1
|
Zhang Y, Sun J, Li S, Wang L, Song L. The Potential Mechanism of Cuproptosis in Hemocytes of the Pacific Oyster Crassostrea gigas upon Elesclomol Treatment. Cells 2025; 14:199. [PMID: 39936990 PMCID: PMC11817986 DOI: 10.3390/cells14030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cuproptosis is a novel cell death dependent on mitochondrial respiration and regulated by copper. While the study of it is mainly focused on tumor therapy, in the present study, two key cuproptosis-related genes, ferredoxin (FDX1) and dihydrolipoamide S-acetyltransferase (DLAT) homologs (designated as CgFDX1 and CgDLAT), were identified from Crassostrea gigas. CgFDX1 has a Fer2 domain with a 2Fe-2S cluster forming a unique ferredoxin. CgDLAT is composed of a biotin_lipoyl domain, an E3-binding domain, and a 2-oxoacid_dh domain. CgFDX1 and CgDLAT mRNA were expressed in all the examined tissues. After elesclomol treatment, both mRNA and protein expressions of them were reduced in the hemocytes. The mortality rate of the hemocytes increased significantly, and the hemocytes were accompanied with noticeable adhesive abnormalities and heightened secretion after elesclomol treatment. Additionally, the accumulation or depletion of actin was observed in the hemocytes. The integrity of the double membrane structure of the mitochondria was compromised, and the organization of mitochondrial cristae was disrupted. The contents of copper, malondialdehyde (MDA), pyruvic acid and mitoSOX as well as the ratio of cells with low mitochondrial potential increased significantly in the hemocytes upon elesclomol treatment and the content of citric acid decreased significantly. These findings suggest the potential presence of cuproptosis in oysters and its activation mechanism is relatively conserved in evolution.
Collapse
Affiliation(s)
- Yuxin Zhang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; (Y.Z.); (S.L.); (L.W.); (L.S.)
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; (Y.Z.); (S.L.); (L.W.); (L.S.)
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Shurong Li
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; (Y.Z.); (S.L.); (L.W.); (L.S.)
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; (Y.Z.); (S.L.); (L.W.); (L.S.)
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; (Y.Z.); (S.L.); (L.W.); (L.S.)
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
2
|
Wang K, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Combining orthogonal plant and non-plant fatty acid biosynthesis pathways for efficient production of microbial oil enriched in nervonic acid in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 378:129012. [PMID: 37019413 DOI: 10.1016/j.biortech.2023.129012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nervonic acid has proven efficacy in brain development and the prevention of neurodegenerative diseases. Here, an alternative and sustainable strategy for nervonic acid-enriched plant oil production was established. Different β-ketoacyl-CoA synthases and heterologous Δ15 desaturase were co-expressed, combined with the deletion of the β-oxidation pathway to construct orthogonal plant and non-plant nervonic acid biosynthesis pathways in Yarrowia lipolytica. A "block-pull-restrain" strategy was further applied to improve the supply of stearic acid as the precursor of the non-plant pathway. Then, lysophosphatidic acid acyltransferase from Malania oleifera (MoLpaat) was identified, which showed specificity for nervonic acid. Endogenous LPAAT was exchanged by MoLPAAT resulted in 17.10 % nervonic acid accumulation. Finally, lipid metabolism was engineered and cofactor supply was increased to boost the lipid accumulation in a stable null-hyphal strain. The final strain produced 57.84 g/L oils with 23.44 % nervonic acid in fed-batch fermentation, which has the potential to substitute nervonic acid-enriched plant oil.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
3
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|
4
|
Mitran G, Jinga LI, Popescu-Pelin GF, Pavel OD. Identification of Active Sites and the Mechanism of Reaction for Malic Acid Conversion over Iron-Doped Co 3O 4 Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Gheorghiţa Mitran
- Department of Organic Chemistry, Biochemistry & Catalysis, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018Bucharest, Romania
| | - Luiza Izabela Jinga
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, Ilfov077125, Romania
| | | | - Octavian Dumitru Pavel
