1
|
Rovira-Alsina L, Romans-Casas M, Perona-Vico E, Ceballos-Escalera A, Balaguer MD, Bañeras L, Puig S. Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39739109 DOI: 10.1007/10_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Addressing global challenges of waste management demands innovative approaches to turn biowaste into valuable resources. This chapter explores the potential of microbial electrochemical technologies (METs) as an alternative opportunity for biowaste valorisation and resource recovery due to their potential to address limitations associated with traditional methods. METs leverage microbial-driven oxidation and reduction reactions, enabling the conversion of different feedstocks into energy or value-added products. Their versatility spans across gas, food, water and soil streams, offering multiple solutions at different technological readiness levels to advance several sustainable development goals (SDGs) set out in the 2030 Agenda. By critically examining recent studies, this chapter uncovers challenges, optimisation strategies, and future research directions for real-world MET implementations. The integration of economic perspectives with technological developments provides a comprehensive understanding of the opportunities and demands associated with METs in advancing the circular economy agenda, emphasising their pivotal role in waste minimisation, resource efficiency promotion, and closed-loop system renovation.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain
| | | | - Elisabet Perona-Vico
- gEMM, Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | | | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain
| | - Lluís Bañeras
- gEMM, Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
2
|
Lu Y, Zhang B, Cao Y, Wang Y, Zhang Y, Huang S. Exploring alkali-treated corn cob for high-rate removal of NO X and SO 2 from flue gas: Focus on carbon release capacity, removal performance, and comparison with conventional carbon sources. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135613. [PMID: 39180994 DOI: 10.1016/j.jhazmat.2024.135613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This investigation explored the potential of utilizing alkali-treated corn cob (CC) as a solid carbon source to improve NOX and SO2 removal from flue gas. Leaching experiments unveiled a hierarchy of chemical oxygen demand release capacity: 0.03 mol/L alkali-treated CC > 0.02 mol/L > 0.01 mol/L > 0.005 mol/L > control. In NOX and SO2 removal experiments, as the inlet NOX concentration rose from 300 to 1000 mg/m3, the average NOX removal efficiency increased from 58.56 % to 80.00 %. Conversely, SO2 removal efficiency decreased from 99.96 % to 91.05 %, but swiftly rebounded to 98.56 % by day 18. The accumulation of N intermediates (NH4+, NO3-, NO2-) increased with escalating inlet NOX concentration, while the accumulation of S intermediates (SO42-, SO32-, S0) varied based on shifts in the population of functional bacteria. The elevation in inlet NOX concentration stimulated the growth of denitrifying bacteria, enhancing NOX removal efficiency. Concurrently, the population of nitrate-reducing sulfur-oxidizing bacteria and sulfate-reducing bacteria expanded, aiding in the accumulation of S0 and the removal of SO2. The comparison experiments on carbon sources confirmed the comparable NOX and SO2 removal efficiencies of alkali-treated CC and glucose, yet underscored differences in intermediates accumulation due to distinct genus structures.
Collapse
Affiliation(s)
- Yao Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China.
| | - Biaojun Zhang
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315000, China.
| | - Ying Cao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China.
| | - Yanling Wang
- School of Civil Engineering Architecture, East China Jiao Tong University, Nanchang 330013, Jiangxi, China.
