1
|
Jiang W, Wei H, Xu Z, Kang J, Wang S, Liu D, Ren Y, Ngo HH, Guo W, Ye Y. Lighting promotes sulfate removal and improves microbial community stability in upflow anaerobic sludge bed reactors under low ratio of chemical oxygen demand to sulfate. BIORESOURCE TECHNOLOGY 2025; 428:132473. [PMID: 40174651 DOI: 10.1016/j.biortech.2025.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
The anaerobic treatment of sulfur-laden organic wastewater is common; however, competition between sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) can result in low removal efficiencies and unstable systems. Photosynthetic bacteria, capable of oxidizing reduced sulfides, can alleviate sulfide toxicity to microorganisms, thereby enhancing sulfate removal. This study compared the performance of anaerobic reactors under identical organic loads but with varying light conditions and different carbon-to-sulfur (C/S) ratios. The illuminated reactors outperformed the non-illuminated ones, achieving sulfate removal rates exceeding 85% when the light wavelength was optimized. Sludge analysis revealed that the illuminated group had larger particle sizes and higher protein and polysaccharide contents compared to the non-illuminated group. These findings suggest that light exposure enhances the removal of sulfate and organic matter, mitigates competitive inhibition, and promotes synergistic interactions among microbial populations, offering valuable insights for treating sulfate-rich wastewater using photosynthetic bacteria.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haoyi Wei
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi Xu
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China
| | - Jianxiong Kang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Songlin Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongqi Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongzheng Ren
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuanyao Ye
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Zhang H, Zhang R, Du Y, Huang S, Zhao F, Kim DH, Ng HY, Shi X, Xu B. From waste to wealth: Exploring the effect of particle size on biopolymer harvesting from aerobic granular sludge. BIORESOURCE TECHNOLOGY 2025; 418:131977. [PMID: 39674353 DOI: 10.1016/j.biortech.2024.131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This study aimed to examine the impact of aerobic granular sludge (AGS) sizes on its properties and alginate-like exopolymers (ALE) recovery potential. The AGS was cultivated in a lab-scale bioreactor and categorized into six size classes with 200 μm intervals. There appeared a critical size (400-800 μm) for developing stable AGS structure and excellent ALE recovery. A higher hydrophobicity (74.36 %) and density (1,037 g/L) was observed in AGS400-600μm than other sizes. Moreover, the highest ALE yield was obtained in ALE600-800μm (388 mg/g VSS) for its higher abundance of EPS-producers (35.1 %), while the PN content of ALE400-600μm was higher than other samples. Meanwhile, the concentrations of metal elements within the ALE and AGS identified that there was no bio-accumulation of metal elements in the ALE. This study offers an in-depth understanding of biopolymer recovery from AGS, paving the way for a novel resource recovery strategy through the regulation of AGS sizes.
Collapse
Affiliation(s)
- Haifeng Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Runze Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Yupeng Du
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Shujuan Huang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Fei Zhao
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Dong-Hoon Kim
- Department of Smart City Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - How Yong Ng
- Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - Xueqing Shi
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China.
| | - Boyan Xu
- Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
3
|
Niu C, Zhang Z, Cai T, Pan Y, Lu X, Zhen G. Sludge bound-EPS solubilization enhance CH 4 bioconversion and membrane fouling mitigation in electrochemical anaerobic membrane bioreactor: Insights from continuous operation and interpretable machine learning algorithms. WATER RESEARCH 2024; 264:122243. [PMID: 39142046 DOI: 10.1016/j.watres.2024.122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Bound extracellular polymeric substances (EPS) are complex, high-molecular-weight polymer mixtures that play a critical role in pore clogging, foulants adhesion, and fouling layer formation during membrane filtration, owing to their adhesive properties and gelation tendencies. In this study, a novel electrochemical anaerobic membrane bioreactor (EC-AnMBR) was constructed to investigate the effect of sludge bound-EPS solubilization on methane bioconversion and membrane fouling mitigation. During the 150-days' operation, the EC-AnMBR demonstrated remarkable performance, characterized by an exceptionally low fouling rate (transmembrane pressure (TMP) < 4.0 kPa) and high-quality effluent (COD removal > 98.2 %, protein removal > 97.7 %, and polysaccharide removal > 98.5 %). The highest methane productivity was up to 38.0 ± 3.1 mL/Lreactor/d at the applied voltage of 0.8 V with bound-EPS solubilization, 107.6 % higher than that of the control stage (18.3 ± 2.4 mL/Lreactor/d). Morphological and multiplex fluorescence labeling analyses revealed higher fluorescence intensities of proteins, polysaccharides, total cells and lipids on the surface of the fouling layer. In contrast, the interior exhibited increased compression density and reduced activity, likely attributable to compression effect. Under the synergistic influence of the electric field and bound-EPS solubilization, biomass characteristics exhibited a reduced propensity for membrane fouling. Furthermore, the bio-electrochemical regulation enhanced the electroactivity of microbial aggregates and enriched functional microorganisms, thereby promoting biofilm growth and direct interspecies electron transfer. Additionally, the potential hydrogenotrophic and methylotrophic methanogenesis pathways were enhanced at the cathode and anode surfaces, thereby increasing CH₄ productivity. The random forest-based machine learning model analyzed the nonlinear contributions of EPS characteristics on methane productivity and TMP values, achieving R² values of 0.879 and 0.848, respectively. Shapley additive explanations (SHAP) analysis indicated that S-EPSPS and S-EPSPN were the most critical factors affecting CH₄ productivity and membrane fouling, respectively. Partial dependence plot analysis further verified the marginal and interaction effects of different EPS layers on these outcomes. By combining continuous operation with interpretable machine learning algorithms, this study unveils the intricate impacts of EPS characteristics on methane productivity and membrane fouling behaviors, and provides new insights into sludge bound-EPS solubilization in EC-AnMBR.