- Department of Organic Chemistry, Biochemistry & Catalysis, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018Bucharest, Romania
| |
Collapse
|
5
|
Li X, Teng Z, Luo Z, Yuan Y, Zeng Y, Hu J, Sun J, Bai W. Pyruvic acid stress caused color attenuation by interfering with anthocyanins metabolism during alcoholic fermentation. Food Chem 2022; 372:131251. [PMID: 34624786 DOI: 10.1016/j.foodchem.2021.131251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/04/2022]
Abstract
Anthocyanin accounts for wine color performance, while it is susceptive to saccharomyces cerevisiae, causing threatened stability. Considering pyranoanthocyanin performed better color and stability, converting anthocyanins to pyranoanthocyanins in advance during fermentation was an ideal way for color improvement. Thus, pyruvic acid (PA) as the precursor of vitisin A was applied to fermentation with cyanidin-3-O-glucoside (C3G). Results showed that PA-stress leads to a color loss associated with a decrease in C3G and cyanidin. However, the content of pyranoanthocyanins under PA stress is unvaried. LC-MS-based non-target metabolomics revealed that superfluous PA can disturb the process of glycolysis and tricarboxylic acid cycle. Importantly, 1291 molecular features were increased and 1122 were decreased under PA-stress, in which several anthocyanins derivatization and isomerization were changed, contributing to color performance. This study indicated that extra PA is unfriendly to anthocyanins during fermentation, playing an adverse effect on color, which should be avoided in wine production.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Zhaojun Teng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Ziying Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yangbing Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jun Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
6
|
Enhanced In Vitro Cascade Catalysis of Glycerol into Pyruvate and Acetoin by Integration with Dihydroxy Acid Dehydratase from Paralcaligenes ureilyticus. Catalysts 2021. [DOI: 10.3390/catal11111282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recently, an in vitro enzymatic cascade was constructed to transform glycerol into the high-value platform chemical pyruvate. However, the low activity of dihydroxy acid dehydratase from Sulfolobus solfataricus (SsDHAD) limited the efficiency. In this study, the enzymatic reduction of pyruvate catalyzed by d-lactate dehydrogenase from Pseudomonas aeruginosa PAO1 was used to assay the activities of dihydroxy acid dehydratases. Dihydroxy acid dehydratase from Paralcaligenes ureilyticus (PuDHT) was identified as the most efficient candidate for glycerate dehydration. After the optimization of the catalytic temperature for the enzymatic cascade, comprising alditol oxidase from Streptomyces coelicolor A3, PuDHT, and catalase from Aspergillus niger, 20.50 ± 0.27 mM of glycerol was consumed in 4 h to produce 18.95 ± 0.97 mM of pyruvate with a productivity 12.15-fold higher than the previous report using SsDHAD. The enzymatic cascade was further coupled with the pyruvate decarboxylase from Zymomonas mobile for the production of another platform compound, acetoin. Acetoin at a concentration of 8.52 ± 0.12 mM was produced from 21.62 ± 0.19 mM of glycerol with a productivity of 1.42 ± 0.02 mM h−1.
Collapse
|
7
|
Sun T, Yu Y, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. BIORESOURCE TECHNOLOGY 2021; 337:125484. [PMID: 34320765 DOI: 10.1016/j.biortech.2021.125484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from lignocellulosic biomass has great potential industrial applications due to its economic feasibility and environmental attractiveness. However, the utilized microorganisms must be able to use all the sugars present in lignocellulosic hydrolysates, especially xylose, the second most plentiful monosaccharide on earth. Yarrowia lipolytica is a good candidate for producing various valuable products from biomass, but this yeast is unable to catabolize xylose efficiently. The development of metabolic engineering facilitated the application of Y. lipolytica as a platform for the bioconversion of xylose into various value-added products. Here, we reviewed the research progress on natural xylose-utilization pathways and their reconstruction in Y. lipolytica. The progress and emerging trends in metabolic engineering of Y. lipolytica for producing chemicals and fuels are further introduced. Finally, challenges and future perspectives of using lignocellulosic hydrolysate as substrate for Y. lipolytica are discussed.
