron electrolysis for AGS systems relied on voltage intensity. When a constant voltage of 1.5 V was applied, the sludge granulation was most obviously accelerated with a specific growth rate of the sludge diameter of 0.078 day-1, and the removal efficiencies of total nitrogen (TN) and total phosphorus (TP) increased by 14.1% and 20.2%, respectively, compared to the control reactor (without the iron electrolysis-integration). Moreover, the AGS developed at different voltages included different microbial communities, whose shifts were driven by the Fe content and the average diameter of AGS. Both heterotrophic nitrifiers and mixotrophic denitrifiers were significantly enriched in the AGS developed at 1.5 V, which effectively enhanced TN removal. Together with the response of the functional genes involved in Fe, N, and P metabolism, the electrolytic iron-driven nutrient degradation pathway was further elaborated. Overall, this study clarified the optimum voltage condition when iron electrolysis was integrated into the AGS system, and revealed the enhancement mechanism of this coupling technology on nutrient removal during the treatment of low-strength municipal wastewater.
Collapse
Affiliation(s)
- Yuan Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601, DA Delft, the Netherlands
| |
Collapse
|
31
|
Xu Y, Zhou Q, Wang X, Yang M, Fang Y, Lu Y. An efficient strategy of phosphorus recovery: Electrochemical pretreatment enhanced the anaerobic fermentation of waste activated sludge. CHEMOSPHERE 2021; 268:129391. [PMID: 33360138 DOI: 10.1016/j.chemosphere.2020.129391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/28/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The anaerobic fermentation (AF) of waste activated sludge (WAS) with an electrochemical pretreatment (EPT) was investigated to determine its correlation with the release of phosphorus and the disintegration of WAS. The sludge was pretreated by holding under 4.5 V for 60 min, followed by AF for 9 days. Untreated sludge was used as the control group (no-EPT). Results showed that, with pretreatment, the total dissolved P (TDP), orthophosphate (PO43--P) and organic P (OP) reached the maximum values of 7.30 mg/L, 4.77 mg/L and 2.35 mg/L on day 8, respectively, which were approximately 5.3, 9.2 and 2.7 times greater than that in the control group. The analysis of soluble chemical oxygen demand (SCOD), protein and polysaccharides showed that the EPT promoted the disintegration of sludge, thereby enhancing the P release. The SCOD reached 1625 mg/L on day 6 in pretreatment experiment, which was about 9.8 times greater than that in control group. Additionally, the EPT contributed to fewer metal ions in sludge supernatant. This mechanism might have been due to the anions accumulating in the supernatant from the greater degree of sludge collapse after EPT, which caused the released metal ions to combine with anions to form insoluble compounds. In conclusion, EPT could be a promising method for the dissolution of sludge and the recovery of phosphorus from WAS under AF. Besides, the economic benefit evaluation showed the potential value of EPT for P recovery.
Collapse
Affiliation(s)
- Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai, 200444, China
| | - Qinghao Zhou
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai, 200444, China
| | - Xin Wang
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai, 200444, China
| | - Min Yang
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai, 200444, China
| | - Yangfan Fang
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai, 200444, China
| | - Yongsheng Lu
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
32
|
Alkylphenols and Chlorophenols Remediation in Vertical Flow Constructed Wetlands: Removal Efficiency and Microbial Community Response. WATER 2021. [DOI: 10.3390/w13050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aims to investigate the effect of two different groups of phenolic compounds (the alkylphenols nonylphenol (NP) and octylphenol (OP), and the chlorophenol pentachlorophenol (PCP)) on constructed wetlands (CWs) performance, including on organic matter, nutrients and contaminants removal efficiency, and on microbial community structure in the plant bed substrate. CWs were assembled at lab scale simulating a vertical flow configuration and irrigated along eight weeks with Ribeira de Joane (an urban stream) water not doped (control) or doped with a mixture of NP and OP or with PCP (at a 100 μg·L−1 concentration each). The presence of the phenolic contaminants did not interfere in the removal of organic matter or nutrients in CWs in the long term. Removals of NP and OP were >99%, whereas PCP removals varied between 87% and 98%, mainly due to biodegradation. Microbial richness, diversity and dominance in CWs substrate were generally not affected by phenolic compounds, with only PCP decreasing diversity. Microbial community structure, however, showed that there was an adaptation of the microbial community to the presence of each contaminant, with several specialist genera being enriched following exposure. The three more abundant specialist genera were Methylotenera and Methylophilus (methylophilaceae family) and Hyphomicrobium (hyphomicrobiaceae family) when the systems were exposed to a mixture of NP and OP. When exposed to PCP, the three more abundant genera were Denitromonas (Rhodocyclaceae family), Xenococcus_PCC_7305 (Xenococcaceae family) and Rhodocyclaceae_uncultured (Rhodocyclaceae family). To increase CWs efficiency in the elimination of phenolic compounds, namely PCP which was not totally removed, strategies to stimulate (namely biostimulation) or increase (namely bioaugmentation) the presence of these bacteria should be explore. This study clearly shows the potential of vertical flow CWs for the removal of phenolic compounds, a still little explored subject, contributing to promote the use of CWs as nature-based solutions to remediate water contaminated with different families of persistent and/or emergent contaminants.