Collapse
Affiliation(s)
- Chengxin Niu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663N. Zhongshan Rd., Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
4
|
Paissoni E, Jefferson B, Soares A. Hydrolytic enzyme activity in high-rate anaerobic reactors treating municipal wastewater in temperate climates. BIORESOURCE TECHNOLOGY 2024; 406:130975. [PMID: 38879058 DOI: 10.1016/j.biortech.2024.130975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Particulate matter hydrolysis is the bottleneck in anaerobic treatment of municipal wastewater in temperate climates. Low temperatures theoretically slow enzyme-substrate interactions, hindering utilization kinetics, but this remains poorly understood. β-glucosidase, protease, and lipase activities were evaluated in two pilot-scale upflow anaerobic sludge blanket (UASB) reactors, inoculated with different sludges and later converted to anaerobic membrane bioreactors (AnMBRs). Despite similar methane production and solids hydrolysis rates, significant differences emerged. Specific activity peaked at 37 °C, excluding the predominance of psychrophilic enzymes. Nevertheless, the Michaelis-Menten constant (Km) indicated high enzyme-substrate affinity at the operational temperature of 15-20 °C, notably greater in AnMBRs. It is shown, for the first time, that different seed sludges can equally adapt, as hydrolytic enzymatic affinity to the substrate reached similar values in the two reactors at the operational temperature and identified that membrane ultrafiltration impacted hydrolysis by a favourable enzyme Michaelis-Menten constant.
Collapse
Affiliation(s)
- Eleonora Paissoni
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Bruce Jefferson
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Ana Soares
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
5
|
Hu W, Zheng S, Wang J, Lu X, Han Y, Wang J, Zhen G. Optimizing bioelectromethanosynthesis of CO 2 and membrane fouling mitigation in MECs via in-situ biogas recirculation. CHEMOSPHERE 2024; 358:142119. [PMID: 38697567 DOI: 10.1016/j.chemosphere.2024.142119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.
Collapse
Affiliation(s)
- Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai, 200062, China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai, 200092, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
6
|
Yang G, Cao JM, Cui HL, Zhan XM, Duan G, Zhu YG. Artificial Sweetener Enhances the Spread of Antibiotic Resistance Genes During Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10919-10928. [PMID: 37475130 DOI: 10.1021/acs.est.2c08673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Artificial sweeteners have been frequently detected in the feedstocks of anaerobic digestion. As these sweeteners can lead to the shift of anaerobic microbiota in the gut similar to that caused by antibiotics, we hypothesize that they may have an antibiotic-like impact on antibiotic resistance genes (ARGs) in anaerobic digestion. However, current understanding on this topic is scarce. This investigation aimed to examine the potential impact of acesulfame, a typical artificial sweetener, on ARGs in anaerobic digestion by using metagenomics sequencing and qPCR. It was found that acesulfame increased the number of detected ARG classes and the abundance of ARGs during anaerobic digestion. The abundance of typical mobile genetic elements (MGEs) and the number of potential hosts of ARGs also increased under acesulfame exposure, suggesting the enhanced potential of horizontal gene transfer of ARGs, which was further confirmed by the correlation analysis between absolute abundances of the targeted ARGs and MGEs. The increased horizontal dissemination of ARGs may be associated with the SOS response induced by the increased ROS production, and the increased cellular membrane permeability. These findings indicate that artificial sweeteners may accelerate ARG spread through digestate disposal, thus corresponding strategies should be considered to prevent potential risks in practice.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jin-Man Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xin-Min Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway H91 TK33, Ireland
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
7
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|
8
|
Prakash O, Mostafa A, Im S, Kang S, Shi X, Kim DH. Upflow anaerobic sludge blanket reactor operation under high pressure for energy-rich biogas production. BIORESOURCE TECHNOLOGY 2023; 376:128897. [PMID: 36931446 DOI: 10.1016/j.biortech.2023.128897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Autogenerative high-pressure digestion has an advantage of producing CH4-rich biogas directly from the reactor. However, its continuous operation has rarely been reported, and has never been attempted in an upflow anaerobic sludge blanket reactor (UASB). Here, UASB was continuously operated at 10 g COD/L/d with increasing pressure from 1 to 8 bar. As the pressure increased, the CH4 content in the biogas increased gradually, reaching 96.7 ± 0.8% at 8 bar (309 MJ/m3 biogas). The pH was dropped from 8.2 to 7.2 with pressure increase, but COD removal efficiency was maintained > 90%. The high pressure up to 8 bar did not adversely impact the physicochemical properties of granules, which was due to the increased production of extracellular polymeric substances (EPS), particularly, tightly bound EPS (34% increase). With pressure increase, there was no changes in the microbial community and ATPase gene expression, but 41% increase in carbonic anhydrase gene expression was observed.
Collapse
Affiliation(s)
- Om Prakash
- Department of Smart-City Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Alsayed Mostafa
- Department of Smart-City Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seongwon Im
- Department of Smart-City Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Dong-Hoon Kim
- Department of Smart-City Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
9
|
Kim J, Choi H, Park J, Lee C. Effects of submicron magnetite particles on granulation of flocculent sludge and process stability in upflow anaerobic sludge blanket reactor. BIORESOURCE TECHNOLOGY 2022; 366:128205. [PMID: 36341859 DOI: 10.1016/j.biortech.2022.128205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Promoting direct interspecies electron transfer (DIET) with conductive additives is considered a promising approach to enhance methanogenesis. This study investigated the effects of adding submicron magnetite particles on sludge granulation and methanogenic performance in upflow anaerobic sludge blanket reactors inoculated with flocculent sludge. The reactor supplemented with magnetite was more stable and resilient than the no-magnetite control, with higher degree of granulation (up to 26.6-fold) and biomass retention. Magnetite addition to unstable reactors improved the methane yield in both reactors (1.2-1.3-fold). Electroactive Deltaproteobacteria bacteria, including Geobacter and Syntrophobacter, were enriched in the presence of magnetite. Methanogenic functional genes involved in DIET-based syntrophy were more abundant under magnetite-supplemented conditions. However, the improvement of methanogenic performance and granulation was limited, and inducing the self-embedment of magnetite into mature sludge granules rather than granulating flocculent sludge with magnetite appears to be a better strategy for engineering DIET in anaerobic granular sludge systems.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyungmin Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jihun Park