Collapse
Affiliation(s)
- Tao Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
8
|
Integrated knowledge mining, genome-scale modeling, and machine learning for predicting Yarrowia lipolytica bioproduction. Metab Eng 2021; 67:227-236. [PMID: 34242777 DOI: 10.1016/j.ymben.2021.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Predicting bioproduction titers from microbial hosts has been challenging due to complex interactions between microbial regulatory networks, stress responses, and suboptimal cultivation conditions. This study integrated knowledge mining, feature extraction, genome-scale modeling (GSM), and machine learning (ML) to develop a model for predicting Yarrowia lipolytica chemical titers (i.e., organic acids, terpenoids, etc.). First, Y. lipolytica production data, including cultivation conditions, genetic engineering strategies, and product information, was manually collected from literature (~100 papers) and stored as either numerical (e.g., substrate concentrations) or categorical (e.g., bioreactor modes) variables. For each case recorded, central pathway fluxes were estimated using GSMs and flux balance analysis (FBA) to provide metabolic features. Second, a ML ensemble learner was trained to predict strain production titers. Accurate predictions on the test data were obtained for instances with production titers >1 g/L (R2 = 0.87). However, the model had reduced predictability for low performance strains (0.01-1 g/L, R2 = 0.29) potentially due to biosynthesis bottlenecks not captured in the features. Feature ranking indicated that the FBA fluxes, the number of enzyme steps, the substrate inputs, and thermodynamic barriers (i.e., Gibbs free energy of reaction) were the most influential factors. Third, the model was evaluated on other oleaginous yeasts and indicated there were conserved features for some hosts that can be potentially exploited by transfer learning. The platform was also designed to assist computational strain design tools (such as OptKnock) to screen genetic targets for improved microbial production in light of experimental conditions.
Collapse
|
9
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cao M, Jiang T, Li P, Zhang Y, Guo S, Meng W, Lü C, Zhang W, Xu P, Gao C, Ma C. Pyruvate Production from Whey Powder by Metabolic Engineered Klebsiella oxytoca. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15275-15283. [PMID: 33300786 DOI: 10.1021/acs.jafc.0c06724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyruvate is an important platform material widely used in food, pharmaceutical, and chemical industries. Pyruvate-tolerant Klebsiella oxytoca PDL-0 was chosen as a chassis for pyruvate production via metabolic engineering. Genes related to by-product generation were knocked out to decrease the production of 2,3-butantediol, acetate, ethanol, and succinate. The NADH oxidase encoding gene nox was inserted into the locus of the lactate dehydrogenase encoding gene ldhD in the genome of K. oxytoca to simultaneously block lactate production and regenerate NAD+. The pyruvate importers CstA and YjiY were identified, and their encoding genes were deleted to increase pyruvate accumulation. The engineered strain K. oxytoca PDL-YC produced 71.0 g/L pyruvate from glucose. Furthermore, K. oxytoca PDL-YC can use whey powder, an abundant by-product of the cheese making process, as substrate for pyruvate production. Pyruvate production with a concentration of 62.3 g/L and a productivity of 1.60 g/[L·h] was realized using whey powder as substrate.
