1
|
Gao H, Mao W, Xiao P, Ling C, Wu Z, Zhou J. Chromium-Doped Biomass-Based Hydrochar-Catalyzed Synthesis of 5-Hydroxymethylfurfural from Glucose. Polymers (Basel) 2025; 17:1413. [PMID: 40430708 PMCID: PMC12114955 DOI: 10.3390/polym17101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
5-Hydroxymethylfurfural (HMF) is a versatile carbohydrate-derived platform chemical that has been used for the synthesis of a number of commercially valuable compounds. In this study, several chromium (Cr)-doped, biomass-derived hydrochar catalysts were synthesized via the one-pot method using starch, eucalyptus wood, and bagasse as carbon sources. Then, the performance of these synthesized materials for the catalytic conversion of glucose into HMF was evaluated by, primarily, the yield of HMF. The synergistic interactions between the Cr salt and the different biomass components were investigated, along with their effects on the catalytic efficiency. The differences in the catalytic activity of the synthesized materials were analyzed through structural characterization, as well as assessments of the acid density and strength. Among the catalysts, Cr5BHC180 derived from bagasse presented the highest activity, achieving an HMF yield of 64.5% in an aqueous solvent system of dimethyl sulfoxide (DMSO) and saturated sodium chloride (NaCl) at 170 °C after 5 h. After four cycles, the HMF yield of Cr5BHC180 decreased to 38.7%. Characterization techniques such as N2 adsorption-desorption and Py-FTIR suggested that such a decline in the HMF yield is due to pore blockage and acid site coverage by humic by-products, as demonstrated by the fact that regeneration by calcination at 300 °C restored the HMF yield to 50.5%.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinghong Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (H.G.); (W.M.); (P.X.); (C.L.); (Z.W.)
| |
Collapse
|
2
|
Deepak KR, Mohan S, Dinesha P, Balasubramanian R. CO 2 uptake by activated hydrochar derived from orange peel (Citrus reticulata): Influence of carbonization temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118350. [PMID: 37302173 DOI: 10.1016/j.jenvman.2023.118350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
In this study, activated hydrochar was prepared from orange peel (OP) waste using KOH for the first time for potential environmental applications. The influence of hydrothermal carbonization temperature (180 °C, 200 °C, and 220 °C) on the CO2 adsorption capacity of OP-derived activated hydrochar (OP-180, OP-200, and OP-220) was investigated. Scanning electron microscope (SEM) images revealed that the activated OP hydrochar has high microporosity, a desired attribute for effective adsorption. The yield and the oxygen content of the hydrochar decreased with the increasing process temperature whereas the carbon content showed an increase. Fourier-transform infrared spectroscopy showed the presence of various functional groups including ketone, aldehydes, esters, and carboxyl in the hydrochar. CO2 adsorption isotherm was determined for all hydrochar samples. At 25 °C and 1 bar, OP-220 showed the highest CO2 uptake at 3.045 mmol/g. The use of OP waste for CO2 adsorption applications contributes to carbon neutrality and a circular economy.
Collapse
Affiliation(s)
- K R Deepak
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sooraj Mohan
- Department of Mechanical Engineering, National Institute of Technology Goa, Farmagudi, Ponda, Goa, 403401, India
| | - P Dinesha
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, 117576, Singapore
| |
Collapse
|
3
|
Vonnie JM, Rovina K, ‘Aqilah NMN, Felicia XWL. Development and Characterization of Biosorbent Film from Eggshell/Orange Waste Enriched with Banana Starch. Polymers (Basel) 2023; 15:2414. [PMID: 37299214 PMCID: PMC10255099 DOI: 10.3390/polym15112414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 06/12/2023] Open
Abstract
The conversion of waste into a valuable product is regarded as a promising alternative to relieving the burden of solid waste management and could be beneficial to the environment and humans. This study is focused on utilizing eggshell and orange peel enriched with banana starch to fabricate biofilm via the casting technique. The developed film is further characterized by field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The physical properties of films, including thickness, density, color, porosity, moisture content, water solubility, water absorption, and water vapor permeability, were also characterized. The removal efficiency of the metal ions onto film at different contact times, pH, biosorbent dosages, and initial concentration of Cd(II) were analyzed using atomic absorption spectroscopy (AAS). The film's surface was found to have a porous and rough structure with no cracks, which can enhance the target analytes interactions. EDX and XRD analyses confirmed that eggshell particles were made of calcium carbonate (CaCO3), and the appearance of the main peak at 2θ = 29.65° and 2θ = 29.49° proves the presence of calcite in eggshells. The FTIR indicated that the films contain various functional groups, such as alkane (C-H), hydroxyl (-OH), carbonyl (C=O), carbonate (CO32-), and carboxylic acid (-COOH) that can act as biosorption materials. According to the findings, the developed film exhibits a notable enhancement in its water barrier properties, thereby leading to improved adsorption capacity. The batch experiments showed that the film obtained the maximum removal percentage at pH = 8 and 6 g of biosorbent dose. Notably, the developed film could reach sorption equilibrium within 120 min at the initial concentration of 80 mg/L and remove 99.95% of Cd(II) in the aqueous solutions. This outcome presents potential opportunities for the application of these films in the food industry as both biosorbents and packaging materials. Such utilization can significantly enhance the overall quality of food products.