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
3
|
Barla RJ, Raghuvanshi S, Gupta S. A comprehensive review of flue gas bio-mitigation: chemolithotrophic interactions with flue gas in bio-reactors as a sustainable possibility for technological advancements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33165-33189. [PMID: 38668951 DOI: 10.1007/s11356-024-33407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Flue gas mitigation technologies aim to reduce the environmental impact of flue gas emissions, particularly from industrial processes and power plants. One approach to mitigate flue gas emissions involves bio-mitigation, which utilizes microorganisms to convert harmful gases into less harmful or inert substances. The review thus explores the bio-mitigation efficiency of chemolithotrophic interactions with flue gas and their potential application in bio-reactors. Chemolithotrophs are microorganisms that can derive energy from inorganic compounds, such as carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2), present in the flue gas. These microorganisms utilize specialized enzymatic pathways to oxidize these compounds and produce energy. By harnessing the metabolic capabilities of chemolithotrophs, flue gas emissions can be transformed into value-added products. Bio-reactors provide controlled environments for the growth and activity of chemolithotrophic microorganisms. Depending on the specific application, these can be designed as suspended or immobilized reactor systems. The choice of bio-reactor configuration depends on process efficiency, scalability, and ease of operation. Factors influencing the bio-mitigation efficiency of chemolithotrophic interactions include the concentration and composition of the flue gas, operating conditions (such as temperature, pH, and nutrient availability), and reactor design. Chemolithotrophic interactions with flue gas in bio-reactors offer a potentially efficient approach to mitigating flue gas emissions. Continued research and development in this field are necessary to optimize reactor design, microbial consortia, and operating conditions. Advances in understanding the metabolism and physiology of chemolithotrophic microorganisms will contribute to developing robust and scalable bio-mitigation technologies for flue gas emissions.
Collapse
Affiliation(s)
- Rachael Jovita Barla
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| |
Collapse
|
4
|
Cheng S, Li H, He X, Chen H, Li L. Improving anammox activity and reactor start-up speed by using CO 2/NaHCO 3 buffer. J Environ Sci (China) 2024; 139:60-71. [PMID: 38105078 DOI: 10.1016/j.jes.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 12/19/2023]
Abstract
Anammox bacteria grow slowly and can be affected by large pH fluctuations. Using suitable buffers could make the start-up of anammox reactors easy and rapid. In this study, the effects of three kinds of buffers on the nitrogen removal and growth characteristics of anammox sludge were investigated. Reactors with CO2/NaHCO3 buffer solution (CCBS) performed the best in nitrogen removal, while 4-(2-hydroxyerhyl)piperazine-1-ethanesulfonic acid (HEPES) and phosphate buffer solution (PBS) inhibited the anammox activity. Reactors with 50 mmol/L CCBS could start up in 20 days, showing the specific anammox activity and anammox activity of 1.01±0.10 gN/(gVSS·day) and 0.83±0.06 kgN/(m3·day), respectively. Candidatus Kuenenia was the dominant anammox bacteria, with a relative abundance of 71.8%. Notably, anammox reactors could also start quickly by using 50 mmol/L CCBS under non-strict anaerobic conditions. These findings are meaningful for the quick start-up of engineered anammox reactors and prompt enrichment of anammox bacteria.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huahua Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyuan He
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hua Chen
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Longxin Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Wang K, Du W, Liu Z, Liu R, Guan Q, He L, Zhou H. Extracellular electron transfer for aerobic denitrification mediated by the bioelectric catalytic system with zero-carbon source. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115691. [PMID: 37979359 DOI: 10.1016/j.ecoenv.2023.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The slow rate of electron transfer and the large consumption of carbon sources are technical bottlenecks in the biological treatment of wastewater. Here, we first proposed to domesticate aerobic denitrifying bacteria (ADB) from heterotrophic to autotrophic by electricity (0.6 V) under zero organic carbon source conditions, to accelerate electron transfer and shorten hydraulic retention time (HRT) while increasing the biodegradation rate. Then we investigated the extracellular electron transfer (EET) mechanism mediated by this process, and additionally examined the integrated nitrogen removal efficiency of this system with composite pollution. It was demonstrated that compared with the traditional membrane bioreactor (MBR), the BEC displayed higher nitrogen removal efficiency. Especially at C/N = 0, the BEC exhibited a NO3--N removal rate of 95.42 ± 2.71 % for 4 h, which was about 6.5 times higher than that of the MBR. Under the compound pollution condition, the BEC still maintained high NO3--N and tetracycline removal (94.52 ± 2.01 % and 91.50 ± 0.001 %), greatly superior to the MBR (10.64 ± 2.01 % and 12.00 ± 0.019 %). In addition, in-situ electrochemical tests showed that the nitrate in the BEC could be directly converted to N2 by reduction using electrons from the cathode, which was successfully demonstrated as a terminal electron acceptor.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Wentao Du