Collapse
Affiliation(s)
- Menghao Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Tongtong Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
- Tumen Inspection and Testing Center, Tumen, Jilin 133100, People's Republic of China
| | - Ping Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yipeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Shiting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan 250033, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
11
|
Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica - A Review. BIORESOURCE TECHNOLOGY 2020; 313:123707. [PMID: 32595069 DOI: 10.1016/j.biortech.2020.123707] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Current energy security and climate change policies encourage the development and utilization of bioenergy. Oleaginous yeasts provide a particularly attractive platform for the sustainable production of biofuels and industrial chemicals due to their ability to accumulate high amounts of lipids. In particular, microbial lipids in the form of triacylglycerides (TAGs) produced from renewable feedstocks have attracted considerable attention because they can be directly used in the production of biodiesel and oleochemicals analogous to petrochemicals. As an oleaginous yeast that is generally regarded as safe, Yarrowia lipolytica has been extensively studied, with large amounts of data on its lipid metabolism, genetic tools, and genome sequencing and annotation. In this review, we highlight the newest strategies for increasing lipid accumulation using metabolic engineering and summarize the research advances on the overaccumulation of lipids in Y. lipolytica. Finally, perspectives for future engineering approaches are proposed.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
12
|
Dobrowolski A, Drzymała K, Mituła P, Mirończuk AM. Production of tailor-made fatty acids from crude glycerol at low pH by Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2020; 314:123746. [PMID: 32622282 DOI: 10.1016/j.biortech.2020.123746] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, single cell oil (SCO) can play two distinct roles, first as a supplier of functional oils, and second as a feedstock for the biodiesel industry. These two distinct functions require a different fatty acids (FA) profile in the lipid pool. Moreover, to exploit their potential for industrialization, it is necessary to employ a low-cost substrate. Crude glycerol is the main side-product of biodiesel production. This renewable feedstock is one of Yarrowia lipolytica favorable substrates. In this study we improved polyunsaturated fatty acids (PUFA) synthesis by overexpression of the glycerol phosphate acyltransferase gene (SCT1). Here, we established a method to alter the quantity and FA composition of SCO. The engineered strain showed a 10-fold improvement (>20%) in linoleic acid synthesis (C18:2) in a shake-flask experiment. In a fermenter study co-overexpression of glycerol kinase (GUT1) and SCT1 allowed for 3-fold improvement in C18:2 synthesis from crude glycerol and at low pH.
Collapse
Affiliation(s)
- Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, Wrocław 51-630, Poland.
| | - Katarzyna Drzymała
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, Wrocław 51-630, Poland
| | - Paweł Mituła
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq 24, Wrocław 50-363, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, Wrocław 51-630, Poland
| |
Collapse
|
13
|
Dobrowolski A, Mirończuk AM. The influence of transketolase on lipid biosynthesis in the yeast Yarrowia lipolytica. Microb Cell Fact 2020; 19:138. [PMID: 32653007 PMCID: PMC7353674 DOI: 10.1186/s12934-020-01398-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
Background During the pentose phosphate pathway (PPP), two important components, NADPH and pentoses, are provided to the cell. Previously it was shown that this metabolic pathway is a source of reducing agent for lipid synthesis from glucose in the yeast Yarrowia lipolytica. Y. lipolytica is an attractive microbial host since it is able to convert untypical feedstocks, such as glycerol, into oils, which subsequently can be transesterified to biodiesel. However, the lipogenesis process is a complex phenomenon, and it still remains unknown which genes from the PPP are involved in lipid synthesis. Results To address this problem we overexpressed five genes from this metabolic pathway: transaldolase (TAL1, YALI0F15587g), transketolase (TKL1, YALI0E06479g), ribulose-phosphate 3-epimerase (RPE1, YALI0C11880g) and two dehydrogenases, NADP+-dependent glucose-6-phosphate dehydrogenase (ZWF1, YALI0E22649g) and NADP+-dependent 6-phosphogluconate dehydrogenase (GND1, YALI0B15598g), simultaneously with diacylglycerol acyltransferase (DGA1, YALI0E32769g) and verified each resulting strain’s ability to synthesize fatty acid growing on both glycerol and glucose as a carbon source. Our results showed that co-expression of DGA1 and TKL1 results in higher SCO synthesis, increasing lipid content by 40% over the control strain (DGA1 overexpression). Conclusions Simultaneous overexpression of DGA1 and TKL1 genes results in a higher lipid titer independently from the fermentation conditions, such as carbon source, pH and YE supplementation.