Collapse
Affiliation(s)
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (N.M.N.‘A); (X.W.L.F.)
| | | | | |
Collapse
|
4
|
Liu Z. A review on the emerging conversion technology of cellulose, starch, lignin, protein and other organics from vegetable-fruit-based waste. Int J Biol Macromol 2023; 242:124804. [PMID: 37182636 DOI: 10.1016/j.ijbiomac.2023.124804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
A large amount of vegetable-fruit-based waste (VFBW) belonging to agricultural waste is produced around the world every year, imposing a huge burden on the environment and sustainable development. VFBW contains a lot of water and useful organic compounds (e.g., cellulose, minerals, starch, proteins, organic acids, lipids, and soluble sugars). Taking into account the composition characteristics and circular economy of VFBW, many new emerging conversion technologies for the treatment of VFBW (such as hydrothermal gasification, ultrasound-assisted extraction, and synthesis of bioplastics) have been developed. This review summarizes the current literature discussing the technical parameters, process, mechanism, and characteristics of various emerging conversion methods, as well as analyzing the application, environmental impact, and bio-economy of by-products from the conversion process, to facilitate solutions to the key problems of engineering cases using these methods. The shortcomings of the current study and the direction of future research are also highlighted in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China.
| |
Collapse
|
5
|
Zhou Y, Remón J, Pang X, Jiang Z, Liu H, Ding W. Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163920. [PMID: 37156381 DOI: 10.1016/j.scitotenv.2023.163920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Biomass is a renewable and carbon-neutral resource with good features for producing biofuels, biochemicals, and biomaterials. Among the different technologies developed to date to convert biomass into such commodities, hydrothermal conversion (HC) is a very appealing and sustainable option, affording marketable gaseous (primarily containing H2, CO, CH4, and CO2), liquid (biofuels, aqueous phase carbohydrates, and inorganics), and solid products (energy-dense biofuels (up to 30 MJ/kg) with excellent functionality and strength). Given these prospects, this publication first-time puts together essential information on the HC of lignocellulosic and algal biomasses covering all the steps involved. Particularly, this work reports and comments on the most important properties (e.g., physiochemical and fuel properties) of all these products from a holistic and practical perspective. It also gathers vital information addressing selecting and using different downstream/upgrading processes to convert HC reaction products into marketable biofuels (HHV up to 46 MJ/kg), biochemicals (yield >90 %), and biomaterials (great functionality and surface area up to 3600 m2/g). As a result of this practical vision, this work not only comments on and summarizes the most important properties of these products but also analyzes and discusses present and future applications, establishing an invaluable link between product properties and market needs to push HC technologies transition from the laboratory to the industry. Such a practical and pioneering approach paves the way for the future development, commercialization and industrialization of HC technologies to develop holistic and zero-waste biorefinery processes.