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Yuan Y, Zhang L, Chen T, Huang Y, Qian X, He J, Li Z, Ding C, Wang A. Simultaneous recovery of bio-sulfur and bio-methane from sulfate-rich wastewater by a bioelectrocatalysis coupled two-phase anaerobic reactor. BIORESOURCE TECHNOLOGY 2022; 363:127883. [PMID: 36067888 DOI: 10.1016/j.biortech.2022.127883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The microbial electrolysis cell coupled the two-phase anaerobic digestion (MEC-TPAD) was developed for simultaneous recovery of bio-sulfur and bio-methane from sulfate-rich wastewater. In acidogenic phase, the produced sulfides were efficiently converted into bio-sulfur via anodic bio-oxidation, with a maximum recovery of 59 ± 5.5 %. The anode coupled acidogenesis produced more volatile fatty acids which were benefit for the subsequent methanogenesis. The cathode in methanogenic phase created a suitable pH condition and enhanced the methanogenesis. Correspondingly, the maximum bio-methane yield in MEC-TPAD was 2 times higher than that in TPAD. Microbial communities revealed that major functional consortia capable of sulfides oxidation (e.g. Alcaligenes) in anode biofilm, hydrogenotrophic methanogenesis (e.g. Methanobacterium) in cathode biofilm, and acetotrophic methanogenesis (e.g. Methanosaeta) in methanogenic sludge were enriched. Economic benefit could totally cover the cost of input electric energy. This work opens an appealing avenue for recovering nutrient and energy from wastewater.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Lulu Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yutong Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xucui Qian
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Juan He
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
11
|
Takemura Y, Aoki M, Danshita T, Iguchi A, Ikeda S, Miyaoka Y, Sumino H, Syutsubo K. Effects of sulfate concentration on anaerobic treatment of wastewater containing monoethanolamine using an up-flow anaerobic sludge blanket reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129764. [PMID: 35986941 DOI: 10.1016/j.jhazmat.2022.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Monoethanolamine (MEA), a toxic organic chemical, is widely used in industries and is found in their wastewater. Anaerobic MEA degradation is an appropriate strategy to reduce energy and cost for treatment. Industry wastewaters also contain sulfate, but information on the effects of sulfate on MEA degradation is limited. Here, an up-flow anaerobic sludge blanket (UASB) for MEA-containing wastewater treatment was operated under psychrophilic conditions (18-20 ºC) to investigate the effects of sulfate on the microbial characteristics of the retained sludge. To acclimatize the sludge, the proportion of MEA in the influent (containing sucrose, acetate, and propionate) was increased from 15% to 100% of total COD (1500 mg L-1); sulfate was then added to the influent. The COD removal efficiency remained above 95% despite the increase in MEA and sulfate. However, granular sludge disintegration was observed when sulfate was increased from 20 to 330 mg L-1. Batch tests revealed that propionate and acetate were produced as the metabolites of MEA degradation. In response to sulfate acclimation, methane-producing activities for propionate and hydrogen declined, while sulfate-reducing activities for MEA, propionate, and hydrogen increased. Accordingly, acclimation and changes in dominant microbial groups promoted the acetogenic reaction of propionate by sulfate reduction.
Collapse
Affiliation(s)
- Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Tsuyoshi Danshita
- Department of Civil Engineering and Architecture, National Institute for Technology, Tokuyama College, 3538 Gakuendai, Shunan, Yamaguchi 745-8585, Japan
| | - Akinori Iguchi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashizima, Akihaku, Niigata 956-8603, Japan
| | - Shoji Ikeda
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinko, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Yuma Miyaoka
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Haruhiko Sumino
- Department of Civil Engineering, National Institute of Technology, Gifu College, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495, Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
12
|
Meng T, Wei Q, Yang Y, Cai Z. The influences of soil sulfate content on the transformations of nitrate and sulfate during the reductive soil disinfestation (RSD) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151766. [PMID: 34801506 DOI: 10.1016/j.scitotenv.2021.151766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The transformations and products of sulfate (SO42-) and nitrate (NO3-), especially the influences of SO42- content on the transformations during RSD process, are unclear. In this study, a series of soil SO42- contents (from 333 to 3000 mg S kg-1) were prepared before RSD treatment. The results indicated that nearly all the cumulative NO3- (>98.6%) was removed and not affected by the soil SO42- content. The 15N recovery results showed that 0.57-1.24% and 2.94-4.59% of NO3- translated into ammonium (NH4+) and organic N, respectively, and high SO42- contents stimulated the processes of NO3- dissimilatory reduction and NO3- immobilization. The soluble SO42- contents decreased by 397-922 mg S kg-1, but the contents of total sulfur, sulfide, and sulfate precipitation varied slightly after RSD, indicating that the decreased SO42- was mainly immobilized into organic sulfur in all soils. In addition, a fraction of decreased SO42- was adsorbed to the soil with a relatively high SO42- content. The leaching of SO42- was high (42.9-602 mg S kg-1) during the RSD process, and the leaching amounts increased with increasing soil SO42- content. In terms of the gases emitted from the transformations of NO3- and SO42-, the cumulative emissions of nitrous oxide (N2O) and six sulfurous gases (hydrogen sulfide, carbonyl sulfide, carbon disulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide) were in the ranges of 17.1-21.2 mg N kg-1 and 7.78-23.5 μg S kg-1, respectively, during the whole RSD process. The emissions of sulfurous gases were inhibited by high soil SO42- content, but the N2O emissions were unaffected. In conclusion, the soil SO42- content influenced the transformations of NO3- and SO42- during RSD process, and the SO42- leaching and N2O emissions might threaten the environment which should be concerned.
Collapse
Affiliation(s)
- Tianzhu Meng
- College of Agriculture Science and Engineering, Hohai University, Nanjing 211106, China.
| | - Qi Wei
- College of Agriculture Science and Engineering, Hohai University, Nanjing 211106, China
| | - Yanju Yang
- School of Geography Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zucong Cai
- School of Geography Sciences, Nanjing Normal University, Nanjing 210023, China; Zhongke Clean Soil (Guangzhou) Technology Service Co., Ltd., Guangzhou 510000, China.
| |
Collapse
|
13
|
Zhi Z, Pan Y, Lu X, Wang J, Zhen G. Bioelectrochemical regulation accelerates biomethane production from waste activated sludge: Focusing on operational performance and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152736. [PMID: 34974012 DOI: 10.1016/j.scitotenv.2021.152736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Bioelectrochemical regulation represents a newly emerging strategy to enhance anaerobic digestion (AD) of biowastes. Herein, a novel microbial electrolysis cell (MEC) system, equipped with a pair of carbon brush anode and hybrid Ti/RuO2-graphite felt cathode, was developed to explore the role of bioelectrochemical regulation in the proliferation/enrichment of functional microbes and methanation of waste activated sludge. The methane production was significantly improved by applying bioelectrochemical regulation. The maximum methane yield was 16.4 mL/L-reactor at the applied external voltage 1.2 V and solids retention time 15 d, 8.6-time higher than that of a single AD. Further analysis demonstrated that bioelectrochemical regulation selectively enriched electroactive fermentative partners and methanogens (especially Thermincola, Methanobacterium) in the MEC-AD system and built up a robust syntrophic interaction. This drove the decomposition of complex organics and concurrent bioelectroreduction of CO2 in biogas and subsequently enhanced methane generation. Besides, bioelectrochemical simulation attenuated N2O emissions and enhanced the dewaterability of digested sludge.
