1
|
Ao TJ, Liu CG, Sun ZY, Zhao XQ, Tang YQ, Bai FW. Anaerobic digestion integrated with microbial electrolysis cell to enhance biogas production and upgrading in situ. Biotechnol Adv 2024; 73:108372. [PMID: 38714276 DOI: 10.1016/j.biotechadv.2024.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhao-Yong Sun
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue-Qin Tang
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Wang W, Lee DJ, Lei Z. Integrating anaerobic digestion with microbial electrolysis cell for performance enhancement: A review. BIORESOURCE TECHNOLOGY 2022; 344:126321. [PMID: 34785334 DOI: 10.1016/j.biortech.2021.126321] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion has been recognized as promising technology for bioenergy production, while the bottlenecks including long start up times, low methane contents, and susceptibility toward environmental change attenuate the process benefits. Integrating microbials electrolysis cell (MEC) with anaerobic digestion (AD) has been recognized as a promising strategy for alleviate the performance bottleneck. This review summarized and updated the current researches that utilize MEC-AD for enhanced methane production from biomass. The integrated AD-MEC was first elucidated, followed by illustrations on strategies for process performance enhancements, parameters effects, and the associated applications. Finally, the challenges and prospects were outlined in this work.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Chemistry Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
3
|
Zakaria BS, Dhar BR. Characterization and significance of extracellular polymeric substances, reactive oxygen species, and extracellular electron transfer in methanogenic biocathode. Sci Rep 2021; 11:7933. [PMID: 33846480 PMCID: PMC8041852 DOI: 10.1038/s41598-021-87118-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
The microbial electrolysis cell assisted anaerobic digestion holds great promises over conventional anaerobic digestion. This article reports an experimental investigation of extracellular polymeric substances (EPS), reactive oxygen species (ROS), and the expression of genes associated with extracellular electron transfer (EET) in methanogenic biocathodes. The MEC-AD systems were examined using two cathode materials: carbon fibers and stainless-steel mesh. A higher abundance of hydrogenotrophic Methanobacterium sp. and homoacetogenic Acetobacterium sp. appeared to play a major role in superior methanogenesis from stainless steel biocathode than carbon fibers. Moreover, the higher secretion of EPS accompanied by the lower ROS level in stainless steel biocathode indicated that higher EPS perhaps protected cells from harsh metabolic conditions (possibly unfavorable local pH) induced by faster catalysis of hydrogen evolution reaction. In contrast, EET-associated gene expression patterns were comparable in both biocathodes. Thus, these results indicated hydrogenotrophic methanogenesis is the key mechanism, while cathodic EET has a trivial role in distinguishing performances between two cathode electrodes. These results provide new insights into the efficient methanogenic biocathode development.
Collapse
Affiliation(s)
- Basem S. Zakaria
- grid.17089.37Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9 Canada
| | - Bipro Ranjan Dhar
- grid.17089.37Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9 Canada
| |
Collapse
|
4
|
Park JG, Jiang D, Lee B, Jun HB. Towards the practical application of bioelectrochemical anaerobic digestion (BEAD): Insights into electrode materials, reactor configurations, and process designs. WATER RESEARCH 2020; 184:116214. [PMID: 32726737 DOI: 10.1016/j.watres.2020.116214] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion (AD) is one of the most widely adopted bioenergy recovery technologies globally. Despite the wide adoption, AD has been challenged by the unstable performances caused by imbalanced substrate and/or electron availability among different reaction steps. Bioelectrochemical anaerobic digestion (BEAD) is a promising concept that has demonstrated potential for balancing the electron transfer rates and enhancing the methane yield in AD during shocks. While great progress has been made, a wide range of, and sometimes inconsistent engineering and technical strategies were attempted to improve BEAD. To consolidate past efforts and guide future development, a comprehensive review of the fundamental bioprocesses in BEAD is provided herein, followed by a critical evaluation of the engineering and technical optimizations attempted thus far. Further, a few novel directions and strategies that can enhance the performance and practicality of BEAD are proposed for future research to consider. This review and outlook aim to provide a fundamental understanding of BEAD and inspire new research ideas in AD and BEAD in a mechanism-informed fashion.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Daqian Jiang
- Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Nature Engineering Co., LTD., 1 Chungdae-ro, Cheongju 28644, Republic of Korea
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
5
|