Collapse
Affiliation(s)
- Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| |
Collapse
|
14
|
Wróbel‐Kwiatkowska M, Turski W, Kocki T, Rakicka‐Pustułka M, Rymowicz W. An efficient method for production of kynurenic acid by
Yarrowia lipolytica. Yeast 2020; 37:541-547. [DOI: 10.1002/yea.3469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Magdalena Wróbel‐Kwiatkowska
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Waldemar Turski
- Department of Experimental and Clinical Pharmacology Medical University of Lublin Lublin Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology Medical University of Lublin Lublin Poland
| | - Magdalena Rakicka‐Pustułka
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| |
Collapse
|
15
|
Morgunov IG, Kamzolova SV, Karpukhina OV, Bokieva SB, Lunina JN, Inozemtsev AN. Microbiological Production of Isocitric Acid from Biodiesel Waste and Its Effect on Spatial Memory. Microorganisms 2020; 8:E462. [PMID: 32218311 PMCID: PMC7232500 DOI: 10.3390/microorganisms8040462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/15/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Within this work, the microbial synthesis of (2R,3S)-isocitric acid (ICA), a metabolite of the nonconventional yeast Yarrowia lipolytica, from biodiesel waste, has been studied. The selected strain Y. lipolytica VKM Y-2373 synthesized ICA with citric acid (CA) as a byproduct. This process can be regulated by changing cultivation conditions. The maximal production of ICA with the minimal formation of the byproduct was provided by the use of a concentration of (NH4)2SO4 (6 g/L); the addition of biodiesel waste to cultivation medium in 20-60 g/L portions; maintaining the pH of the cultivation medium at 6, and degree of aeration between 25% and 60% of saturation. Itaconic acid at a concentration of 15 mM favorably influenced the production of ICA by the selected strain. The optimization of cultivation conditions allowed us to increase the concentration of ICA in the culture liquid from 58.32 to 90.2 g/L, the product yield (Y) by 40%, and the ICA/CA ratio from 1.1:1 to 3:1. Research on laboratory animals indicated that ICA counteracted the negative effect of ammonium molybdate (10-5 М) and lead diacetate (10-7 М) on the learning and spatial memory of rats, including those exposed to emotional stress.
Collapse
Affiliation(s)
- Igor G. Morgunov
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Svetlana V. Kamzolova
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Olga V. Karpukhina
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (O.V.K.); (A.N.I.)
| | - Svetlana B. Bokieva
- Department of Anatomy, Physiology and Botany, Khetagurov North Ossetian State University, 44-46 Vatutina str, 362025 Vladikavkaz, North Ossetia, Russia;
| | - Julia N. Lunina
- Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, 142290 Moscow Region, Russia;
| | - Anatoly N. Inozemtsev
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (O.V.K.); (A.N.I.)