Collapse
|
33
|
Li Y, Li Y, Jin B, Zhang K, Wang L, Zhao J. Effects of 2,4,6-trichlorophenol and its intermediates on acute toxicity of sludge from wastewater treatment and functional gene expression. BIORESOURCE TECHNOLOGY 2021; 323:124627. [PMID: 33412498 DOI: 10.1016/j.biortech.2020.124627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Considering the extensive usage of chlorophenols as well as their refractory and toxic characteristics, 2,4,6-trichlorophenol (2,4,6-TCP) and its metabolic intermediates that cause the acute toxicity of sludge were comprehensively evaluated using a bioassay including Photobacterium phosphoreum in a sequencing batch bioreactor (SBR), and the effects of 2,4,6-TCP wastewater treatment on mRNA expression were explored. The results showed that acute toxicity of sludge and effluent chemical oxygen demand greatly exceeded that of the other SBR without 2,4,6-TCP acclimation when 2,4,6-TCP wastewater treatment in the range of 10-50 mg/L was used. The identified intermediates and 2,4,6-TCP largely contributed to the acute toxicity of sludge, which favorably fitted the Fit Exponential Decay (R2 > 0.93). During the stable stages for treating 50 mg/L 2,4,6-TCP in the influent, the mRNA expression for encoding functional proteins based on the genus Pseudomonas was markedly inhibited after the completion of the SBR operation.
Collapse
Affiliation(s)
- Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
34
|
Zhao J, Li Y, Li Y, Zhang K, Zhang H, Li Y. Effects of humic acid on sludge performance, antibiotics resistance genes propagation and functional genes expression during Cu(II)-containing wastewater treatment via metagenomics analysis. BIORESOURCE TECHNOLOGY 2021; 323:124575. [PMID: 33360357 DOI: 10.1016/j.biortech.2020.124575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The humic acid (HA) function on the sludge performance, antibiotics resistance genes (ARGs) propagation and functional genes expression during Cu(II)-containing wastewater treatment was comprehensively investigated via metagenomics analysis. Results showed that the pollutants removal was significantly inhibited after long-term exposure of 5 mg/L Cu(II), while the inhibitory effects were moderately alleviated after addition of 10 mg/L HA. The extracellular polymeric substances (EPS) production with Cu(II) acclimation was higher than the sludge with Cu(II) and HA acclimation. The microbial community was significantly affected by the HA addition, while the relative abundance of dominant ARGs had no distinct differences with or without HA addition under Cu(II) stress. The functional genes were largely implemented for microbial metabolism, while no significant differences were found with HA addition under Cu(II) stress. Thus, the HA function for ARGs propagation and functional genes expression needed to be further research under Cu(II) stress in wastewater treatment.