Collapse
Affiliation(s)
- Zhongxiang Zhi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Nanjing Innovation Center for Environmental Protection Industry Co. Ltd., Nanjing 211106, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Jianhui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| |
Collapse
|
14
|
Kudisi D, Lu X, Zheng C, Wang Y, Cai T, Li W, Hu L, Zhang R, Zhang Y, Zhen G. Long-term performance, membrane fouling behaviors and microbial community in a hollow fiber anaerobic membrane bioreactor (HF-AnMBR) treating synthetic terephthalic acid-containing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127458. [PMID: 34653863 DOI: 10.1016/j.jhazmat.2021.127458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Purified terephthalic acid (PTA) wastewater with properties of poor biodegradation and high toxicity is produced from refining and synthesis of petrochemical products. In this study, a lab-scale hollow fiber membrane bioreactor (HF-AnMBR) fed with synthetic PTA wastewater was operated over 200 days with stepwise decreased hydraulic retention time (HRT) to investigate the long-term performance, membrane fouling mechanism and microbial community evolution. Results showed that a stable chemical oxygen demand (COD) removal rate of 65.8 ± 4.1% was achieved at organic loading rate of 3.1 ± 0.3 g-COD/L-reactor/d and HRT 24 h, under which the methane production rate reached 0.33 ± 0.02 L/L-reactor/d. Further shortening HRT, however, led to the decreased COD removal efficiency and low methane bioconversion. A mild membrane fouling occurred due to the production of colloidal biopolymers and the interaction between increased colloidal substances secreted/cracked by microorganisms and membrane interface. Further 16S rRNA analysis indicated that microbial diversity and richness had changed with the variation of HRT while Methanosaeta, and Methanolinea species were always the dominant methanogens responsible for methane production. The results verify that HF-AnMBR is an alternative technology for PTA wastewater treatment along with energy harvesting, and provide a new avenue toward sustainable petrochemical wastewater management.
Collapse
Affiliation(s)
- Dilibaierkezi Kudisi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Chaoting Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yue Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Lingtan Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ruiliang Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yizhi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
15
|
Kim J, Choi H, Lee C. Formation and characterization of conductive magnetite-embedded granules in upflow anaerobic sludge blanket reactor treating dairy wastewater. BIORESOURCE TECHNOLOGY 2022; 345:126492. [PMID: 34875372 DOI: 10.1016/j.biortech.2021.126492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Promoting direct interspecies electron transfer (DIET) with conductive additives has proved effective in improving anaerobic digestion performance and stability. However, its application is limited by the need to replenish the washout loss of conductive materials. This study reports the formation of conductive magnetite-embedded granular sludge and its long-term influence on the performance of upflow anaerobic sludge blanket reactors treating dairy wastewater. The magnetite-supplemented reactor maintained better performance than the no-magnetite control, with greater sludge settling and electron transport activity, throughout the 192-d experiment at increasing organic loading rates (1.2-8.5 g chemical oxygen demand/L·d). The abundance of electroactive microbes also remained higher in the magnetite-supplemented reactor. The results suggest that DIET-based electric syntrophy was promoted in the magnetite-embedded granules. This study is the first to demonstrate the self-embedment of submicron conductive material into granular sludge and its benefits. These findings offer a new approach to enhancing anaerobic granular sludge systems.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyungmin Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
16
|
Li K, Gong H, Liu Y, Ma J, Shi C, Wang K. Hydrogenotrophic methanogenic granular sludge formation for highly efficient transforming hydrogen to CH 4. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:113999. [PMID: 34863591 DOI: 10.1016/j.jenvman.2021.113999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
This paper presents a potential process that can enhance H2 transformation to CH4 and simultaneously upgrading biogas by using hydrogenotrophic methanogens. For the first time, anaerobic granules were developed in upflow anaerobic sludge blanket (UASB) reactor feeding H2/CO2 syngas as the sole substrate and the granule characterization was thoroughly investigated. The results from experiment revealed that the H2 consumption rates of UASB reactor increased from 32.2 mmol L-1·d-1 at H2 feeding rate 0.08 g L-1·d-1 to 132.0 mmol L-1·d-1 at 0.37 g L-1·d-1, indicating that the hydrogenotrophic methanogenesis pathway was stimulated by injection of H2. Abundant cavities and cracks were observed on the surface and cross-section of granules, which greatly facilitated internally transferring H2/CO2 synthesis gas and biogas escape. The abundance of hydrogenotrophic Methanobacterium increased, while Methanosaeta, Methanosarcina, and Methanomassiliicoccus decreased with increasing H2 feeding rate. In general, this paper offers a feasible solution in terms of energy transformation and connecting power to fuel.
Collapse
Affiliation(s)
- Kun Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yue Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinyuan Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Chuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
17
|
Ai T, Zou L, Cheng H, Luo Z, Al-Rekabi WS, Li H, Fu Q, He Q, Ai H. The potential of electrotrophic denitrification coupled with sulfur recycle in MFC and its responses to COD/SO 42- ratios. CHEMOSPHERE 2022; 287:132149. [PMID: 34496337 DOI: 10.1016/j.chemosphere.2021.132149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Electrotrophic denitrification is a promising novel nitrogen removal technique. In this study, the performance and the mechanism of electrotrophic denitrification coupled with sulfate-sulfide cycle were investigated under different anodic influent COD/SO42- ratios. The results showed that electrotrophic denitrification contributed to more than 22% total nitrogen removal in cathode chamber. Higher COD/SO42- ratios would deteriorate the sulfate reduction but enhance methane production. Further mass balance indicated that the electron flow utilized by methanogenic archaea (MA) increased while that utilized by sulfate-reducing bacteria (SRB) decreased as the COD/SO42- ratio increased from 0.44 to 1.11. However, higher COD/SO42- ratios would produce more electrons to strengthen electrotrophic denitrification. Microbial community analysis showed that the biocathode was predominantly covered by Thiobacillus that encoded with narG gene. These findings collectively suggest that electrotrophic denitrification could be a sustainable approach to simultaneously remove COD and nitrogen under suitable COD/SO42- ratio based on sulfur cycle in wastewater.