Collapse
Affiliation(s)
- Yingdong Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China; China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain.
| | - Xiaoyan Pang
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Haiteng Liu
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China.
| |
Collapse
|
6
|
Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption: role of typical components. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Biomass-Based Hydrothermal Carbons for the Contaminants Removal of Wastewater: A Mini-Review. Int J Mol Sci 2023; 24:ijms24021769. [PMID: 36675284 PMCID: PMC9862638 DOI: 10.3390/ijms24021769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The preparation of adsorbents with eco-friendly and high-efficiency characteristics is an important approach for pollutant removal, and can relieve the pressure of water shortage and environmental pollution. In recent studies, much attention has been paid to the potential of hydrothermal carbonization (HTC) from biomass, such as cellulose, hemicellulose, lignin, and agricultural waste for the preparation of adsorbents. Hereby, this paper summarizes the state of research on carbon adsorbents developed from various sources with HTC. The reaction mechanism of HTC, the different products, the modification of hydrochar to obtain activated carbon, and the treatment of heavy metal pollution and organic dyes from wastewater are reviewed. The maximum adsorption capacity of carbon from different biomass sources was also evaluated.
Collapse
|
8
|
Peng J, Kang X, Zhao S, Zhao P, Ragauskas AJ, Si C, Xu T, Song X. Growth mechanism of glucose-based hydrochar under the effects of acid and temperature regulation. J Colloid Interface Sci 2023; 630:654-665. [DOI: 10.1016/j.jcis.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
9
|
Turning waste into adsorbent: Modification of discarded orange peel for highly efficient removal of Cd(II) from aqueous solution. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Jiang F, Cao D, Hu S, Wang Y, Zhang Y, Huang X, Zhao H, Wu C, Li J, Ding Y, Liu K. High-pressure carbon dioxide-hydrothermal enhance yield and methylene blue adsorption performance of banana pseudo-stem activated carbon. BIORESOURCE TECHNOLOGY 2022; 354:127137. [PMID: 35405217 DOI: 10.1016/j.biortech.2022.127137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In order to reduce environmental risks and fungus disease spread of banana waste, the high-pressure CO2-hydrothermal treatment was developed to produce hydrochar as a precursor of activated carbon from banana pseudo-stem(BP). SEM, BET, XRD, Raman and FTIR was used to investigate the influence mechanism of the high-pressure CO2-hydrothermal pretreatment on the yield and methylene blue(MB) adsorption capacities of the activated carbon. The results show that although the adsorption capacities of BP after high-pressure CO2-hydrothermal pretreatment(BPx) is decrease due to decrease of oxygen-containing functional group and flatter spatial structure, that of BPx after KOH activation(BPx-A) significantly increase and is higher than that of BP by direct KOH activation(BP-A). Because BP-A presents honeycomb porous microstructures and has a higher mesoporous structure(138-472 m2/g), plentiful active sites and rich the abundant influential adsorption group of MB adsorption. In addition, compared to BP-A(0.68%), the total yield of BPx-A(2.42-9.11%) is 356-1340%.
Collapse
Affiliation(s)
- Fenghao Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daofan Cao
- Birmingham Centre for Energy Storage(BCES) & School of Chemical Engineering, University of Birmingham, United Kingdom B15 2TT, UK
| | - Shunxuan Hu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Wang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaohe Huang
- Department of Thermal Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hang Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changning Wu
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; Clean Energy Institute, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junguo Li
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; Clean Energy Institute, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yulong Ding
- Birmingham Centre for Energy Storage(BCES) & School of Chemical Engineering, University of Birmingham, United Kingdom B15 2TT, UK
| | - Ke Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China; School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; Clean Energy Institute, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Microwave-Assisted Hydrothermal Carbonization of Pomegranate Peels into Hydrochar for Environmental Applications. ENERGIES 2022. [DOI: 10.3390/en15103629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several studies have reported that the hydrothermal carbonization method (HTC) of agricultural waste is able to produce a solid residue with interesting properties for the adsorption of organic pollutants from contaminated water. This work represents a facile method to prepare hydrochar (HC) from pomegranate peels’ waste using the microwave-assisted hydrothermal carbonization method (MHTC) at 200 °C for 1 h with a mass ratio of peel to water = 1:10. Activated hydrochar (AHC) was prepared by in situ chemical activation using ZnCl2 and MHTC. Several techniques have been applied to characterize the prepared samples as FTIR, XRD, TEM and SEM. The samples were investigated for their possible use as adsorbents of methylene blue (MB) dye. The results confirm the formation of amorphous hydrochar with a porous structure. The pH of zero point charge (pHzpc) is 4.3 and 4.6 for HC and AHC samples, respectively. The maximum adsorption capacity of HC and AHC samples are 194.9 and 12.55 mg/g (i.e., mg of adsorbate/g of adsorbent), respectively.