Collapse
Affiliation(s)
- Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
35
|
Lin X, Su C, Deng X, Wu S, Tang L, Li X, Liu J, Huang X. Influence of polyether sulfone microplastics and bisphenol A on anaerobic granular sludge: Performance evaluation and microbial community characterization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111318. [PMID: 32979806 DOI: 10.1016/j.ecoenv.2020.111318] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The retention of polyether sulfone (PES) and bisphenol A (BPA) in wastewater has received extensive attention. The effects of PES and BPA on the removal of organic matter by anaerobic granular sludge were investigated. We also analyzed the changes in the electron transport system and the effects on the composition of extracellular polymeric substances (EPS), as well as alternations of the microbial community in the anaerobic granular sludge. In the experimental groups which received BPA, the removal of the chemical oxygen demand (COD) were significantly suppressed, which an average removal efficiency of less than 65%, 30% lower than that of the control group. In the loosely-bound EPS (LB-EPS) excitation-emission matrix (EEM) spectra, the absorption peak of tryptophan disappeared when the BPA pollutants was added, which it was present in the control group without added pollutants. The addition of PES and BPA also affected protease, acetate kinase, and coenzyme F420 activities in the anaerobic granular sludge. Especially, the coenzyme F420 reduced from 0.0045 to 0.0017 μmol/L in the presence of PES and BPA. The relative abundance of Spirochaetes decreased in the presence of PES and BPA, while the relative abundance of Bacteroidetes increased from 12.98% to 22.87%. At the genus level, in the presence of PES and BPA, the relative abundance of Acinetobacter increased from 2.20% to 9.64% and Hydrogenophaga decreased sharply from 15.58% to 0.12%.
Collapse
Affiliation(s)
- Xumeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Shumin Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Jie Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
36
|
Wang S, Zhao J, Ding X, Li X. Nitric oxide and nitrous oxide production in anaerobic/anoxic nitrite-denitrifying phosphorus removal process: effect of phosphorus concentration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45925-45937. [PMID: 32808124 DOI: 10.1007/s11356-020-10499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and nitrous oxide (N2O) production in biological nutrient removal has been studied widely due to the strong negative effects on the environment. Nitrite-denitrifying phosphorus removal (N-DPR), as a significant source of NO and N2O production, has received great attention. However, the mechanism of NO and N2O production at different phosphorus concentrations is not well understood. Therefore, this study was conducted to investigate the effect of phosphorus concentration on pollutant removal, as well as NO and N2O production during the N-DPR process. The results showed that the phosphorus removal efficiency was improved with the increase of phosphorus concentration, which is caused by the enrichment of denitrifying phosphorus accumulating organisms (DPAOs) at high phosphorus concentration. High NO production was observed at phosphorus concentration of 0.5 mg L-1, which is mainly attributed to the slow recovery of reductase activity and low abundance of DPAOs. The maximal N2O accumulation of 31.45 mg L-1 was also achieved at phosphorus concentration of 0.5 mg L-1. The possible reason is that fewer poly-β-hydroxyalkanoates (PHAs) were synthesized by glycogen accumulating organisms (GAOs) at low phosphorus concentration, which could intensify the electron competition among different reductases. In addition, free nitrous acid (FNA) inhibition was another significant reason for high N2O production.
Collapse
Affiliation(s)
- Sha Wang
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710064, Shaanxi, China.
| | - Xiaoqian Ding
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Xiaoling Li
- School of Architectural Engineering Institute, Chang'an University, Xi'an, 710064, Shaanxi, China
| |
Collapse
|
37
|
Wen Q, Liu B, Li F, Chen Z. Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol. BIORESOURCE TECHNOLOGY 2020; 311:123516. [PMID: 32428849 DOI: 10.1016/j.biortech.2020.123516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Crude glycerol is by-product produced from biodiesel industry and can be converted directly by mixed microbial culture (MMC) into polyhydroxyalkanoates (PHAs). This study investigated the effects of the reverse (SBR_A) and positive (SBR_B) glycerol gradient substrate strategy on PHA-accumulating culture enrichment and the maximum PHA accumulating stability under substrates with different glycerol and volatile fatty acid (VFA) proportion. The results showed that crude glycerol was mainly used for PHA production rather than biomass growth in SBR_A. The maximum qPHA was 0.65 g COD/g X-1·h-1 under sole crude glycerol condition in SBR_A, which was 2.41 times higher than that of SBR_B. Moreover, the PHA accumulating ability of the biomass from SBR_A was more stable than SBR_B. Saccharibacteria_genera_incertae_sedis was for the first time found to be the dominant genus using crude glycerol for PHA production. This research provides an insight into enrichment strategy to effectively enrich PHA-accumulating culture from crude glycerol.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baozhen Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
38
|
Wang J, Sun Z. Effects of different carbon sources on 2,4,6-trichlorophenol degradation in the activated sludge process. Bioprocess Biosyst Eng 2020; 43:2143-2152. [DOI: 10.1007/s00449-020-02400-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
