1
|
Wang L, Liu S, Mehdi S, Liu Y, Zhang H, Shen R, Wen H, Jiang J, Sun K, Li B. Lignocellulose-Derived Energy Materials and Chemicals: A Review on Synthesis Pathways and Machine Learning Applications. SMALL METHODS 2025:e2500372. [PMID: 40264353 DOI: 10.1002/smtd.202500372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Lignocellulose biomass, Earth's most abundant renewable resource, is crucial for sustainable production of high-value chemicals and bioengineered materials, especially for energy storage. Efficient pretreatment is vital to boost lignocellulose conversion to bioenergy and biomaterials, cut costs, and broaden its energy-sector applications. Machine learning (ML) has become a key tool in this field, optimizing pretreatment processes, improving decision-making, and driving innovation in lignocellulose valorization for energy storage. This review explores main pretreatment strategies - physical, chemical, physicochemical, biological, and integrated methods - evaluating their pros and cons for energy storage. It also stresses ML's role in refining these processes, supported by case studies showing its effectiveness. The review examines challenges and opportunities of integrating ML into lignocellulose pretreatment for energy storage, underlining pretreatment's importance in unlocking lignocellulose's full potential. By blending process knowledge with advanced computational techniques, this work aims to spur progress toward a sustainable, circular bioeconomy, particularly in energy storage solutions.
Collapse
Affiliation(s)
- Luyao Wang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Huanhuan Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
Cheng Y, Bi X, Xu Y, Liu Y, Li J, Du G, Lv X, Liu L. Artificial intelligence technologies in bioprocess: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2023; 369:128451. [PMID: 36503088 DOI: 10.1016/j.biortech.2022.128451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Bioprocess control and optimization are crucial for tapping the metabolic potential of microorganisms, and which have made great progress in the past decades. Combination of the current control and optimization technologies with the latest computer-based strategies will be a worth expecting way to improve bioprocess further. Recently, artificial intelligence (AI) emerged as a data-driven technique independent of the complex interactions used in mathematical models and has been gradually applied in bioprocess. In this review, firstly, AI-guided modeling approaches of bioprocess are discussed, which are widely applied to optimize critical process parameters (CPPs). Then, AI-assisted rapid detection and monitoring technologies employed in bioprocess are summarized. Next, control strategies according to the above two technologies in bioprocess are analyzed. Lastly, current research gaps and future perspectives on AI-guided optimization and control technologies are discussed. This review provides theoretical guidance for developing AI-guided bioprocess optimization and control technologies.
Collapse
Affiliation(s)
- Yang Cheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Optimization of reactive black 5 decolorization by the newly isolated Saccharomyces cerevisiae X19G2 using response-surface methodology. 3 Biotech 2022; 12:142. [PMID: 35664650 DOI: 10.1007/s13205-022-03191-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
In the current investigation, the capacity of different yeast strains to decolorize reactive black 5 (RB-5) was assessed. A comparative study between the different strains demonstrated that Saccharomyces cerevisiae X19G2 exhibited the highest decolorization rate (69.20 ± 1.16%) after 48 h of incubation. This strain was selected to optimize the medium components' concentrations for maximum RB-5 decolorization. Response-surface methodology (RSM) was tested for the most significant parameters (glucose, yeast extract and RB-5 dye concentrations) that were previously determined by Plackett-Burman design. A dye decolorization rate of 99.59 ± 0.24% was achieved within 48 h using a maximum RB-5 concentration (0.15 g/L) with glucose and yeast extract concentrations equalling to 10.5 g/L and 1 g/L, respectively. Experimental data results proved to fit well with the pseudo-second order kinetics model. The phytotoxicity assessment was carried out using Raphanus sativus seeds to determine the toxicity of RB-5 before and after treatment by S. cerevisiae. Results suggested that germination rate and the length of seeds radical irrigated with 0.15 g/L of RB-5 decreased by 30 and 53%, compared to those irrigated with treated solution. Therefore, metabolites derived from decolorization of RB-5 by S. cerevisiae X19G2 were significantly less toxic than the original dye.