Collapse
Affiliation(s)
- Tao Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Linzhi Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Hong Cheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Zhongwu Luo
- 3rd Construction Co., LTD of China Construction 5th Engineering Bureau, PR China
| | - Wisam S Al-Rekabi
- Civil Engineering Department, College of Engineering, University of Basrah, Iraq
| | - Hua Li
- Chongqing Water Group Co. Ltd, PR China
| | - Qibin Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Hainan Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
18
|
Abstract
Starch production is mainly focused on feedstocks such as corn, wheat and potato in the EU, whereas cassava, rice, and other feedstocks are utilised worldwide. In starch production, a high amount of wastewater is generated, which accumulates from different process steps such as washing, steeping, starch refining, saccharification and derivatisation. Valorisation of these wastewaters can help to improve the environmental impact as well as the economics of starch production. Anaerobic fermentation is a promising approach, and this review gives an overview of the different utilisation concepts outlined in the literature and the state of the technology. Among bioenergy recovery processes, biogas technology is widely applied at the industrial scale, whereas biohydrogen production is used at the research stage. Starch wastewater can also be used for the production of bulk chemicals such as acetone, ethanol, butanol or lactic acids by anaerobic microbes.
Collapse
|
19
|
Zhou S, Wang J, Peng S, Chen T, Yue Z. Anaerobic co-digestion of landfill leachate and acid mine drainage using up-flow anaerobic sludge blanket reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8498-8506. [PMID: 33067788 DOI: 10.1007/s11356-020-11207-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was developed and constructed for the treatment of landfill leachate and acid mine drainage (AMD). The removal of chemical oxygen demand (COD), sulfate, and metal ions was studied. The maximum COD and sulfate removal efficiency reached 75% and 69%, respectively, during the start-up phase of the UASB. The hydraulic retention time (HRT) had a significant influence on the system. The maximum removal efficiency for COD and sulfate reached 83% and 78%, respectively, at an HRT of 20 h. The methane production process competed with the sulfate reduction process in the UASB. The fractionation of metals in the sludge was analyzed to facilitate metal recovery in a later processing stage. The most abundant sulfate-reducing bacteria was Desulfobulbus, and the methanogen archaeal community in the reactor was mainly composed of Methanobacterium.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Tianhu Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
20
|
Kuramae EE, Dimitrov MR, da Silva GHR, Lucheta AR, Mendes LW, Luz RL, Vet LEM, Fernandes TV. On-Site Blackwater Treatment Fosters Microbial Groups and Functions to Efficiently and Robustly Recover Carbon and Nutrients. Microorganisms 2020; 9:E75. [PMID: 33396683 PMCID: PMC7824102 DOI: 10.3390/microorganisms9010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/04/2022] Open
Abstract
Wastewater is considered a renewable resource water and energy. An advantage of decentralized sanitation systems is the separation of the blackwater (BW) stream, contaminated with human pathogens, from the remaining household water. However, the composition and functions of the microbial community in BW are not known. In this study, we used shotgun metagenomics to assess the dynamics of microbial community structure and function throughout a new BW anaerobic digestion system installed at The Netherlands Institute of Ecology. Samples from the influent (BW), primary effluent (anaerobic digested BW), sludge and final effluent of the pilot upflow anaerobic sludge blanket (UASB) reactor and microalgae pilot tubular photobioreactor (PBR) were analyzed. Our results showed a decrease in microbial richness and diversity followed by a decrease in functional complexity and co-occurrence along the different modules of the bioreactor. The microbial diversity and function decrease were reflected both changes in substrate composition and wash conditions. Our wastewater treatment system also decreased microbial functions related to pathogenesis. In summary, the new sanitation system studied here fosters microbial groups and functions that allow the system to efficiently and robustly recover carbon and nutrients while reducing pathogenic groups, ultimately generating a final effluent safe for discharge and reuse.
Collapse
Affiliation(s)
- Eiko E. Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mauricio R. Dimitrov
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
| | - Gustavo H. R. da Silva
- Department of Environmental and Civil Engineering, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
| | - Adriano R. Lucheta
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
| | - Lucas W. Mendes
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
| | - Ronildson L. Luz
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (M.R.D.); (A.R.L.); (L.W.M.); (R.L.L.)
| | - Louise E. M. Vet
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands;
| | - Tania V. Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
21
|
Biswal BK, Wang B, Chen L, Chen GH, Wu D. Rational design of sulfidogenic granular sludge reactor with clostridia as dominant bacteria for energy-efficient sulfate-laden wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 317:124017. [PMID: 32822894 DOI: 10.1016/j.biortech.2020.124017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The sludge flotation and washout are frequently observed in anaerobic sulfidogenic reactor. This challenge raised the interests of re-thinking/re-designing of a compact and low-flotation bioreactor. The present study investigated to understand the temporal dynamics of microbial community and granular sludge properties in a pneumatic-mixing reactor treating sulfate-laden wastewater. The findings revealed that the reactor performance and sludge properties were dynamically changed and correlated over long-term run. In the bioreactor, a rarer type of sulfate reducing bacteria (genus Clostridium XVIII) was remarkably enriched (~30% abundance). The Clostridium XVIII-mediated COD removal (92.7 ± 3.9%) was further confirmed via mass balance which demonstrated the growth rate of total active biomass and sulfate-reducing active biomass were 19.95 and 6.0 mg-COD/Linfluent respectively. The PICRUSt data suggested that i) high abundance of carbohydrate metabolism and S-reductase enzymes enriched, and ii) energy metabolism enzymes decreased which implies that the new SRB communities are more energy-efficient than conventional ones.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bo Wang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
22
|
Sui Q, Jiang L, Di F, Yue W, Chen Y, Wang H, Chen M, Wei Y. Multiple strategies for maintaining stable partial nitritation of low-strength ammonia wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140542. [PMID: 32623174 DOI: 10.1016/j.scitotenv.2020.140542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Stable production of nitrite is an essential technical challenge for mainstream anaerobic ammonia oxidation (Anammox). Due to difficulties in the stable inhibition of nitrite oxidizing bacteria (NOB) and maintenance of long-term partial nitritation (PN), integrated multiple, rather than a single, controlling strategies were preferred especially in a continuous-flow treatment system. A mathematically model was developed to evaluate effects of integrated multiple-strategies on ammonia oxidizing bacteria (AOB) and NOB. Through experimental study and model simulation, intermittent aeration and low SRT (3.5 d) resulted in unstable nitrite accumulation. Integrated multiple-strategies of intermittent aeration, low SRT (3.5 d) and bioaugmentation achieved nitrite accumulation rate of 81% and NO2--N/NH4+-N ratio in effluent of 1.29, which was preferable for further anammox process. Meanwhile, the richness and diversity of microbial community increased due to the bioaugmentation. The AOB/NOB ratio increased from 13.8 to 34.1 which facilitated nitrite accumulation. In combination with bioaugmentation, the observed growth rates of AOB and NOB increased from -0.0835 and -0.0282 to 0.0434 and 0.0127 d-1, respectively, which promoted AOB outcompeting NOB in the mixed liquid.