|
39
|
Li M, Wei D, Yan L, Yang Q, Liu L, Xu W, Du B, Wang Q, Hou H. Aerobic biodegradation of p-nitrophenol in a nitrifying sludge bioreactor: System performance, sludge property and microbial community shift. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110542. [PMID: 32275249 DOI: 10.1016/j.jenvman.2020.110542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/22/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The system performance, sludge property and microbial community shift were evaluated in a nitrifying sludge (NS) bioreactor for simultaneous treating p-Nitrophenol (PNP) and high ammonia wastewater. After long-term acclimation for 80 days, the removal efficiencies of PNP and NH4+-N reached to 99.9% and 99.5%, respectively. Meanwhile, the effluent PNP gradually decreased from 7.9 to 0.1 mg/L by acclimation of sludge. The particle size of NS increased from 115.2 μm to 226.3 μm accompanied by the decreased zeta potential as a self-protection strategy. The presence of PNP exposure altered the effluent soluble microbial products (SMP) fluorescent components and molecular composition. The increase in the relative abundance of Thauera, Nitrospiraceae and Nitrosomonas indicated the nitrification and denitrification capacities of NS increased, which maybe the PNP cometabolic biodegradation effect. Moreover, Ignavibacteria and Aeromonas were responsible as the dominant bacteria for degrading PNP in the nitrifying system.
Collapse
Affiliation(s)
- Mingrun Li
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China; Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei, 230088, PR China.
| | - Liangguo Yan
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qingwei Yang
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Lulu Liu
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Hongxun Hou
- Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei, 230088, PR China
| |
Collapse
|
40
|
Wang J, Sun Z. Exploring the effects of carbon source level on the degradation of 2,4,6-trichlorophenol in the co-metabolism process. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122293. [PMID: 32097852 DOI: 10.1016/j.jhazmat.2020.122293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
External organic sources could make up for the lack of carbon in the treatment of chlorophenol; but the impact on external carbon concentration on the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) has rarely been studied. In this study, the effect of carbon addition on the degradation of 2,4,6-TCP was investigated using the lab-scale sequencing batch reactor (SBR). The results indicated that excessive carbon amounts inhibited 2,4,6-TCP degradation in the long-term operation and a typical cycle, while a suitable dosage could increase the removal of 2,4,6-TCP. The application of external carbon rapidly decreased the dissolved oxygen level of the system, resulting in inhibited chlorophenol removal. The concentration of removed 2,4,6-TCP could be increased from 35.49-152.89 mg L-1 by adjusting the carbon dosage. At the phylum level, Proteobacteria and Acidobacteria phylum bacteria, related to 2,4,6-TCP removal, were dominant when no carbon source was added, while excessive carbon levels resulted in the overgrowth of Saccharibacteria (50.19 %), responsible for carbon metabolism. In co-metabolism systems, chlorophenol-contaminated wastewater can effectively be treated by adjusting the external carbon source.
Collapse
Affiliation(s)
- Jianguang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
41
|
Shabbir S, Faheem M, Ali N, Kerr PG, Wang LF, Kuppusamy S, Li Y. Periphytic biofilm: An innovative approach for biodegradation of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137064. [PMID: 32070890 DOI: 10.1016/j.scitotenv.2020.137064] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) have been gaining the attention of environmental researchers since the 1960s anecdotal reports of plastic entanglement and ingestion by marine creatures. Due to their increasing accretion in aquatic environments, as well as resistance towards degradation, marine litter research has focused on microplastics more recently. In the present study, a relatively new method of biodegradation was implemented for the biodegradation of three structurally different MPs i.e. polypropylene (PP), polyethylene (PE) and polyethylene terephthalate (PET). Periphytic biofilm was used for this purpose in various backgrounds of carbon sources (glucose, peptone, and glucose and peptone). Biodegradation of MPs was estimated in terms of weight loss. It was observed that the addition of glucose enhanced the biodegradation of MPs by periphyton biofilm for all MPs (from 9.52%-18.02%, 5.95%-14.02% and 13.24-19.72% for PP, PE and PET respectively) after 60 days compared to natural biofilm alone. To the contrary, peptone, and glucose and peptone together, were inhibitory. Biodegradation was further confirmed by morphological changes observed using SEM, FTIR spectra and GPC lent further support to the results whereby new peaks appeared along with reduction in old peaks and decrease in peak intensities. MiSeq sequencing shows that Deinococcus-thermus > Proteobacteria > Cyanobacteria are the dominant phyla in natural biofilms, and their relative abundances increase after the addition of glucose. However, the abundances shifted to Deinococcus-thermus > Cyanobacteria > Firmicutes > Bacteroidetes, when the biofilms were treated with either peptone alone, or with glucose and peptone together. Therefore, the change in biodegradation capability might also be due to the change in the microbial community structures after addition of the C-sources. These experiments provide an innovative approach towards effective biodegradation of MPs using a relatively new environment-friendly method.