Collapse
|
12
|
Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S. Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Dang H, Wang G, Yu C, Ning X, Zhang J, Zhang N, Gao Y, Xu R, Wang C. Study on Chemical Bond Dissociation and the Removal of Oxygen-Containing Functional Groups of Low-Rank Coal during Hydrothermal Carbonization: DFT Calculations. ACS OMEGA 2021; 6:25772-25781. [PMID: 34632233 PMCID: PMC8495868 DOI: 10.1021/acsomega.1c03866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The molecular structure model of lignite was constructed, and the dissociation and removal mechanism of different C-O bonds and oxygen-containing functional groups was investigated using density functional theory (DFT) calculations. First, the bond order and bond dissociation enthalpy (BDE) were analyzed to predict the strength of different chemical bonds, and differences in the BDE and bond order were related to the difference in the fragment structure and electronic effects. The first group to break during hydrothermal carbonization (HTC) is the methyl of Ph(CO)O-CH3, followed by the C-O of CH3-OC(O)OH; the hydroxyl in Ph-OH is the most thermally stable group, followed by the hydroxyl in CH3OC(O)-OH. In addition, the orbital localization analysis has also been carried out. All three chemical bonds of Ph(CO)OCH3 show the characteristics of σ bond, while Ph(C=O)OCH3 and Ph(CO)-OCH3 with the Mayer bond order (MBO) greater than 1 also contains certain π bond characteristics. The lignite van der Waals (vdW) surface electrostatic potential (ESP) was constructed and visualized, and the results showed that the oxygen-containing functional groups mainly contributed to the area with a large absolute ESP. Finally, weak interactions between water molecules and lignite at different sites were described by independent gradient model (IGM) analysis. Models A, B, and E formed weak interactions with the hydrogen bond as the main force; model E showed the weakest hydrogen bond, while model C showed van der Waals interaction as the dominant force. In addition, some steric effect was also observed in model D.
Collapse
Affiliation(s)
- Han Dang
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing 100083, China
| | - Guangwei Wang
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing 100083, China
| | - Chunmei Yu
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing 100083, China
| | - Xiaojun Ning
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing 100083, China
| | - Jianliang Zhang
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing 100083, China
| | - Nan Zhang
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing 100083, China
| | - Yi Gao
- Laboratory
for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, China
| | - Runsheng Xu
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing 100083, China
| | - Chuan Wang
- Swerim
AB, SE-971 25 Luleå, Sweden
- Thermal
and Flow Engineering Laboratory, Åbo
Akademi University, Åbo FI-20500, Finland
| |
Collapse
|
14
|
Pauletto PS, Moreno-Pérez J, Hernández-Hernández LE, Bonilla-Petriciolet A, Dotto GL, Salau NPG. Novel biochar and hydrochar for the adsorption of 2-nitrophenol from aqueous solutions: An approach using the PVSDM model. CHEMOSPHERE 2021; 269:128748. [PMID: 33139043 DOI: 10.1016/j.chemosphere.2020.128748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Two new adsorbents, namely avocado-based hydrochar and LDH/bone-based biochar, were developed, characterized, and applied for adsorbing 2-nitrophenol. The pore volume and surface diffusion model (PVSDM) was numerically solved for different geometries and applied to interpret the adsorption decay curves. Both adsorbents presented interesting textural and physicochemical characteristics, which achieved maximum adsorption capacities of 761 mg/g for biochar and 562 mg/g for hydrochar. The adsorption equilibrium data were well fitted by Henry isotherm. Besides, thermodynamic investigation revealed endothermic adsorption with the occurrence of electrostatic interactions. PVSDM predicted the adsorption decay curves for different adsorbent geometries at different initial concentrations of 2-nitrophenol. The surface diffusion was the main intraparticle mass transport mechanism. Furthermore, the external mass transfer and surface diffusion coefficients increased with the increase of 2-nitrophenol concentration.