Collapse
|
4
|
Sun C, Ren H, Sun F, Hu Y, Liu Q, Song G, Abdulkhani A, Loke Show P. Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126264. [PMID: 34737053 DOI: 10.1016/j.biortech.2021.126264] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The complex structure of lignocellulosic biomass forms the recalcitrance to prevent the embedded holo-cellulosic sugars from undergoing the biodegradation. Therefore, a pretreatment is often required for an efficient enzymatic lignocellulosic hydrolysis. Recently, glycerol organosolv (GO) pretreatment is revealed potent in selective deconstruction of various lignocellulosic biomass and effective improvement of enzymatic hydrolysis. Evidently, the GO pretreatment is capable to modify the structure of dissolved components by glycerolysis, i.e., by trans-glycosylation onto glyceryl glycosides and by hydroxylation grafting onto glyceryl lignin. Such modifications tend to protect these main components against excessive degradation, which can be mainly responsible for the obviously less fermentation inhibitors arising in the GO pretreatment. This pretreatment can provide opportunities for valorization of emerging lignocellulosic biorefinery with production of value-added biochemicals. Recent advances in GO pretreatment of lignocellulosic biomass followed by enzymatic hydrolysis are reviewed, and perspectives are made for addressing remaining challenges.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiangqiang Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ali Abdulkhani
- Dept. of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Malaysia
| |
Collapse
|
5
|
Enhanced Saccharification of Purple Alfalfa via Sequential Pretreatment with Acidified Ethylene Glycol and Urea/NaOH. Processes (Basel) 2021. [DOI: 10.3390/pr10010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purple Alfalfa is an inexpensive, abundant, readily available lignocellulosic material. This work was attempted to develop an efficient combination pretreatment by sequential HClO4–ethyl glycol–H2O (1.2:88.8:10, w/w/w) extraction at 130 °C in 0.5 h and urea/NaOH (urea 12 wt%, NaOH 7 wt%) soaking at −20 °C for 0.5 h for the pretreatment of purple alfalfa. The porosity, morphology, and crystallinity of pretreated purple alfalfa were characterized with SEM, FM, XRD, and FTIR. This combination pretreatment had a significant influence on hemicellulose removal and delignification. The above changes could enhance cellulose accessibility to enzymes and improve the enzymatic digestibility of cellulose. High yields of reducing sugars from pretreated purple alfalfa were obtained at 93.4%. In summary, this combination pretreatment has high potential application in the future.
Collapse
|
6
|
Sales de Menezes LH, Carneiro LL, Maria de Carvalho Tavares I, Santos PH, Pereira das Chagas T, Mendes AA, Paranhos da Silva EG, Franco M, Rangel de Oliveira J. Artificial neural network hybridized with a genetic algorithm for optimization of lipase production from Penicillium roqueforti ATCC 10110 in solid-state fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Sulaiman M, Iqbal T, Yasin S, Mahmood H, Shakeel A. Study of Nano-Mechanical Performance of Pretreated Natural Fiber in LDPE Composite for Packaging Applications. MATERIALS 2020; 13:ma13214977. [PMID: 33167403 PMCID: PMC7663798 DOI: 10.3390/ma13214977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 11/16/2022]
Abstract
In this work, the effects of chemical pretreatment and different fiber loadings on mechanical properties of the composites at the sub-micron scale were studied through nanoindentation. The composites were prepared by incorporating choline chloride (ChCl) pretreated rice husk waste (RHW) in low-density polyethylene (LDPE) using melt processing, followed by a thermal press technique. Nanoindentation experiments with quasi continuous stiffness mode (QCSM) were performed on the surface of produced composites with varying content of pretreated RHW (i.e., 10, 15, and 20 wt.%). Elastic modulus, hardness, and creep properties of fabricated composites were measured as a function of contact depth. The results confirmed the appreciable changes in hardness, elastic modulus, and creep rate of the composites. Compliance curves indicated that the composite having 20 wt.% of pretreated RHW loading was harder compared to that of the pure LDPE and other composite samples. The values of elastic modulus and hardness of the composite containing 20 wt.% pretreated RHW were increased by 4.1% and 24% as compared to that of the pure LDPE, respectively. The creep rate of 42.65 nm/s and change in depth of 650.42 nm were also noted for the composite with RHW loading of 20 wt.%, which showed the substantial effect of holding time at an applied peak load of 100 mN. We believe that the developed composite could be a promising biodegradable packaging material due to its good tribo-mechanical performance.