Collapse
Affiliation(s)
- Sadaf Shabbir
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Muhammad Faheem
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, University of Chinese Academy of Sciences, 71, East Beijing Road, Nanjing 210008, Jiangsu, PR China
| | - Naeem Ali
- Department of Microbiology, Quaid-i-Azam University, 3rd Avenue, 45320 Islamabad, Pakistan
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Long-Fei Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Sathishkumar Kuppusamy
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
42
|
Lian S, Qu Y, Li S, Zhang Z, Zhang H, Dai C, Deng Y. Interaction of graphene-family nanomaterials with microbial communities in sequential batch reactors revealed by high-throughput sequencing. ENVIRONMENTAL RESEARCH 2020; 184:109392. [PMID: 32209499 DOI: 10.1016/j.envres.2020.109392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The accelerated development and application of graphene-family nanomaterials (GFNs) have increased their release to various environments and converged in wastewater treatment plants (WWTPs). However, little is known about the interactions between GFNs and microbes in WWTPs. In this study, the interaction of graphene oxide (GO) or graphene (G) at different concentrations with microbial communities in sequential batch reactors was investigated. Transmission electron microscopy and Raman spectroscopy analyses showed that the structures of GFNs were obviously changed, which suggested GFNs could be degraded by some microbes. Significantly higher DNA concentration and lower cell number in high-concentration GO group were detected by DNA leakage test and qPCR analysis, which confirmed the microbial toxicity of GO. The chemical oxygen demand and ammonia nitrogen removals were significantly affected by G and GO with high concentrations. Further, high-throughput sequencing confirmed the composition and dynamic changes of microbial communities under GFNs exposure. Saccharibacteria genera incertae sedis (12.55-28.05%) and Nakamurella (20.45-29.30%) were the predominant genera at two stages, respectively. FAPROTAX suggested 12 functional groups with obvious changes related to the biogeochemical cycle of C, N and S. Molecular ecological network analysis showed that the networks were more complex in the presence of GFNs, and the increased negative interactions reflected more competition relationships in microbial communities. This study is the first to report the effect of GFNs on network of microbial communities, which provides in-depth insights into the complex and highlights concerns regarding the risk of GFNs to WWTPs.
Collapse
Affiliation(s)
- Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhaojing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Henglin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
43
|
Moreno-Andrade I, Valdez-Vazquez I, López-Rodríguez A. Effect of transient pH variation on microbial activity and physical characteristics of aerobic granules treating 4-chlorophenol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:878-885. [PMID: 32275179 DOI: 10.1080/10934529.2020.1751505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Chlorophenols are inhibitory compounds that can be biodegraded by aerobic granules in discontinuous processes. Many industrial wastewaters are characterized by transient pH variation over time. These pH changes could affect the overall granule structure and microbial activity during the chlorophenol biodegradation. The objective of this research was to evaluate the effects of transient pH variation on the specific degradation rate (q), granule integrity coefficient (IC), and size in sequencing batch reactors treating 4-chlorophenol (4-CP). First, aerobic granules were acclimated for efficient 4-CP degradation (>99%). The acclimated granules consisted of 55.7% of the phyla Proteobacteria and 40.6% of Bacteroidetes. The main bacteria belong to the order Sphingobacteriales (24%), as well as Amaricoccus, Acidovorax, Shinella, Rhizobium, and Flavobacterium, some of which are new genera reported in acclimated granules degrading 4-CP. Then, pH changes were applied to the acclimated aerobic granules, observing that acid pHs decreased to a greater extent the specific degradation rate (67% to 99%) than basic pHs (34% to 80%). These pH changes caused the granule disaggregation but with lower effects on the IC. The effects of pH change were mainly on the microbial activity more than the physical characteristics of aerobic granules degrading 4-CP.