| |
Collapse
|
16
|
Yuan W, Lin X, Zhong S, Chen J, Wang Z, Sun J. Enhanced pyruvic acid yield in an osmotic stress-resistant mutant of Yarrowia lipolytica. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
17
|
Zhang Y, Zhou X, Wang X, Wang L, Xia M, Luo J, Shen Y, Wang M. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Microb Cell Fact 2020; 19:13. [PMID: 31992309 PMCID: PMC6986058 DOI: 10.1186/s12934-020-1285-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/16/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Androstenedione (AD) is an important steroid medicine intermediate that is obtained via the degradation of phytosterols by mycobacteria. The production process of AD is mainly the degradation of the phytosterol aliphatic side chain, which is accompanied by the production of propionyl CoA. Excessive accumulation of intracellular propionyl-CoA produces a toxic effect in mycobacteria, which restricts the improvement of production efficiency. The 2-methylcitrate cycle pathway (MCC) plays a significant role in the detoxification of propionyl-CoA in bacterial. The effect of the MCC on phytosterol biotransformation in mycobacteria has not been elucidated in detail. Meanwhile, reducing fermentation cost has always been an important issue to be solved in the optimizing of the bioprocess. RESULTS There is a complete MCC in Mycobacterium neoaurum (MNR), prpC, prpD and prpB in the prp operon encode methylcitrate synthase, methylcitrate dehydratase and methylisocitrate lyase involved in MCC, and PrpR is a specific transcriptional activator of prp operon. After the overexpression of prpDCB and prpR in MNR, the significantly improved transcription levels of prpC, prpD and prpB were observed. The highest conversion ratios of AD obtained by MNR-prpDBC and MNR-prpR increased from 72.3 ± 2.5% to 82.2 ± 2.2% and 90.6 ± 2.6%, respectively. Through enhanced the PrpR of MNR, the in intracellular propionyl-CoA levels decreased by 43 ± 3%, and the cell viability improved by 22 ± 1% compared to MNR at 96 h. The nitrogen transcription regulator GlnR repressed prp operon transcription in a nitrogen-limited medium. The glnR deletion enhanced the transcription level of prpDBC and the biotransformation ability of MNR. MNR-prpR/ΔglnR was constructed by the overexpression of prpR in the glnR-deleted strain showed adaptability to low nitrogen. The highest AD conversion ratio by MNR-prpR/ΔglnR was 92.8 ± 2.7% at low nitrogen level, which was 1.4 times higher than that of MNR. CONCLUSION Improvement in phytosterol biotransformation after the enhancement of propionyl-CoA metabolism through the combined modifications of the prp operon and glnR of mycobacteria was investigated for the first time. The overexpress of prpR in MNR can increase the transcription of essential genes (prpC, prpD and prpB) of MCC, reduce the intracellular propionyl-CoA level and improve bacterial viability. The knockout of glnR can enhance the adaptability of MNR to the nitrogen source. In the MNRΔglnR strain, overexpress of prpR can achieve efficient production of AD at low nitrogen levels, thus reducing the production cost. This strategy provides a reference for the economic and effective production of other valuable steroid metabolites from phytosterol in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China. .,College of Life Science, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xiuling Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xuemei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
18
|
Sarris D, Sampani Z, Rapti A, Papanikolaou S. Valorization of Crude Glycerol, Residue Deriving from Biodiesel- Production Process, with the Use of Wild-type New Isolated Yarrowia lipolytica Strains: Production of Metabolites with Pharmaceutical and Biotechnological Interest. Curr Pharm Biotechnol 2020; 20:881-894. [PMID: 30747061 DOI: 10.2174/1389201020666190211145215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/19/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & OBJECTIVE Crude glycerol (Glol), used as substrate for screening eleven natural Yarrowia lipolytica strains in shake-flask experiments. Aim of this study was to assess the ability of the screened strains to produce biomass (dry cell weight; X), lipid (L), citric acid (Cit), mannitol (Man), arabitol (Ara) and erythritol (Ery), compounds presenting pharmaceutical and biotechnological interest, in glycerol-based nitrogen-limited media, in which initial glycerol concentration had been adjusted to 40 g/L. METHODS Citric acid may find use in biomedical engineering (i.e. drug delivery, tissue engineering, bioimaging, orthopedics, medical device coating, wound dressings). Polyols are considered as compounds with non-cariogenic and less calorigenic properties as also with low insulin-mediated response. Microbial lipids containing polyunsaturated fatty acids (PUFA) are medically and dietetically important (selective pharmaceutical and anticancer