Zakaria BS, Dhar BR. Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. BIORESOURCE TECHNOLOGY 2019; 289:121738. [PMID: 31300305 DOI: 10.1016/j.biortech.2019.121738] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Electro-methanogenesis represents an emerging bio-methane production pathway that can be achieved through integrating microbial electrolysis cell (MEC) with conventional anaerobic digester (AD). Since 2009, a significant number of publications have reported superior methane productivity and kinetics from MEC-AD integrated systems. The overall objective of this review is to communicate the recent advances towards promoting electro-methanogenesis in the anaerobic digestion process. Firstly, the electro-methanogenesis pathways and functional roles of key microbial members are summarized. Secondly, various extrinsic process parameters, such as applied voltage/potential, pH, and temperature are discussed with emphasis on process optimization. Moreover, available methods for the inoculation and start-up of MEC-AD process are critically reviewed. Finally, system design and scale-up considerations, such as the selection of electrode materials, surface area and surface chemistry of electrode materials, and electrode spacing are summarized.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
6
|
Abstract
Microbial electrosynthesis (MES) biogas upgrading is done via reduction of carbon dioxide to methane through electroactive microbial catalysis. The baseline MES mode of operation showed about a 39% increase in the methane production rate compared to the open circuit mode of operation. MES is capable of producing acetic acid at relatively more negative potential (−0.80 to –0.90 V vs. Standard Hydrogen Electrode (SHE)) than the potential at which it produces methane (−0.65 V vs. SHE). The optimum pH for enhancing the electroactive acetogens is found to be around 6.8–7.0 while a pH of around 7.0–7.5 enhances the electroactive methanogens performance. The biocathode adaptation test reveals that 45% of the methane was produced through the electrochemical pathway with a coulombic efficiency of 100% while maintaining heterotrophic efficiency above 99%.
Collapse
|
7
|
Changes of Bacterial Communities in an Anaerobic Digestion and a Bio-Electrochemical Anaerobic Digestion Reactors According to Organic Load. ENERGIES 2019. [DOI: 10.3390/en12152958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial communities change in bulk solution of anaerobic digestion (AD) and bio-electrochemical anaerobic digestion reactors (BEAD) were monitored at each organic loading rate (OLR) to investigate the effect of voltage supply on bacterial species change in bulk solution. Chemical oxygen demand (COD) degradation and methane production from AD and BEAD reactors were also analyzed by gradually increasing food waste OLR. The BEAD reactor maintained stable COD removal and methane production at 6.0 kg/m3·d. The maximum OLR of AD reactor for optimal operation was 4.0 kg/m3·d. pH and alkalinity decline and volatile fatty acid (VFA) accumulation, which are the problem in high load anaerobic digestion of readily decomposable food wastes, were again the major factors destroying the optimal operation condition of the AD reactor at 6.0 kg/m3·d. Contrarily, the electrochemically activated dense communities of exoelectrogenic bacteria and VFA-oxidizing bacteria prevented VFAs from accumulating inside the BEAD reactor. This maintained stable pH and alkalinity conditions, ultimately contributing to stable methane production.
Collapse
|
8
|
Park JG, Lee B, Kwon HJ, Jun HB. Contribution analysis of methane production from food waste in bulk solution and on bio-electrode in a bio-electrochemical anaerobic digestion reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:741-751. [PMID: 30909050 DOI: 10.1016/j.scitotenv.2019.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Quantitative evaluation of methane production either in bulk sludge or biofilm on electrodes was performed in a bio-electrochemical anaerobic digestion (BEAD) reactor with a lower electrode surface area/reactor working volume (A/V) ratio (7.0 m2/m3). Methane production by electrochemical reaction was also evaluated in the BEAD reactor with a biofilm-free electrode under the same conditions as in other experimental sets. The contributions of bulk sludge, biofilms on the electrodes, and electrochemical reactions in the BEAD reactor, on methane production, were 70.2%, 29.8%, and 0%, respectively. The principal methane-producing reactions occurred in the bulk sludge facilitated by H2-dependent methylotrophic and hydrogenotrophic methanogens. Hydrogenotrophic methanogenesis was also the main methane-producing reaction in the biofilms attached to the bio-electrodes. Quantitative analysis of methane production (29.8%) in the biofilm revealed that bio-electrochemical processes involving H2 and direct bio-electrochemical methane production contributed 8.7% and less than 0.1%, respectively. Interestingly, biochemical processes (21.1%) contributed the most to the overall production of methane in the biofilm. Bulk sludge contributed more to methane production than the biofilm, but the methane production per unit mass of volatile solid on the electrodes was about 1.6-times higher than that of bulk sludge. Methane was not produced in the BEAD reactor with biofilm-free electrodes. Therefore, formation and maintenance of biofilms on the electrodes are essential for improved methane production in BEAD reactors.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Republic of Korea.