Collapse
Affiliation(s)
- Iván Moreno-Andrade
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Idania Valdez-Vazquez
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Antonio López-Rodríguez
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
44
|
Li Y, Zhao J, Li Y, Jin B, Zhang K, Zhang H. Long-term alkaline conditions inhibit the relative abundances of tetracycline resistance genes in saline 4-chlorophenol wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 301:122792. [PMID: 31978699 DOI: 10.1016/j.biortech.2020.122792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Considering the occurrence and spread of antibiotic resistance genes (ARGs) pose significant risks to public health, the effects of long-term exposure to alkaline conditions on the relative abundances of tetracycline resistance genes (TRGs) were studied in saline 4-chlorophenol (4-CP) wastewater treatment. Alkaline conditions were maintained by supplying the co-metabolic carbon source of sodium acetate. Results showed that except for the 4-CP, the removal of pollutants was significantly inhibited, and the relative abundances of the most TRGs were repressed. In addition, the removal of pollutants and the relative abundances of TRGs were moderately affected by the NaCl addition. The proteins in the extracellular polymeric substances (EPS) played key roles in reducing the relative abundances of TRGs, which were altered by the microbial diversity. In conclusion, for the pollutants removal and ARGs reduction in refractory industrial wastewater treatment, alkaline conditions should be maintained by selecting suitable co-metabolic carbon sources.
Collapse
Affiliation(s)
- Yahe Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Key Laboratory of Marine Biotechnology of Zhejiang, Ningbo University, Ningbo 315211, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
45
|
Ma X, Liu S, Liu Y, Li X, Li Q, Gu G, Xia C. Promoted liquid-phase hydrodechlorination of chlorophenol over Raney Ni via controlling base: Performance, mechanism, and application. CHEMOSPHERE 2020; 242:125202. [PMID: 31677512 DOI: 10.1016/j.chemosphere.2019.125202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The potential effect of base on Raney Ni-catalyzed hydrodechlorination (HDC) of chlorophenol was studied. Compared to weak inorganic bases, strong inorganic bases (NaOH and KOH) and triethylamine (Et3N) were more favorable to promote Raney Ni-catalyzed HDC reaction. Moreover, a stoichiometric amount of NaOH/Et3N was found to be optimal for the HDC reaction, and up to 100% conversion of 4-chlorophenol was achieved within 30 min. Catalyst characterization (SEM, EDXS, and XRD) combined with ICP-OES analysis were introduced to better understand the mechanism for the promoted effect of base on the HDC reaction. The results showed that the optimal amount of strong inorganic bases and Et3N efficiently eliminated HCl corrosion to Raney Ni, greatly reduced the active phase Ni and Al leaching, and avoided collapse of the catalyst framework. Based on the mechanism, the best bases and their optimal amount were developed for further disposal of polychlorinated phenols, and excellently stepwise HDC of polychlorinated phenols was achieved. Recycling tests showed that Raney Ni could be reused at least 5 times for the HDC reaction with the stoichiometric amount of NaOH, which was a promising option for the HDC of wastewater containing chlorophenols over Raney Ni.
Collapse
Affiliation(s)
- Xuanxuan Ma
- The Institute for Advanced Study of Coastal Ecology, School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China; Fujian Provincial Colleges and University Engineering Research Center of Solid Waste Resource Utilization, Longyan University, Longyan, 364012, China
| | - Sujing Liu
- The Institute for Advanced Study of Coastal Ecology, School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
| | - Ying Liu
- The Institute for Advanced Study of Coastal Ecology, School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
| | - Xiaoqiang Li
- School of Environment and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Qing Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Guodong Gu
- Alliance Pharma, Inc. 17 Lee Boulevard Malvern, PA, 19355, USA
| | - Chuanhai Xia
- The Institute for Advanced Study of Coastal Ecology, School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China.