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Zilian Liu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Runhang Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
6
|
Jin C, Tang Q, Xu H, Sheng Y. Effects of anode materials on nitrate reduction and microbial community in a three-dimensional electrode biofilm reactor with sulfate. CHEMOSPHERE 2023; 340:139909. [PMID: 37611758 DOI: 10.1016/j.chemosphere.2023.139909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/22/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Graphite rod corrosion and peeling are serious problems in three-dimensional electrode biofilm reactors (3D-BERs). In this study, titanium rods, titanium suboxide-coated titanium rods and graphite rods were used as anodes to investigate the effect of anodic materials on the electrochemical and bioelectrochemical reduction of nitrate and sulfate. The results showed that the reactor with the titanium suboxide-coated titanium rod anode (3D-ER-T) exhibited a stable NO3--N removal efficiency (46%-95%) with a current range of 160-320 mA in the electrochemical reduction process. In the bioelectrochemical reduction, the removal efficiencies of NO3--N and SO42- and nitrogen selectivity in the 3D-BER with titanium suboxide-coated titanium rod anode (3D-BER-T) were higher than those in the 3D-BER with titanium suboxide-coated graphite rod anode (3D-BER-G). The removal efficiencies of NO3--N and SO42- and nitrogen selectivity were 92%, 43% and 86%, respectively, in 3D-BER-T under 320 mA and HRT 12 h. Anode materials affected the microbial community. Hydrogenophaga and Dethiobacter were the dominant bacteria in 3D-BER-T, while OPB41 and Sulfurospirillum were dominant in 3D-BER-G. Nitrate and sulfate were effectively removed in 3D-BER-T by the synergistic work of electrochemical reduction, bioelectrochemical reduction and indirect electrochemical reduction. The resupply/reserve mode of the electron donor promoted the load of shock resistance of 3D-BER-T via the sulfur cycle. Titanium suboxide coating could significantly enhance the anti-corrosion ability of matrix anodes.
Collapse
Affiliation(s)
- Chunhong Jin
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Qi Tang
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengduo Xu
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
7
|
Puigserver D, Herrero J, Carmona JM. Mobilization pilot test of PCE sources in the transition zone to aquitards by combining mZVI and biostimulation with lactic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162751. [PMID: 36921871 DOI: 10.1016/j.scitotenv.2023.162751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 03/05/2023] [Indexed: 05/06/2023]
Abstract
The potential toxic and carcinogenic effects of chlorinated solvents in groundwater on human health and aquatic ecosystems require very effective remediation strategies of contaminated groundwater to achieve the low legal cleanup targets required. The transition zones between aquifers and bottom aquitards occur mainly in prograding alluvial fan geological contexts. Hence, they are very frequent from a hydrogeological point of view. The transition zone consists of numerous thin layers of fine to coarse-grained clastic fragments (e.g., medium sands and gravels), which alternate with fine-grained materials (clays and silts). When the transition zones are affected by DNAPL spills, free-phase pools accumulate on the less conductive layers. Owing to the low overall conductivity of this zone, the pools are very recalcitrant. Little field research has been done on transition zone remediation techniques. Injection of iron microparticles has the disadvantage of the limited accessibility of this reagent to reach the entire source of contamination. Biostimulation of indigenous microorganisms in the medium has the disadvantage that few of the microorganisms are capable of complete biodegradation to total mineralization of the parent contaminant and metabolites. A field pilot test was conducted at a site where a transition zone existed in which DNAPL pools of PCE had accumulated. In particular, the interface with the bottom aquitard was where PCE concentrations were the highest. In this pilot test, a combined strategy using ZVI in microparticles and biostimulation with lactate in the form of lactic acid was conducted. Throughout the test it was found that the interdependence of the coupled biotic and abiotic processes generated synergies between these processes. This resulted in a greater degradation of the PCE and its transformation products. With the combination of the two techniques, the mobilization of the contaminant source of PCE was extremely effective.