Collapse
Affiliation(s)
- P S Pauletto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| | - J Moreno-Pérez
- Instituto Tecnológico de Aguascalientes, Aguascalientes, 20256, Mexico.
| | | | | | - G L Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| | - N P G Salau
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Zhang L, Tan J, Xing G, Dou X, Guo X. Cotton stalk-derived hydrothermal carbon for methylene blue dye removal: investigation of the raw material plant tissues. BIORESOUR BIOPROCESS 2021; 8:10. [PMID: 38650223 PMCID: PMC10992739 DOI: 10.1186/s40643-021-00364-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
Conversion of the abundant agricultural residual cotton stalk (CS) into useful chemicals or functional materials could alleviate the fossil fuels caused energy shortages and environmental crises. Although some advances have been achieved, less attention has been paid to the plant tissues effect. In this study, the plant tissue of CS was changed by part degradation of some components (hemicelluloses and lignin, for example) with the aid of acid/base (or both). The pretreated CS was transformed into hydrochar by hydrothermal carbonization (HTC) method. Morphological and chemical compositions of CS hydrochar were analyzed by various techniques, including elemental analysis, Fourier transform infrared (FTIR), BET analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Methylene blue (MB) removal of prepared CS hydrochar was used to evaluate CS hydrochar pollutions adsorption capacity. Results reveal acid/base (or both) pretreatment is beneficial for CS raw material to prepare high-quality CS hydrochar. The effects of some parameters, such as initial MB concentration, temperature, pH value and recyclability on the adsorption of MB onto both acid and base-pretreated CS hydrochar (CS-H2SO4 + NaOH-HTC) were studied. The present work exhibits the importance of agricultural waste biomass material plant tissues on its derived materials, which will have a positive effect on the direct utilization of waste biomass.
Collapse
Affiliation(s)
- Libo Zhang
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 834000, People's Republic of China.
| | - Junyan Tan
- Shenzhen College of International Education, Shenzhen, 518048, People's Republic of China
| | - Gangying Xing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xintong Dou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xuqiang Guo
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 834000, People's Republic of China
| |
Collapse
|
16
|
Khoshnevisan B, Duan N, Tsapekos P, Awasthi MK, Liu Z, Mohammadi A, Angelidaki I, Tsang DCW, Zhang Z, Pan J, Ma L, Aghbashlo M, Tabatabaei M, Liu H. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 135:110033. [DOI: 10.1016/j.rser.2020.110033] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
17
|
Hydrochars as Emerging Biofuels: Recent Advances and Application of Artificial Neural Networks for the Prediction of Heating Values. ENERGIES 2020. [DOI: 10.3390/en13174572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, the growing scientific field of alternative biofuels was examined, with respect to hydrochars produced from renewable biomasses. Hydrochars are the solid products of hydrothermal carbonization (HTC) and their properties depend on the initial biomass and the temperature and duration of treatment. The basic (Scopus) and advanced (Citespace) analysis of literature showed that this is a dynamic research area, with several sub-fields of intense activity. The focus of researchers on sewage sludge and food waste as hydrochar precursors was highlighted and reviewed. It was established that hydrochars have improved behavior as fuels compared to these feedstocks. Food waste can be particularly useful in co-hydrothermal carbonization with ash-rich materials. In the case of sewage sludge, simultaneous P recovery from the HTC wastewater may add more value to the process. For both feedstocks, results from large-scale HTC are practically non-existent. Following the review, related data from the years 2014–2020 were retrieved and fitted into four different artificial neural networks (ANNs). Based on the elemental content, HTC temperature and time (as inputs), the higher heating values (HHVs) and yields (as outputs) could be successfully predicted, regardless of original biomass used for hydrochar production. ANN3 (based on C, O, H content, and HTC temperature) showed the optimum HHV predicting performance (R2 0.917, root mean square error 1.124), however, hydrochars’ HHVs could also be satisfactorily predicted by the C content alone (ANN1, R2 0.897, root mean square error 1.289).
