1
|
de Souza MF, da Silva Bon EP, da Silva AS. Production of cellulases and β-glucosidases by Trichoderma reesei Rut C30 using steam-pretreated sugarcane bagasse: an integrated approach for onsite enzyme production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00114-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Elias AM, Longati AA, Ellamla HR, Furlan FF, Ribeiro MPA, Marcelino PRF, dos Santos JC, da Silva SS, Giordano RC. Techno-Economic-Environmental Analysis of Sophorolipid Biosurfactant Production from Sugarcane Bagasse. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew M. Elias
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo 13565-905, Brazil
- Embrapa Instrumentation, São Carlos, São Paulo 13560-970, Brazil
| | - Andreza A. Longati
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, State University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Harikishan R. Ellamla
- Department of Chemical Engineering, Federal University of São Carlos (DEQ-UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Felipe F. Furlan
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo 13565-905, Brazil
- Department of Chemical Engineering, Federal University of São Carlos (DEQ-UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo P. A. Ribeiro
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo 13565-905, Brazil
- Department of Chemical Engineering, Federal University of São Carlos (DEQ-UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Paulo R. F. Marcelino
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP, Lorena, São Paulo 12602-810, Brazil
| | - Júlio C. dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP, Lorena, São Paulo 12602-810, Brazil
| | - Silvio S. da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP, Lorena, São Paulo 12602-810, Brazil
| | - Roberto C. Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo 13565-905, Brazil
- Department of Chemical Engineering, Federal University of São Carlos (DEQ-UFSCar), São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
3
|
Wu Y, Ge S, Xia C, Cai L, Mei C, Sonne C, Park YK, Kim YM, Chen WH, Chang JS, Lam SS. Using low carbon footprint high-pressure carbon dioxide in bioconversion of aspen branch waste for sustainable bioethanol production. BIORESOURCE TECHNOLOGY 2020; 313:123675. [PMID: 32563796 DOI: 10.1016/j.biortech.2020.123675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
An innovative approach was developed by incorporating high-pressure CO2 into the separate hydrolysis-fermentation of aspen leftover branches, aiming to enhance the bioethanol production efficiency. The high-pressure CO2 significantly increased the 72-h enzymatic hydrolysis yield of converting aspen into glucose from 53.8% to 82.9%. The hydrolysis process was performed with low enzyme loading (10 FPU g-1 glucan) with the aim of reducing the cost of fuel bioethanol production. The ethanol yield from fermentation of the hydrolyzed glucose using yeast (Saccharomyces cerevisiae) was 8.7 g L-1, showing increment of 10% compared with the glucose control. Techno-economic analysis indicated that the energy consumption of fuel bioethanol production from aspen branch chips was reduced by 35% and the production cost was cut 44% to 0.615 USD L-1, when 68 atm CO2 was introduced into the process. These results furtherly emphasized the low carbon footprint of this sustainable energy production approach.
Collapse
Affiliation(s)
- Yingji Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Anhui Juke Graphene Technology Co., Ltd., Bozhou, Anhui 233600, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Young-Min Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China; Anhui Juke Graphene Technology Co., Ltd., Bozhou, Anhui 233600, China.
| |
Collapse
|
4
|
Pratto B, Dos Santos-Rocha MSR, Longati AA, de Sousa Júnior R, Cruz AJG. Experimental optimization and techno-economic analysis of bioethanol production by simultaneous saccharification and fermentation process using sugarcane straw. BIORESOURCE TECHNOLOGY 2020; 297:122494. [PMID: 31813817 DOI: 10.1016/j.biortech.2019.122494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The present work aims to determine a suitable yield-productivity balance in bioethanol production from hydrothermally pretreated sugarcane straw via pre-saccharification (PS) and simultaneous saccharification and fermentation (SSF). PS experiments were carried out evaluating effects of enzymatic dosage, biomass loading, and PS time. The performance of the whole process (PSSSF) was evaluated based on overall ethanol yield and productivity considering a simultaneous optimization (desirability function) of both variables. The multi-criteria optimization enabled to reach 5.7% w/w ethanol concentration yielding 290 L of ethanol per ton of pretreated sugarcane straw within 45 h of total processing time. Furthermore, a techno-economic analysis was performed under optimized conditions (14.5 FPU/gcellulose, 19.3% w/v biomass loading and 33 h PS time). This process was integrated into a first-generation plant. Although the economic evaluation exhibited a negative performance, a sensitivity analysis indicated that a decrease of 23.3% in operational expenditure would be enough to achieve feasibility.
Collapse
Affiliation(s)
- Bruna Pratto
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil.
| | | | - Andreza Aparecida Longati
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil; Fundação Educacional de Ituverava, Rua Cel. Flauzino Barbosa Sandoval, 1259, CEP: 14500-000 Ituverava, SP, Brazil
| | - Ruy de Sousa Júnior
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil; Chemical Engineering Department, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil
| | - Antonio José Gonçalves Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil; Chemical Engineering Department, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Elias AM, Giordano RDC, Secchi AR, Furlan FF. Integrating pinch analysis and process simulation within equation-oriented simulators. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.106555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Raghavendran V, Nitsos C, Matsakas L, Rova U, Christakopoulos P, Olsson L. A comparative study of the enzymatic hydrolysis of batch organosolv-pretreated birch and spruce biomass. AMB Express 2018; 8:114. [PMID: 29992363 PMCID: PMC6039347 DOI: 10.1186/s13568-018-0643-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023] Open
Abstract
A shift towards a sustainable and green society is vital to reduce the negative effects of climate change associated with increased CO2 emissions. Lignocellulosic biomass is both renewable and abundant, but is recalcitrant to deconstruction. Among the methods of pretreatment available, organosolv (OS) delignifies cellulose efficiently, significantly improving its digestibility by enzymes. We have assessed the hydrolysability of the cellulose-rich solid fractions from OS-pretreated spruce and birch at 2% w/v loading (dry matter). Almost complete saccharification of birch was possible with 80 mg enzyme preparation/gsolids (12 FPU/gsolids), while the saccharification yield for spruce was only 70%, even when applying 60 FPU/gsolids. As the cellulose content is enriched by OS, the yield of glucose was higher than in their steam-exploded counterparts. The hydrolysate was a transparent liquid due to the absence of phenolics and was also free from inhibitors. OS pretreatment holds potential for use in a large-scale, closed-loop biorefinery producing fuels from the cellulose fraction and platform chemicals from the hemicellulose and lignin fractions respectively.
Collapse
|