properties, aid fetal brain development, the sight function of the eye, hormonal balance and the cardio-vascular system, prevent reasons leading to type-2 diabetes, present healing and anti-inflammatory effects). RESULTS All strains presented satisfactory microbial growth (Xmax=5.34-6.26 g/L) and almost complete substrate uptake. The principal metabolic product was citric acid (Citmax=8.5-31.7 g/L). Production of cellular lipid reached the values of 0.33-0.84 g/L. Polyols were also synthesized as strain dependent compounds (Manmax=2.8-6.1 g/L, Aramax ~2.0 g/L, Erymax= 0.5-3.8 g/L). The selected Y. lipolytica strain ACA-DC 5029 presented satisfactory growth along with synthesis of citric acid and polyols, thus, was further grown on media presenting an increased concentration of Glol~75 g/L. Biomass, lipid and citric acid production presented significant enhancement (Xmax=11.80 g/L, Lmax=1.26 g/L, Citmax=30.8 g/L), but conversion yield of citric acid produced per glycerol consumed was decreased compared to screening trials. Erythritol secretion (Erymax=15.6 g/L) was highly favored, suggesting a shift of yeast metabolism from citric acid accumulation towards erythritol production. Maximum endopolysaccharides (IPS) concentration was 4.04 g/L with yield in dry weight 34.2 % w/w. CONCLUSION Y. lipolytica strain ACA-YC 5029 can be considered as a satisfactory candidate grown in high concentrations of crude glycerol to produce added-value compounds that interest pharmaceutical and biotechnology industries.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece.,Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos Greece
| | - Zoe Sampani
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
19
|
An alternative approach for quantification of glyceraldehyde and dihydroxyacetone as trimethylsilyl derivatives by GC-FID. Carbohydr Res 2019; 487:107885. [PMID: 31816468 DOI: 10.1016/j.carres.2019.107885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/06/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022]
Abstract
A method for quantification of glyceraldehyde (GA), dihydroxyacetone (DHA) and glycerol (GLY) by gas chromatography coupled to a flame ionization detector (GC-FID) involving one-step derivatization into trimethylsilyl ethers is presented. In pyridine, DHA and GA showed predominant peaks assigned to dimeric structures and smaller peaks corresponding to the monomers. The later were identified by GC-MS as their completely derivatized molecules and were useful for construction of calibration curves with high linear correlation. On the other hand, DHA dimers were completely dissociated in water but GA dimers remained whereas with both, intermediates peaks arose which were associated to hydrated trymethyil silyl species. A calibration approach involving the sum of areas of most relevant peaks associated to aqueous solutions of GA and DHA was developed. Replicates measurements of a problem solution were in accordance with the results obtained by a well stablished HPLC technique. The coefficient of variation was below 5% for GLY and below 12% for GA and DHA. Compared with the HPLC method, the new GC-FID method presented a similar limit of quantification in the case of GA whereas for GLY and DHA a one-order-of-magnitude increase of sensitivity was achieved. TMS derivatives of GA and DHA without prior oximation enable a useful technique to study the equilibrium of the different tautomeric forms in solution.
Collapse
|
20
|
Russmayer H, Egermeier M, Kalemasi D, Sauer M. Spotlight on biodiversity of microbial cell factories for glycerol conversion. Biotechnol Adv 2019; 37:107395. [DOI: 10.1016/j.biotechadv.2019.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
|
21
|
Biodiesel-Derived Glycerol Obtained from Renewable Biomass-A Suitable Substrate for the Growth of Candida zeylanoides Yeast Strain ATCC 20367. Microorganisms 2019; 7:microorganisms7080265. [PMID: 31426397 PMCID: PMC6722897 DOI: 10.3390/microorganisms7080265] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Used kitchen oil represents a feasible and renewable biomass to produce green biofuels such as biodiesel. Biodiesel production generates large amounts of by-products such as the crude glycerol fraction, which can be further used biotechnologically as a valuable nutrient for many microorganisms. In this study, we transesterified used kitchen oil with methanol and sodium hydroxide in order to obtain biodiesel and crude glycerol fractions. The crude glycerol fraction consisting of 30% glycerol was integrated into a bioreactor cultivation process as a nutrient source for the growth of Candida zeylanoides ATCC 20367. Cell viability and biomass production were similar to those obtained with batch cultivations on pure glycerol or glucose as the main nutrient substrates. However, the biosynthesis of organic acids (e.g., citric and succinic) was significantly different compared to pure glycerol and glucose used as main carbon sources.