Collapse
Affiliation(s)
- Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li'an Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Fei Di
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Song S, Jiang M, Yao J, Liu H, Dai X. Anaerobic digestion of spectinomycin mycelial residues pretreated by thermal hydrolysis: removal of spectinomycin and enhancement of biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39297-39307. [PMID: 32642905 DOI: 10.1007/s11356-020-09985-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion (AD) is an effective technology to dispose antibiotic mycelial residues, but biogas production is influenced by hydrolysis rates and antibiotic residue. Herein, the effects of thermal hydrolysis pretreatment for AD of spectinomycin mycelial residues (SMRs) were investigated. The results showed that the removal ratio of spectinomycin was increased while the temperature of pretreatment was escalating. Meanwhile, thermal hydrolysis facilitated the dissolution of organic matters. However, non-biodegradable substances measured by fluorescence excitation-emission matrix accumulated and thus had an adverse influence on biogas production. Based on batch assays, the optimal pretreatment temperature for SMRs was 120 °C. The removal of spectinomycin was benefit for biogas production (increasing by 7.6%), and the overall biogas production increased by 27.6% compared with 289.90 mL gVS-1 of untreated SMRs. The microbial community analysis revealed that spectinomycin (265 mg L-1) might influence bacteria in the early stage of AD (first 5 days), while redundancy analysis showed that spectinomycin had a non-significant influence on community succession over the 32 days of fermentation.
Collapse
Affiliation(s)
- Siqi Song
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mingye Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Yao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
24
|
Niu C, Pan Y, Lu X, Wang S, Zhang Z, Zheng C, Tan Y, Zhen G, Zhao Y, Li YY. Mesophilic anaerobic digestion of thermally hydrolyzed sludge in anaerobic membrane bioreactor: Long-term performance, microbial community dynamics and membrane fouling mitigation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Chang M, Wang Y, Zhong R, Zhang K, Pan Y, Lyu L, Zhu T. Performance of HABR + MSABP system for the treatment of dairy wastewater and analyses of microbial community structure and low excess sludge production. BIORESOURCE TECHNOLOGY 2020; 311:123576. [PMID: 32470867 DOI: 10.1016/j.biortech.2020.123576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 05/12/2023]
Abstract
The potential of the system, a hybrid anaerobic baffled reactor (HABR) coupled with a multi-stage active biological process (MSABP) reactor, for simulated dairy wastewater at various temperature, hydraulic retention time (HRT), and pH was investigated. Percentage removals of chemical oxygen demand (COD) and NH4+ were optimized using response surface methodology. Under optimized conditions (temperature, 33 °C; HRT, 24 h; pH, 7.35), the removal efficiencies of COD and NH4+ were 99.89% and 97.83%, respectively. Miseq sequencing analysis exhibited that the anaerobic segment of the system was dominated by fermentation and acetogenic bacteria, and in the aerobic segment, microorganisms involved in the nitrogen cycle were significantly enriched. Meanwhile, it could be found that the excess sludge production of the process was much lower than that of other bio-processes. The average excess sludge production rate was 0.025-0.05 g SS/g COD removed under different organic loadings.
Collapse
Affiliation(s)
- Mingdong Chang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Rui Zhong
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Kuo Zhang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Yuan Pan
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Liting Lyu
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China.
| |
Collapse
|
26
|
Zang Y, Yang Y, Hu Y, Ngo HH, Wang XC, Li YY. Zero-valent iron enhanced anaerobic digestion of pre-concentrated domestic wastewater for bioenergy recovery: Characteristics and mechanisms. BIORESOURCE TECHNOLOGY 2020; 310:123441. [PMID: 32361204 DOI: 10.1016/j.biortech.2020.123441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Pre-concentrated domestic wastewater (PDWW) rich in organic matters can be a suitable substrate for anaerobic digestion (AD) towards holistic resource and bioenergy recovery. Micron zero-valent iron (ZVI) was applied in designed batch experiments during anaerobic treatment of PDWW to verify its roles in performance enhancement and associated mechanisms. In the selected range of food to microorganism (F/M) ratio, 0.5 gCOD/gMLVSS was most appropriate as biomethane production potential (BMP) of 0.275 L CH4/gCOD was obtained. The optimal ZVI dosage at fixed F/M of 0.5 was 6 g/L, further enhancing the BMP by 15.2%. Furthermore, ZVI improved the hydrolysis process (producing more soluble organics) and regulated acidification process (affecting volatile fatty acids distribution). No obvious impact on acetoclastic and hydrogenotrophic methanogenesis processes was noted with ZVI addition. ZVI based AD of the PDWW is promising for promoting the practical application of advanced domestic wastewater treatment strategy (pre-concentration plus anaerobic digestion).
Collapse
Affiliation(s)
- Ying Zang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuan Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Huu Hao Ngo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
27
|
Niu C, Zhang Z, Pan Y, Tan Y, Lu X, Zhen G. Does the combined free nitrous acid and electrochemical pretreatment increase methane productivity by provoking sludge solubilization and hydrolysis? BIORESOURCE TECHNOLOGY 2020; 304:123006. [PMID: 32078903 DOI: 10.1016/j.biortech.2020.123006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Free nitrous acid based pretreatments are novel and effective chemical strategies for enhancing waste activated sludge solubilization. In this study, the synergetic effects of the combined free nitrous acid and electrochemical pretreatment on sludge solubilization and subsequent methane productivity were evaluated. The results indicated that pretreatment with 10 V plus 14.17 mg N/L substantially enhanced sludge solubilization, with the highest soluble chemical oxygen demand concentration of 3296.7 mg/L, 25.6-time higher than that without pretreatment (128.9 mg/L). Due to the potential toxicity of NO2- and NO3- to microorganisms and its bioprocesses, the methane production of sludge pretreated by free nitrous acid was significantly deteriorated. The maximum methane yield (152.0 ± 9.6 mL/g-VSadded) was observed at 10 V pretreatment alone, only 1.7% higher than that of the control (149.4 ± 1.6 mL/g-VSadded). Combined pretreatment indeed enhances the sludge solubilization and hydrolysis, but does not always induce an improved anaerobic digestion efficiency.