Collapse
Affiliation(s)
- Muhammad Sulaiman
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Kala Shah Kaku-39020, Pakistan; (M.S.); (T.I.); (S.Y.); (H.M.)
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Kala Shah Kaku-39020, Pakistan; (M.S.); (T.I.); (S.Y.); (H.M.)
| | - Saima Yasin
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Kala Shah Kaku-39020, Pakistan; (M.S.); (T.I.); (S.Y.); (H.M.)
| | - Hamayoun Mahmood
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Kala Shah Kaku-39020, Pakistan; (M.S.); (T.I.); (S.Y.); (H.M.)
| | - Ahmad Shakeel
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore (New Campus), Kala Shah Kaku-39020, Pakistan; (M.S.); (T.I.); (S.Y.); (H.M.)
- Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Biodecolorization of azo dye Acid Black 24 by Bacillus pseudomycoides: Process optimization using Box Behnken design model and toxicity assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100311] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Pascal K, Ren H, Sun FF, Guo S, Hu J, He J. Mild Acid-Catalyzed Atmospheric Glycerol Organosolv Pretreatment Effectively Improves Enzymatic Hydrolyzability of Lignocellulosic Biomass. ACS OMEGA 2019; 4:20015-20023. [PMID: 31788636 PMCID: PMC6882100 DOI: 10.1021/acsomega.9b02993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/29/2019] [Indexed: 06/05/2023]
Abstract
Conventional atmospheric glycerol organosolv pretreatment is energy-intensive with the requirement of long time and/or high temperature. Herein, acid-catalyzed atmospheric glycerol organosolv (ac-AGO) pretreatment was developed under a mild condition to modify the sugarcane bagasse structure for improving enzymatic hydrolyzability. Using single factor and central composite design experiments, ac-AGO pretreatment was optimized at 200 °C for 15 min with 0.06% H2SO4 addition, wherein the hemicellulose and lignin removal rates were 82 and 52%, respectively, with extremely high cellulose retention of 98%. The ac-AGO-pretreated substrate exhibited good enzymatic hydrolyzability at a modest cellulase loading, affording a 70% glucose yield after 72 h. Multiple analysis tools were used to correlate the hydrolyzability of the substrate with its structural features. The results indicated that the mild ac-AGO pretreatment can modify the lignocellulosic biomass structure to achieve good hydrolyzability, mainly resulting in significant hemicellulose removal.
Collapse
Affiliation(s)
- Kaneza Pascal
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Hongyan Ren
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fubao Fuelbiol Sun
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuxian Guo
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Jinguang Hu
- Department
of Chemical and Petroleum Engineering, University
of Calgary, Calgary T2N 1N4, Canada
| | - Jing He
- Key
Laboratory of Development and Application of Rural Renewable Energy,
National Agricultural Science & Technology Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| |
Collapse
|
10
|
Liu X, Wei W, Wu S. Synergism of organic acid and deep eutectic solvents pretreatment for the co-production of oligosaccharides and enhancing enzymatic saccharification. BIORESOURCE TECHNOLOGY 2019; 290:121775. [PMID: 31319212 DOI: 10.1016/j.biortech.2019.121775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
A novel pretreatment using organic acid synergism with deep eutectic solvents (DESs) was developed to the co-production of oligosaccharides, especially for the functional oligosaccharides, and enhancement of corn straws enzymatic saccharification. It was found that lactic acid (Lac) pretreatment combined with choline chloride/Lac system could not only selectively convert the hemicellulose to xylo-oligosaccharides (XOS), which account for 89.7% of total xylose in prehydrolysate (the functional XOS (DP < 5) took up about 35%), but also significantly promote the glucose release (33.2 g/100 g material) and well lignin separation (representing 40.9% in whole process), which better than the single organic pretreatment at higher modified severity index (SI). Structural features of various solids were characterized to better comprehend how hemicellulose and lignin removal influenced enzymatic hydrolysis. This work offered the mild and potential method to co-produce fermentable sugars with the effective separation and valorization of lignin.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Weiqi Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shubin Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|