Collapse
|
18
|
Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104789] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Wang H, Yang Z, Li X, Liu Y. Distribution and transformation behaviors of heavy metals and phosphorus during hydrothermal carbonization of sewage sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17109-17122. [PMID: 32146677 DOI: 10.1007/s11356-020-08098-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the distribution and transformation behaviors of heavy metals (HMs) and phosphorus (P) during hydrothermal carbonization (HTC) of sewage sludge. In addition to a large reduction in sludge volume, HTC significantly decreased the exchangeable fraction of HMs (Zn, Cu, Cr, Ni, and Mn) and increased their residual fraction, which resulted in immobilization of HMs accumulated in hydrochar. The ecological toxicity of HMs was greatly reduced, and all HMs exhibited their lowest risk levels after HTC at 220 °C for 1 h in 2% H2SO4 solution. Most of the P (~ 97%) in the input sludge remained in the hydrochar after HTC. HTC facilitated transformation of organic P to inorganic P and promoted conversion of apatite P to non-apatite inorganic P under acidic conditions. The feasibility of recovering P from sludge by HTC was verified by an acid extraction experiment utilizing hydrochar, which recovered more than 90% P. Graphical abstract.
Collapse
Affiliation(s)
- Hang Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zijian Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xin Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| |
Collapse
|
20
|
Veltri F, Alessandro F, Scarcello A, Beneduci A, Arias Polanco M, Cid Perez D, Vacacela Gomez C, Tavolaro A, Giordano G, Caputi LS. Porous Carbon Materials Obtained by the Hydrothermal Carbonization of Orange Juice. NANOMATERIALS 2020; 10:nano10040655. [PMID: 32244676 PMCID: PMC7222017 DOI: 10.3390/nano10040655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 01/13/2023]
Abstract
Porous carbon materials are currently subjected to strong research efforts mainly due to their excellent performances in energy storage devices. A sustainable process to obtain them is hydrothermal carbonization (HTC), in which the decomposition of biomass precursors generates solid products called hydrochars, together with liquid and gaseous products. Hydrochars have a high C content and are rich with oxygen-containing functional groups, which is important for subsequent activation. Orange pomace and orange peels are considered wastes and then have been investigated as possible feedstocks for hydrochars production. On the contrary, orange juice was treated by HTC only to obtain carbon quantum dots. In the present study, pure orange juice was hydrothermally carbonized and the resulting hydrochar was filtered and washed, and graphitized/activated by KOH in nitrogen atmosphere at 800 °C. The resulting material was studied by transmission and scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and nitrogen sorption isotherms. We found porous microspheres with some degree of graphitization and high nitrogen content, a specific surface of 1725 m2/g, and a pore size distribution that make them good candidates for supercapacitor electrodes.
Collapse
Affiliation(s)
- Francesco Veltri
- Surface Nanoscience Group, Department of Physics, University of Calabria, I-87036 Rende, Cosenza, Italy; (F.V.); (F.A.); (A.S.)
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
| | - Francesca Alessandro
- Surface Nanoscience Group, Department of Physics, University of Calabria, I-87036 Rende, Cosenza, Italy; (F.V.); (F.A.); (A.S.)
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- INFN, Sezione LNF, Gruppo Collegato di Cosenza, Via P. Bucci, I-87036 Rende, Cosenza, Italy
| | - Andrea Scarcello
- Surface Nanoscience Group, Department of Physics, University of Calabria, I-87036 Rende, Cosenza, Italy; (F.V.); (F.A.); (A.S.)
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- INFN, Sezione LNF, Gruppo Collegato di Cosenza, Via P. Bucci, I-87036 Rende, Cosenza, Italy
| | - Amerigo Beneduci
- Department of Chemistry and Chemical Technologies, University of Calabria, I-87036 Rende, Cosenza, Italy;
| | - Melvin Arias Polanco
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- Laboratorio de Nanotecnología, Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo, Av. Los Próceres, Santo Domingo 10602, República Dominicana
| | - Denia Cid Perez
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- Escuela de Ciencias Naturales y Exactas, Pontificia Universidad Católica Madre y Maestra, Autopista Duarte Km 1 1/2, Santiago de los Caballeros 51000, República Dominicana
| | - Cristian Vacacela Gomez
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- CompNano, School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí EC-100119, Ecuador
| | - Adalgisa Tavolaro
- Research Institute on Membrane Technology (ITM-CNR), University of Calabria, I-87036 Rende, Cosenza, Italy;
| | - Girolamo Giordano
- Department of Environmental and Chemical Engineering, University of Calabria, I-87036 Rende, Cosenza, Italy;
| | - Lorenzo S. Caputi
- Surface Nanoscience Group, Department of Physics, University of Calabria, I-87036 Rende, Cosenza, Italy; (F.V.); (F.A.); (A.S.)