Collapse
Affiliation(s)
- Chengxin Niu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yujie Tan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China.
| |
Collapse
|
28
|
Yuan Y, Cheng H, Chen F, Zhang Y, Xu X, Huang C, Chen C, Liu W, Ding C, Li Z, Chen T, Wang A. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor. ENVIRONMENT INTERNATIONAL 2020; 136:105503. [PMID: 32006760 DOI: 10.1016/j.envint.2020.105503] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) of organics is a challenging task under high-strength sulfate (SO42-) conditions. The generation of toxic sulfides by SO42--reducing bacteria (SRB) causes low methane (CH4) production. This study investigated the feasibility of alleviating sulfide inhibition and enhancing CH4 production by using an anaerobic reactor with built-in microbial electrolysis cell (MEC), namely ME-AD reactor. Compared to AD reactor, unionized H2S in the ME-AD reactor was sufficiently converted into ionized HS- due to the weak alkaline condition created via cathodic H2 production, which relieved the toxicity of unionized H2S to methanogenesis. Correspondingly, the CH4 production in the ME-AD system was 1.56 times higher than that in the AD reactor with alkaline-pH control and 3.03 times higher than that in the AD reactors (no external voltage and no electrodes) without alkaline-pH control. MEC increased the amount of substrates available for CH4-producing bacteria (MPB) to generate more CH4. Microbial community analysis indicated that hydrogentrophic MPB (e.g. Methanosphaera) and acetotrophic MPB (e.g. Methanosaeta) participated in the two major pathways of CH4 formation were successfully enriched in the cathode biofilm and suspended sludge of the ME-AD system. Economic revenue from increased CH4 production totally covered the cost of input electricity. Integration of MEC with AD could be an attractive technology to alleviate sulfide inhibition and enhance CH4 production from AD of organics under SO42--rich condition.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiqian Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
Effect of Hydraulic Retention Time on the Treatment of Real Cattle Slaughterhouse Wastewater and Biogas Production from HUASB Reactor. WATER 2020. [DOI: 10.3390/w12020490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anaerobic digestion technology provides an alternative route for sustainable management of organic waste. In this study, the performance of the hybrid upflow anaerobic sludge blanket (HUASB) reactor consisting of synthetic grass media as attached growth surface was investigated for the treatment of cattle slaughterhouse wastewater under mesophilic (35 ± 1 °C) condition. After acclimatization with synthetic wastewater, the reactor was loaded up to OLR 10 g L−1d−1, corresponding to 20 g COD/L at a varying hydraulic retention time (HRT) of 24, 30, 36, 42, and 48 h. The system attained a maximum COD removal efficiency of 97% total suspended solids (TSS), volatile suspended solids (VSS), fats, oil, and grease (FOG), color removal, and turbidity were found as 97%, 284 mg/L, 79%, 78%, and 91% respectively. The biogas production after 48 h was found as 38 L/d, with about 85% methane and specific methane production of 0.24 LCH4/gCODadded. The ratio of alkalinity was 0.22, while ammonia nitrogen concentration reached a maximum of 839 mg/L at a steady state. Scanning electron microscopic (SEM) analysis revealed a predominance of Methanosarcina bacteria with the coccoidal shape at the end of the performance study. Therefore, the results of the experiment showed that increasing HRT significantly affects the performance of the system.
Collapse
|
30
|
Biswal BK, Wang B, Tang CJ, Chen GH, Wu D. Elucidating the effect of mixing technologies on dynamics of microbial communities and their correlations with granular sludge properties in a high-rate sulfidogenic anaerobic bioreactor for saline wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 297:122397. [PMID: 31757610 DOI: 10.1016/j.biortech.2019.122397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
In this study, three lab-scale anaerobic sulfidogenic bioreactors were operated independently using three different mixing modes (hydraulic, mechanical and pneumatic). One-way ANOVA test indicated various performance parameters (e.g. sulfate reduction and sulfide production) and granular sludge properties (e.g. EPS and particle size) statistically different in three mixing modes. Principal component analysis (PCA) and OTUs-based network demonstrated bacterial composition greatly varied among the three mixing modes. The phylum Proteobacteria was predominant among the bacterial communities, and the genus Desulfobacter (35.1% in hydraulic, 31.1% in mechanical and 27.4% in pneumatic sample) was the most dominant SRB. The PCA/Pearson's correlation analysis confirmed SRB had significant positive relationship with sludge properties (e.g. particle size). PICRUSt data highlighted that bacterial communities contained diverse predicted functions including sulfur metabolism enzymes (sulfite reductase and adenylylsulfate reductase). The findings of this research could be helpful for selection of an appropriate mixing technology for anaerobic sulfidogenic or similar bioprocess.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bo Wang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chong-Jian Tang
- Department of Environmental Engineering, and National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
31
|
Musa MA, Idrus S, Harun MR, Tuan Mohd Marzuki TF, Abdul Wahab AM. A Comparative Study of Biogas Production from Cattle Slaughterhouse Wastewater Using Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E283. [PMID: 31906118 PMCID: PMC6982031 DOI: 10.3390/ijerph17010283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
Cattle slaughterhouses generate wastewater that is rich in organic contaminant and nutrients, which is considered as high strength wastewater with a high potential for energy recovery. Work was undertaken to evaluate the efficiency of the 12 L laboratory scale conventional and a modified upflow anaerobic sludge blanket (UASB) reactors (conventional, R1 and modified, R2), for treatment of cattle slaughterhouse wastewater (CSWW) under mesophilic condition (35 ± 1 °C). Both reactors were acclimated with synthetic wastewater for 30 days, then continuous study with real CSWW proceeds. The reactors were subjected to the same loading condition of OLR, starting from 1.75, 3, 5 10, 14, and 16 g L-1d-1, corresponding to 3.5, 6, 10, 20, 28, and 32 g COD/L at constant hydraulic retention time (HRT) of 24 h. The performance of the R1 reactor drastically dropped at OLR 10 g L-1d-1, and this significantly affected the subsequent stages. The steady-state performance of the R2 reactor under the same loading condition as the R1 reactor revealed a high COD removal efficiency of 94% and biogas and methane productions were 27 L/d and 89%. The SMP was 0.21 LCH4/gCOD added, whereas the NH3-N alkalinity ratio stood at 651 mg/L and 0.2. SEM showed that the R2 reactor was dominated by Methanosarcina bacterial species, while the R1 reactor revealed a disturb sludge with insufficient microbial biomass.