Collapse
Affiliation(s)
- Diana Puigserver
- Department of Mineralogy, Petrology and Applied Geology. Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), Serra Húnter Tenure-elegible Lecturer, C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - Jofre Herrero
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - José M Carmona
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| |
Collapse
|
8
|
Chen J, Zeng J, He Y, Sun S, Wu H, Zhou Y, Chen Z, Wang J, Chen H. Insights into a novel nitrogen removal process based on simultaneous anammox and denitrification (SAD) following nitritation with in-situ NOB elimination. J Environ Sci (China) 2023; 125:160-170. [PMID: 36375902 DOI: 10.1016/j.jes.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous anammox and denitrification (SAD) is an efficient approach to treat wastewater having a low C/N ratio; however, few studies have investigated a combination of SAD and partial nitritation (PN). In this study, a lab-scale up-flow blanket filter (UBF) and zeolite sequence batch reactor (ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen (TN) removal efficiency of over 70% during the start-up stage (days 1-50), and reached a TN removal efficiency of 96% in the following 90 days (days 51-140) at COD/NH4+-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107 copies/µL DNA; Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN (66.5% ± 4.5%) and COD (71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.
Collapse
Affiliation(s)
- Jing Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Jia Zeng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Yiran He
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Haipeng Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhenguo Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhui Wang
- School of Food science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hong Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China.
| |
Collapse
|
9
|
Zhao T, Xie B, Yi Y, Zang Y, Liu H. Two polarity reversal modes lead to different nitrate reduction pathways in bioelectrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159185. [PMID: 36202359 DOI: 10.1016/j.scitotenv.2022.159185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Polarity reversal is one of the effective strategies to rapidly start up denitrifying BESs,but the long-term performances of the denitrifying BESs operated under polarity reversal receive little attention. This study investigated the effects of periodic polarity reversal (PPR) and polarity reversal once only (PRO) on the long-term performances of denitrifying BESs. Repeatable oxidative and reductive currents were observed in the BESs obtained by PPR (PPR-BESs). The peak reductive currents of the PPR-BESs reached 0.95 A/m2, and nitrate was mainly removed by dissimilatory nitrate reduction to ammonium pathway with removal rates higher than 95 %. In contrast, the peak reductive currents of the BESs obtained by PRO (PRO-BESs) progressively decreased from 1.01 A/m2 to 0.12 A/m2. The nitrate removal rates of the PRO-BESs were <50 %, and the product of nitrate reduction turned to N2 instead of ammonium. 16S rDNA sequencing and metatranscriptomic analysis revealed that Geobacter capable of bidirectional extracellular electron transfer (EET) and Afipia capable of autotrophic growth were the dominant genera in the two types of BESs. Outer membrane cytochrome c and formate dehydrogenase were potentially involved in the cathodic electron uptake. These findings contribute to a better understanding of the EET mechanisms of electroautotrophic denitrifiers.
Collapse
Affiliation(s)
- Ting Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yue Yi
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yuxuan Zang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
10
|
Dhar V, Singh R. Biohydrogen production potential with sulfate and nitrate removal by heat-pretreated enriched sulfate-reducing microorganisms-based bioelectrochemical system. Arch Microbiol 2022; 205:7. [PMID: 36454386 DOI: 10.1007/s00203-022-03352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
In this study, heat-pretreated sulfate-reducing bacteria (SRBs) were evaluated for simultaneous sulfate and nitrate removal in a bioelectrochemical system (BES). The effect of the applied potential of 20 mV to SRBs was evaluated at a sulfate concentration of 3 g/L and/or nitrate concentration of 0.5 g/L supplemented before heat pretreatment for sulfate and nitrate removal. The highest H2 production of 2.24 ± 0.04 mM/L in heat-pretreated culture was observed in the presence of sulfate at an applied potential of 20 mV (BHE-S). Simultaneous reduction of sulfate and nitrate was significant in BESs supplemented with either sulfate or nitrate during heat-shock pretreatment of the culture. The highest SO42- removal of 88.91 ± 0.8% was found in culture heat pretreated with NO3- and applied with 20 mV potential (BHE-N). The kinetics of heat-pretreated culture showed higher R2 and ultimate potential for H2 on the continuous application of 20 mV potential.