| |
Collapse
|
46
|
Hu C, Guo Y, Guo L, Zhao Y, Jin C, She Z, Gao M. Comparation of thermophilic bacteria (TB) pretreated primary and secondary waste sludge carbon sources on denitrification performance at different HRTs. BIORESOURCE TECHNOLOGY 2020; 297:122438. [PMID: 31786037 DOI: 10.1016/j.biortech.2019.122438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
In this study, thermophilic bacteria pretreated primary and secondary waste sludge hydrolysis and acidification liquid were used as denitrification carbon sources at different HRTs (hydraulic retention time). The NO3--N removal rate of 99.3%, 99.0%, 99.9% and 99.2% was achieved at the optimal HRT of 8, 8, 4 and 6 h, respectively. Meanwhile, the utilization of COD (Chemical oxygen demand), proteins, carbohydrates, and VFAs (Volatile fatty acids) in carbon source during denitrification was also investigated. High-throughput sequencing technology showed that the microbial community changed with the different sludge carbon sources. And the dominant genus in both reactors was Thauera, which played a key role in denitrification.
Collapse
Affiliation(s)
- Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yiding Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China.
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
47
|
Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020436. [PMID: 31936459 PMCID: PMC7014234 DOI: 10.3390/ijerph17020436] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022]
Abstract
Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs.
Collapse
|
48
|
Hou L, Li J, Liu Y. Microbial communities variation analysis of denitrifying bacteria immobilized particles. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Zhao J, Li Y, Li Y, Yang H, Hu D, Jin B, Li Y. Application of humic acid changes the microbial communities and inhibits the expression of tetracycline resistance genes in 4-chlorophenol wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109463. [PMID: 31473396 DOI: 10.1016/j.jenvman.2019.109463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The occurrence and spread of antibiotic resistance genes (ARGs) are concerns that have threatened public health for many years. However, the effects of humic acid (HA) application on the expression of ARGs in chlorophenols wastewater treatment are rarely reported. In this study, we investigated the sludge performance, including the removal of pollutants, changes in the microbial communities, and the expression of tetracycline resistance genes (TRGs), to explore the function of HA in 4-chlorophenol (4-CP) wastewater treatment at different HA concentrations. The results showed that HA application did not significantly stimulate the removal of pollutants, other than the removal of PO43--P. High-throughput sequencing analysis indicated that the application of HA influenced the microbial communities and changed the expression level of TRGs. Quantitative real-time PCR analysis showed that the expression of numerous TRGs (tetC, tetG, tetW, tetX, and intI1) was significantly inhibited by the application of HA (25 mg L-1) during 4-CP wastewater treatment. In summary, HA application played an important role in treating chlorophenols wastewater and reducing the expression of TRGs. This work aimed to provide an efficient method of reducing the expression level of ARGs in industrial wastewater treatment, which has inevitable environmental significance.
Collapse
Affiliation(s)
- Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yahe Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Key Laboratory of Marine Biotechnology of Zhejiang, Ningbo University, Ningbo 315211, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Haojie Yang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Dehuan Hu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Badan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
50
|
Li S, Fei X, Cao L, Chi Y. Insights into the effects of carbon source on sequencing batch reactors: Performance, quorum sensing and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:799-809. [PMID: 31326803 DOI: 10.1016/j.scitotenv.2019.07.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Effects of carbon source on the performance, quorum sensing (QS) and microbial communities in the sequencing batch reactors were investigated in this work. Among the chosen carbon source, sodium acetate (R1), glucose (R2), starch (R3) and Tween 80 (R4), sodium acetate was the best carbon source for nutrient removal, while starch was favorable for inducing the sludge bulking, and Tween 80 was beneficial to the production of extracellular polymeric substances (EPS) and proliferation of Microthrix parvicella. Additionally, the R2 value of linear correlation between sludge settleability and particle size in four reactors followed an order of R1 > R2 > R3 > R4. Moreover, Person correlation analysis showed that various significant correlations were observed in reactors fed with different carbon sources and the QS mainly mediated the production and component of EPS. High-throughput sequencing analysis revealed that the carbon source affected microbial communities and the Canonical correspondence analysis results indicated that QS related to microbial communities. It was inferred that the interactions between microbial communities and QS affected system performance.
Collapse
Affiliation(s)
- Songya Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuening Fei
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Lingyun Cao
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|