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, Cosenza, Italy; (M.A.P.); (D.C.P.); (C.V.G.)
- Correspondence: ; Tel.: +39-0984-496154
| |
Collapse
|
21
|
Shi S, Feng X, Gao L, Tang J, Guo H, Wang S. Hydrolysis and carbonization of reactive dyes/cotton fiber in hydrothermal environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 103:370-377. [PMID: 31927327 DOI: 10.1016/j.wasman.2019.12.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/01/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
To understand the evolution and mechanism of the hydrothermal carbonization products of colored cotton fiber, hydrothermal carbonization experiments were carried out on colored cotton fiber dyed with reactive red X-3B and reactive blue KN-R. Fourier transform infrared spectroscopy, X-ray diffraction, and elemental analysis were used to characterize the hydrochar from colored cotton fiber and the hydrothermal behavior of reactive dyes under different reaction temperatures and time conditions. The study showed that when the reaction temperature was in the range of 210-250 °C, hydrolysis of reactive dyes was complete in 6 h, and organic acid that is produced by the degradation of cotton fiber accelerates the hydrolysis of dyes. Also, the hydrolysis products of dyes were involved in the hydrothermal carbonization of cotton fiber and covered the inside of the carbon microspheres; this led to changes in the elemental composition and functional group of the hydrochar. However, the dye content in colored fabric was limited because of limited dye-uptake. Consequently, the reactive activity of dyes was not strong enough to change the hydrothermal behavior of cotton fiber.
Collapse
Affiliation(s)
- Sheng Shi
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China; Jihua 3542 Textile Company Limited, Xiangyang, Hubei 441000, China
| | - Xiangwei Feng
- School of Textiles, Henan University of Engineering, Zhengzhou, Henan 450000, China
| | - Lixia Gao
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
| | - Jiandong Tang
- Jihua 3542 Textile Company Limited, Xiangyang, Hubei 441000, China
| | - Hong Guo
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China.
| | - Shuhua Wang
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
| |
Collapse
|
22
|
Dye Adsorption and Electrical Property of Oxide-Loaded Carbon Fiber Made by Electrospinning and Hydrothermal Treatment. FIBERS 2019. [DOI: 10.3390/fib7080074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our current study deals with the dye adsorption and electrical property of a partially carbonized composite fiber containing transition metal oxides including, iron oxide, nickel oxide, and titanium oxide. The fiber was made by electrospinning, carbonization, and hydrothermal treatment. During the electrospinning, titanium oxide particles were dispersed in polyacrylonitrile (PAN) polymer-dimethylformamide (DMF) solution. Nickel chloride and iron nitrate were added into the solution to generate nickel oxide and iron oxide in the subsequent heat treatment processes. The polymer fiber was oxidized first at an elevated temperature of 250 °C to stabilize the structure of PAN. Then, we performed higher temperature heat treatment at 500 °C in a furnace with hydrogen gas protection to partially carbonize the polymer fiber. After that, the oxide-containing fiber was coated with activated carbon in a diluted sugar solution via hydrothermal carbonization at 200 °C for 8 h. The pressure reached 1.45 MPa in the reaction chamber. The obtained product was tested in view of the dye, Rhodamine B, adsorption using a Vis-UV spectrometer. Electrical property characterization was performed using an electrochemical work station. It was found that the hydrothermally treated oxide-containing fiber demonstrated obvious dye adsorption behavior. The visible light absorption intensity of the Rhodamine B dye decreased with the increase in the soaking time of the fiber in the dye solution. The impedance of the fiber was increased due to the hydrothermal carbonization treatment. We also found that charge build-up was faster at the surface of the specimen without the hydrothermally treated carbon layer. Electricity generation under visible light excitation is more intensive at the hydrothermally treated fiber than at the one without the hydrothermal treatment. This result is consistent with that obtained from the dye adsorption/decomposition test because the charge generation is more efficient at the surface of the hydrothermally treated fiber, which allows the dye to be decomposed faster by the treated fibers with activated carbon.