Collapse
Affiliation(s)
- Varsha Dhar
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, India
| | - Rajesh Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
11
|
Lin Z, Cheng S, Li H, Jin B, He X. Highly selective and sensitive nitrite biocathode biosensor prepared by polarity inversion method coupled with selective removal of interfering electroactive bacteria. Biosens Bioelectron 2022; 214:114507. [DOI: 10.1016/j.bios.2022.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
12
|
Lin Z, Cheng S, Li H, Li L. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150945. [PMID: 34655619 DOI: 10.1016/j.scitotenv.2021.150945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrite is a highly toxic and pathogenic pollutant that is widely distributed in various nitrogenous wastewaters. Therefore, there is an urgent need for fast and stable nitrite detection to avoid water pollution and protect human health. In this study, we developed a novel rapidly preparable and easily maintainable biocathode electrochemical biosensor (BEB) using nitrite-reducing bacteria as the detectors to realize continuous nitrite monitoring in wastewater. The preparation of the biocathode was shortened by the polarity inversion method to less than 6 d. The BEB could detect nitrite solution samples in the range of 0.1- 16.0 mg NO2--N L-1 within 1.7 min. The BEB was also successfully used to detect nitrite in real wastewater with a relative error < 4.0% and a relative standard deviation < 5.8%. In addition, the BEB could be easily maintained by an operation mode of microbial fuel cells and stably detected nitrite for at least 150 tests. Our study provided a feasible and convenient way to develop electrochemical biosensors based on the biocathode for continuous and stable monitoring of pollutants in wastewater.
Collapse
Affiliation(s)
- Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Huahua Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
13
|
Tang Q, Sheng Y, Li C, Wang W, Liu X. Simultaneous removal of nitrate and sulfate using an up-flow three-dimensional biofilm electrode reactor: Performance and microbial response. BIORESOURCE TECHNOLOGY 2020; 318:124096. [PMID: 32932117 DOI: 10.1016/j.biortech.2020.124096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Nitrate removal from low carbon water is a problem in the water treatment, especially in the presence of high sulfate. In this work, an up-flow three-dimensional biofilm electrode reactor (3D-BER) was established to remove nitrate and sulfate from low organic carbon water. Results indicated that sulfate negatively affected nitrate removal. Moreover, high electric current and short hydraulic retention time deteriorated the performance of nitrate and sulfate removal. When the influent of SO42- was 150 mg/L, the removal efficiency of NO3--N and SO42- was 88.49 ± 4.5% and 29.35 ± 5.5%, respectively. The high-throughput sequencing revealed that denitrifying bacteria dominated in the lower part of the reactor while sulfate reducing bacteria dominated in the upper part of the reactor. It was speculated that oxidation products of sulfide could serve as supplementary electron donors to enhance nitrate removal in the 3D-BER.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Changyu Li
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Wen X, Xu H, Huang S, Sun C, Tong N, Zhang Y. Simultaneous removal of sulphur dioxide and nitric oxide at different oxygen concentrations in a thermophilic biotrickling filter (BTF): Evaluation of removal efficiency, intermediates interaction and characterisation of microbial communities. BIORESOURCE TECHNOLOGY 2019; 294:122150. [PMID: 31569045 DOI: 10.1016/j.biortech.2019.122150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Simultaneous flue gas desulphurisation and denitrification in biotrickling filter was investigated under different O2 concentrations (0%, 3%, 5%, 8% and 10%) at 45 °C. NO and SO2 removal efficiency, intermediates (NO3-, NO2-, NO2, SO42- and S2-) interaction and accumulation, S0 recovery and microbial community structure were investigated. Results indicated the highest NO removal efficiency was 96.5% at 5% O2. Maximum SO2 removal efficiency was 95.6% at 3% O2. Moreover, N intermediates accumulation increased when O2 concentration increased from 0% to 10%. The lowest S2- concentration of 61 mg/L and the maximum S0 recovery of 76.9% were achieved at 5% O2. The bioreactor at 10% O2 contained less bacterial OTUs richness and evenness compared with other conditions. Illumina analysis indicated Proteobacteria, Firmicutes and Bacteroidetes were the dominant members. Overall, microbial community structure differs significantly under different O2 concentrations.