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Republic of Korea
| | - Hye-Jeong Kwon
- Department of Environmental Engineering, Chungbuk National University, Republic of Korea
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Republic of Korea.
| |
Collapse
|
9
|
Park JG, Lee B, Kwon HJ, Park HR, Jun HB. Effects of a novel auxiliary bio-electrochemical reactor on methane production from highly concentrated food waste in an anaerobic digestion reactor. CHEMOSPHERE 2019; 220:403-411. [PMID: 30594792 DOI: 10.1016/j.chemosphere.2018.12.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
In this study, the effects of indirect voltage supply to an anaerobic digestion (AD) reactor on methane production and the removal of chemical oxygen demand (COD) were studied at different organic loading rates (OLRs) of food waste by the circulation from an auxiliary bio-electrochemical reactor (ABER) with stainless steel (STS304) electrodes. The effects of the indirect voltage on microbial communities in the AD reactor were also investigated. In a bio-electrochemical anaerobic digestion (BEAD) reactor with direct voltage, it was possible to achieve stable COD removal and methane production even at a higher OLR of 10.0 kg/(m3·d). However, in the AD reactor, the COD removal efficiency and methane production decreased sharply at an OLR of 6.0 kg/(m3·d) due to the accumulation of volatile fatty acids (VFAs) and decreases in the pH and alkalinity. The supply of indirect voltage through the ABER increased the community of exoelectrogenic bacteria and hydrogenotrophic methanogens in the AD + ABER bulk solution. As a result, rapid oxidation of the accumulated VFAs occurred, and methane production increased in the new AD + ABER system. The results confirm that an indirect voltage supply to the new AD + ABER system can have effects similar to those of a direct voltage supply to the BEAD reactor, and the findings are expected to provide useful information for the development and application of BEAD technology for commercialization.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 361-763, Republic of Korea.
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 361-763, Republic of Korea.
| | - Hye-Jeong Kwon
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 361-763, Republic of Korea.
| | - Hye-Rin Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 361-763, Republic of Korea.
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 361-763, Republic of Korea.
| |
Collapse
|
10
|
Park JG, Lee B, Park HR, Jun HB. Long-term evaluation of methane production in a bio-electrochemical anaerobic digestion reactor according to the organic loading rate. BIORESOURCE TECHNOLOGY 2019; 273:478-486. [PMID: 30469138 DOI: 10.1016/j.biortech.2018.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
In this study, the effects of differing organic loading rates (OLRs) on methane production were evaluated via long-term operation of a bio-electrochemical anaerobic digestion (BEAD) reactor and an anaerobic digestion (AD) reactor. In the AD reactor, the maximum OLR was 4 kg/m3·d whereas the electro-active microbial community in bulk and on the biofilm of the BEAD reactor produced methane even at 10 kg/m3·d. The BEAD reactor rapidly removed volatile fatty acids (VFAs) and reduced H+ to H2 at high OLRs, thereby preventing VFA accumulation and pH decrease. After the steady state was achieved, both the AD and BEAD reactors exhibited similar organic matter removal and methane production at a low OLR. Thus, a BEAD reactor can stably produce methane under conditions of high OLR and severe OLR fluctuation and can even shorten the stabilization period over the long term.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, South Korea.
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, South Korea.
| | - Hye-Rin Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, South Korea.
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, South Korea.
| |
Collapse
|