Collapse
|
23
|
Sun Y, He Z, Tu R, Wu YJ, Jiang EC, Xu XW. The mechanism of wet/dry torrefaction pretreatment on the pyrolysis performance of tobacco stalk. BIORESOURCE TECHNOLOGY 2019; 286:121390. [PMID: 31078074 DOI: 10.1016/j.biortech.2019.121390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
In this work, the influence of dry/wet torrefaction with additives on the pyrolysis performance was investigated. The results showed that the content of phenols and ketones (62% and 42%) was improved and the content of acids decreased from 35% to 4% due to the increase of lignin content in torrefied char. Moreover, the content of aromatic hydrocarbon reached 22%. The mechanism showed that the conversion of "CO/CO" into states of "aromatic CC/CC", the removal of hemicellulose and the formation of pseudo-lignin during wet/dry torrefaction were the key factors for the enrichment of aromatic hydrocarbon. The research supplied an effective and original method for obtaining high value aromatic chemicals from the agricultural and forestry waste via the wet/dry torrefaction pretreatment combining with pyrolysis.
Collapse
Affiliation(s)
- Yan Sun
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Zhen He
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Ren Tu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Yu-Jian Wu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - En-Chen Jiang
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China.
| | - Xi-Wei Xu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
24
|
Nogueira GDR, Duarte CR, Barrozo MAS. Hydrothermal carbonization of acerola (Malphigia emarginata D.C.) wastes and its application as an adsorbent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:466-475. [PMID: 31351633 DOI: 10.1016/j.wasman.2019.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Hydrothermal carbonization (HTC) is a promising technique for the improved management and better use of agro-industrial wastes. In this study, the effects of temperature, reaction time, biomass/water ratio, feed-water pH, and agitation speed on the HTC of acerola wastes were investigated. The effects of these independent variables on process yield and on the total oxygenated functional groups of hydrochars were quantified. The best process conditions were obtained using the desirability function and the chemical-morphological properties of the hydrochar produced in these optimal conditions were investigated. The total number of oxygenated functional groups were found to be higher than those described in the literature for similar biomasses. The effects of temperature, solution pH, initial dye concentration, and adsorbent dosage on the adsorption of methylene blue using the obtained hydrochar were also investigated and the conditions necessary for the maximum removal and adsorption capacity were determined. Adsorption isotherms and thermodynamic studies have shown that methylene blue adsorption on the obtained hydrochar is endothermic and spontaneous. Thus, the HTC of acerola wastes may be a sustainable technology for the modification of underutilized wastes and their application as adsorbents of environmental contaminants.
Collapse
Affiliation(s)
- Geraldo D R Nogueira
- Federal University of Uberlândia, Chemical Engineering School, Block K, Campus Santa Mônica, ZIP code 38400-902, Uberlândia, MG, Brazil
| | - Claudio R Duarte
- Federal University of Uberlândia, Chemical Engineering School, Block K, Campus Santa Mônica, ZIP code 38400-902, Uberlândia, MG, Brazil
| | - Marcos A S Barrozo
- Federal University of Uberlândia, Chemical Engineering School, Block K, Campus Santa Mônica, ZIP code 38400-902, Uberlândia, MG, Brazil.
| |
Collapse
|
25
|
Li Y, Liu H, Xiao K, Liu X, Hu H, Li X, Yao H. Correlations between the physicochemical properties of hydrochar and specific components of waste lettuce: Influence of moisture, carbohydrates, proteins and lipids. BIORESOURCE TECHNOLOGY 2019; 272:482-488. [PMID: 30390541 DOI: 10.1016/j.biortech.2018.10.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
This study aims to figure out the influence of moisture content and chemical constitution, i.e. carbohydrates, proteins and lipids, of waste lettuce on the physicochemical structure of hydrochar produced via hydrothermal carbonization. The experimental results showed that homogenized carbon material can be obtained by hydrothermal treatment, regardless of the moisture content of feedstock. During the hydrothermal carbonization process of waste lettuce, carbohydrates were the most active reactants contributing to hydrochar formation. Meanwhile, Maillard reaction between proteins and carbohydrates occurred, which promoted the aromatization of the organic intermediates and increased the relative content of nitrogenous heterocyclic functional groups on the surface of hydrochar from 10.7 to 18.7%. Different from these two constitution, lipids did not participate in the carbonization reaction, the main hydrolyzates of lipids were adsorbed to the surface of hydrochar, leading to an increase in the mass of solid products.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kangxin Xiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyun Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xian Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|