Collapse
Affiliation(s)
- Xiangyu Wen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Hao Xu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Congcong Sun
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Na Tong
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| |
Collapse
|
15
|
Wang H, Lyu W, Hu X, Chen L, He Q, Zhang W, Song J, Wu J. Effects of current intensities on the performances and microbial communities in a combined bio-electrochemical and sulfur autotrophic denitrification (CBSAD) system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133775. [PMID: 31756802 DOI: 10.1016/j.scitotenv.2019.133775] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
The lab-scale system combined bioelectrochemical and sulfur autotrophic denitrification (CBSAD) was established to evaluate the effects of currents (50-300 mA) on both the performances and microbial communities. Results showed that the nitrate removal rate increased significantly when the current increased from 50 to 200 mA, while it slightly decreased with higher currents. Mass balance results revealed that hydrogen autotrophic denitrification contributed almost three times (70.25-78.62%) to denitrification compared with that of the sulfur part (21.38-29.75%). Illumina MiSeq sequencing showed that the currents changed the bacterial richness and diversity in this system. Phylum Firmicutes and class Clostridia predominated >50% under each condition. And multiple key bacteria capable of denitrification such as Proteiniclasticum, Thauera and Family_XI_uncultured were identified and found in higher proportions when the current was 200 mA. Therefore, this study helps revealing the mechanisms of accelerating nitrate-reduction through applied currents in the CBSAD systems.
Collapse
Affiliation(s)
- Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Ling Chen
- Department of Internal Medicine & Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jing Wu
- School of Urban Design, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Tong N, Yuan J, Xu H, Huang S, Sun C, Wen X, Zhang Y. Effects of 2,4,6-trichlorophenol on simultaneous nitrification and denitrification: Performance, possible degradation pathway and bacterial community structure. BIORESOURCE TECHNOLOGY 2019; 290:121757. [PMID: 31299605 DOI: 10.1016/j.biortech.2019.121757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the effect of different 2,4,6-trichlorophenol (TCP) concentrations on the performance of simultaneous nitrification and denitrification processes established in a sequential batch biofilm reactor. And the degradation and the possible degradation pathway of 2,4,6-TCP and microbial community structure were also explored. Results indicated that 2,4,6-TCP inhibited the nitrification with the decrease in ammonium nitrogen removal. However, 2,4,6-TCP had different effects on denitrification. Nitrate accumulation showed the tendency to decrease first and then increase, whilst nitrite accumulation showed the opposite with a small change. The adaptation and recovery time of 25 mg/l 2,4,6-TCP was longest. In addition, the process had a good degradation effect on 2,4,6-TCP. Comparing the degradation of 2,4,6-TCP under different concentrations, the result showed that 2,4,6-TCP was mainly reduced to 2,4-dichlorophenol. With the increase in 2,4,6-TCP concentration, the differences in the bacterial community in the reactor were significant.
Collapse
Affiliation(s)
- Na Tong
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Jianqi Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Hao Xu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Congcong Sun
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Xiangyu Wen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| |
Collapse
|
17
|
Sun C, Yuan J, Xu H, Huang S, Wen X, Tong N, Zhang Y. Simultaneous removal of nitric oxide and sulfur dioxide in a biofilter under micro-oxygen thermophilic conditions: Removal performance, competitive relationship and bacterial community structure. BIORESOURCE TECHNOLOGY 2019; 290:121768. [PMID: 31323510 DOI: 10.1016/j.biortech.2019.121768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The efficiency of a biofilter to simultaneously remove nitric oxide (NO) and sulfur dioxide (SO2) was investigated under thermophilic (48 ± 2 °C) micro-oxygen (3 vol%) conditions. After the start-up stage (Days 0-14), the stable operation period was divided into three stages. SO2 inlet concentration remained 500 mg/m3, NO inlet concentrations were 300 mg/m3 (Days 15-40), 500 mg/m3 (Days 41-70) and 700 mg/m3 (Days 71-100). In each stable stage, the removal efficiency of NO and SO2 exceeded 90%, the maximum removal rates of NO and SO2 were 98.08% and 99.61%, respectively. The final products of SO2 were mostly sulphur. Nitrate-reducing bacteria inhibited sulphate-reducing bacteria. Illumina high-throughput sequencing confirmed that the relative abundance of nitrate-reducing bacteria was positively correlated with NO removal efficiency, the relative abundance of sulphate-reducing bacteria was related to the conversion rate of sulphur.