Collapse
Affiliation(s)
- Mohammed Ali Musa
- Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.A.M.); (T.F.T.M.M.)
- Department of Civil and Water Resources Engineering, University of Maiduguri, Maiduguri P.M.B. 1069, Nigeria
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.A.M.); (T.F.T.M.M.)
| | - Mohd Razif Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Tuan Farhana Tuan Mohd Marzuki
- Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.A.M.); (T.F.T.M.M.)
| | | |
Collapse
|
32
|
The Influence of Waste Composition on Landfill Gas Generation in a Pilot-Scale Lysimeter. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Sudokwon landfill site in Korea, is one of the largest landfill sites in the world, and consists of a first landfill site and second landfill site. The second landfill site generates 3–30 times more H2S than that of the first landfill site. However, the cause of the increase in H2S has not been identified. In this study, the main causes of H2S concentration increase were investigated in the second landfill site in the Sudokwon landfill site. We classified wastes at the Sudokwon landfill site into seven types including Construction and demolition (C&D) debris waste. A lysimeter reactor was designed as a similar environment to the Sudokwon landfill site for simulation. In addition, the experiment was conducted under the same conditions. Three components and elements were analyzed to identify the composition of waste in the landfill site. Leachate was analyzed through a chemical oxygen demand and SO42− standard method. For landfill gas, a gas analyzer was used. The trend in the generation of leachate and landfill gas depending on waste composition at the landfill site was observed and the cause of the increase in H2S was examined. As a result, landfilling of C&D debris waste is recommended as a single landfill.
Collapse
|
33
|
Zhi Z, Pan Y, Lu X, Zhen G, Zhao Y, Zhu X, Xiong J, Zhao T. Electrically regulating co-fermentation of sewage sludge and food waste towards promoting biomethane production and mass reduction. BIORESOURCE TECHNOLOGY 2019; 279:218-227. [PMID: 30735931 DOI: 10.1016/j.biortech.2019.01.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Microbial electrolysis cell (MEC) was integrated into conventional anaerobic digestion (AD) system (i.e. MEC-AD) to electrochemically regulate the co-fermentation of food waste (FW) and sewage sludge (SS). Two anaerobic systems (i.e. MEC-AD, and single AD) were operated in parallel to explore the potential stimulation of electrical regulation in metabolic behaviors of FW and SS and subsequent biomethane production. The highest accumulative methane yield was achieved at an applied voltage of 0.4 V and the FW and SS ratio of 0.2:0.8, increasing by 2.8-fold than those in AD. The combined MEC-AD system mitigated N2O emission and considerably improved ammonia removal and the dewaterability of digestate, in contrast to AD. Scanning electron microscope (SEM) visualized the presence of a large number of rod-like and cocci-like electroactive microbes on the electrode surface. Electrical regulation stimulated the self-growth and proliferation of typical Methanobacterium and Methanosaeta, accordingly contributing to biomethane production greatly.
Collapse
Affiliation(s)
- Zhongxiang Zhi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China.
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Xuefeng Zhu
- School of Environmental and Material Engineering, Shanghai Second Polytechnic University, Shanghai 201209, PR China
| | - Jianying Xiong
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Tianbiao Zhao
- Shanghai Waterway Engineering Design and Consulting Co., Ltd, Shanghai 200120, PR China
| |
Collapse
|
34
|
Yang B, Wang Q, Ye J, Xu H, Liu Y, Li F, Song X, Liu J, Wang Z, Sand W. Performance and microbial protein expression during anaerobic treatment of alkali-decrement wastewater using a strengthened circulation anaerobic reactor. BIORESOURCE TECHNOLOGY 2019; 273:40-48. [PMID: 30399609 DOI: 10.1016/j.biortech.2018.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Herein, a strengthened circulation anaerobic (SCA) reactor was employed for the treatment of actual alkali-decrement wastewater. The degradation mechanism of polyester oligomers and the relationship between the treatment performance and microbial community structure were systematically investigated using various advanced techniques. Results suggest that the accumulation of volatile fatty acids has an inhibitory effect on methanogenic activity. Molecular weight distributions suggest that only incomplete degradation of oligomers was achieved, due to acetogenic inhibition in the lower part of the SCA reactor. Meta-proteomic approach analysis revealed that the methanogens containing heterodisulfide reductase were the primary species involved in methane metabolism. Based on these findings, a possible degradation mechanism for alkali-decrement wastewater in the SCA reactor is proposed. This high-performance anaerobic reactor could be further scaled-up and optimized to serve as a promising and effective unit for the treatment of other refractory industrial wastewaters.
Collapse
Affiliation(s)
- Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qing Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinshao Ye
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Xu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany
| |
Collapse
|
35
|
Improved Methanogenic Communities for Biogas Production. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-10516-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Yang B, Xu H, Yang S, Bi S, Li F, Shen C, Ma C, Tian Q, Liu J, Song X, Sand W, Liu Y. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor. BIORESOURCE TECHNOLOGY 2018; 264:154-162. [PMID: 29803085 DOI: 10.1016/j.biortech.2018.05.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
We developed a pilot-scale strengthened circulation anaerobic (SCA) reactor (with an effective volume of 27 m3) and applied to the treatment of industrial textile wastewater. The treatment performance and the working mechanism were studied systematically and the key operational parameters were identified. The results demonstrated that a stable and excellent chemical oxygen demand removal efficiency of 62.7% and a maximum chromaticity removal efficiency of 73.5% were obtained at an optimal reflux ratio of 4. Interestingly, the bio-degradability was evidently improved after the SCA reactor treatment. The high throughput sequencing analysis indicated that the diversity of the bacteria or archaebacteria before the treatment was slightly higher than that after the treatment, which may be attributed to the production of certain toxic intermediates and/or characteristic pollutants during the treatment. Enzyme activity test and COD removal show that numerous microorganisms still maintained active in the anaerobic granular sludge even in a severe environment.
Collapse
Affiliation(s)
- Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hui Xu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shengnan Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shentao Bi
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chunyan Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qing Tian
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Technical University and Mining Academy Freiberg, Germany
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|