Collapse
Affiliation(s)
- Congcong Sun
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Jianqi Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Hao Xu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China.
| | - Xiangyu Wen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Na Tong
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China
| |
Collapse
|
18
|
Bioelectrochemical Systems for Groundwater Remediation: The Development Trend and Research Front Revealed by Bibliometric Analysis. WATER 2019. [DOI: 10.3390/w11081532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
: Due to the deficiency of fresh water resources and the deterioration of groundwater quality worldwide, groundwater remedial technologies are especially crucial for preventing groundwater pollution and protecting the precious groundwater resource. Among the remedial alternatives, bioelectrochemical systems have unique advantages on both economic and technological aspects. However, it is rare to see a deep study focused on the information mining and visualization of the publications in this field, and research that can reveal and visualize the development trajectory and trends is scarce. Therefore, this study summarizes the published information in this field from the Web of Science Core Collection of the last two decades (1999–2018) and uses Citespace to quantitatively visualize the relationship of authors, published countries, organizations, funding sources, and journals and detect the research front by analyzing keywords and burst terms. The results indicate that the studies focused on bioelectrochemical systems for groundwater remediation have had a significant increase during the last two decades, especially in China, Germany and Italy. The national research institutes and universities of the USA and the countries mentioned above dominate the research. Environmental Science & Technology, Applied and Environmental Microbiology, and Water Research are the most published journals in this field. The network maps of the keywords and burst terms suggest that reductive microbial diversity, electron transfer, microbial fuel cell, etc., are the research hotspots in recent years, and studies focused on microbial enrichment culture, energy supply/recovery, combined pollution remediation, etc., should be enhanced in future.
Collapse
|
19
|
Wu H, Sun Q, Sun Y, Zhou Y, Wang J, Hou C, Jiang X, Liu X, Shen J. Co-metabolic enhancement of 1H-1,2,4-triazole biodegradation through nitrification. BIORESOURCE TECHNOLOGY 2019; 271:236-243. [PMID: 30273827 DOI: 10.1016/j.biortech.2018.09.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Due to highly recalcitrant nature of 1H-1,2,4-triazole (TZ), the conventional biological process is quite ineffective for TZ removal from wastewater. In this study, co-metabolic enhancement of TZ biodegradation through nitrification was investigated in an activated sludge reactor. The link between enhanced TZ degradation and nitrification was established through highly efficient removal of TZ, TOC as well as dissolved organic matter with the supplement of NH4+. A new co-metabolic degradation pathway of TZ was proposed based on the identification of five co-metabolic intermediates, including 2,4-dihydro-[1,2,4]triazol-3-one and [1,2,4]triazolidine-3,5-dione. High-throughput sequencing analysis suggested the significant improvement of microbial community in the co-metabolic system in terms of richness, abundance and uniformity. Functional species related to nitrification and biodegradation was enriched with the supplement of NH4+, confirming the key role of nitrification. This study demonstrated that nitrification-assisted co-metabolism had a promising potential for the removal of recalcitrant contaminants such as TZ from wastewater.
Collapse
Affiliation(s)
- Haobo Wu
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Qianqian Sun
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China; Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing 210000, Jiangsu Province, China
| | - Yinglu Sun
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Yukun Zhou
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jing Wang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Cheng Hou
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jinyou Shen
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|