Collapse
|
22
|
Do DTH, Theron CW, Fickers P. Organic Wastes as Feedstocks for Non-Conventional Yeast-Based Bioprocesses. Microorganisms 2019; 7:E229. [PMID: 31370226 PMCID: PMC6722544 DOI: 10.3390/microorganisms7080229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Non-conventional yeasts are efficient cell factories for the synthesis of value-added compounds such as recombinant proteins, intracellular metabolites, and/or metabolic by-products. Most bioprocess, however, are still designed to use pure, ideal sugars, especially glucose. In the quest for the development of more sustainable processes amid concerns over the future availability of resources for the ever-growing global population, the utilization of organic wastes or industrial by-products as feedstocks to support cell growth is a crucial approach. Indeed, vast amounts of industrial and commercial waste simultaneously represent an environmental burden and an important reservoir for recyclable or reusable material. These alternative feedstocks can provide microbial cell factories with the required metabolic building blocks and energy to synthesize value-added compounds, further representing a potential means of reduction of process costs as well. This review highlights recent strategies in this regard, encompassing knowledge on catabolic pathways and metabolic engineering solutions developed to endow cells with the required metabolic capabilities, and the connection of these to the synthesis of value-added compounds. This review focuses primarily, but not exclusively, on Yarrowia lipolytica as a yeast cell factory, owing to its broad range of naturally metabolizable carbon sources, together with its popularity as a non-conventional yeast.
Collapse
Affiliation(s)
- Diem T Hoang Do
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Av. de la Faculté, 2B. B-5030 Gembloux, Belgium
| | - Chrispian W Theron
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Av. de la Faculté, 2B. B-5030 Gembloux, Belgium
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux AgroBio Tech, Av. de la Faculté, 2B. B-5030 Gembloux, Belgium.
| |
Collapse
|
23
|
Cybulski K, Tomaszewska-Hetman L, Rakicka M, Juszczyk P, Rywińska A. Production of pyruvic acid from glycerol by Yarrowia lipolytica. Folia Microbiol (Praha) 2019; 64:809-820. [DOI: 10.1007/s12223-019-00695-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
|
24
|
Sarris D, Rapti A, Papafotis N, Koutinas AA, Papanikolaou S. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia lipolytica Strain. Molecules 2019; 24:E222. [PMID: 30634450 PMCID: PMC6359483 DOI: 10.3390/molecules24020222] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
Olive mill wastewaters (OMW) are the major effluent deriving from olive oil production and are considered as one of the most challenging agro-industrial wastes to treat. Crude glycerol is the main by-product of alcoholic beverage and oleochemical production activities including biodiesel production. The tremendous quantities of glycerol produced worldwide represent a serious environmental challenge. The aim of this study was to assess the ability of Yarrowia lipolytica strain ACA-DC 5029 to grow on nitrogen-limited submerged shake-flask cultures, in crude glycerol and OMW blends as well as in media with high initial glycerol concentration and produce biomass, cellular lipids, citric acid and polyols. The rationale of using such blends was the dilution of concentrated glycerol by OMW to (partially or fully) replace process tap water with a wastewater stream. The strain presented satisfactory growth in blends; citric acid production was not affected by OMW addition (Citmax~37.0 g/L, YCit/Glol~0.55 g/g) and microbial oil accumulation raised proportionally to OMW addition (Lmax~2.0 g/L, YL/X~20% w/w). Partial removal of color (~30%) and phenolic compounds (~10% w/w) of the blended media occurred. In media with high glycerol concentration, a shift towards erythritol production was noted (Erymax~66.0 g/L, YEry/Glol~0.39 g/g) simultaneously with high amounts of produced citric acid (Citmax~79.0 g/L, YCit/Glol~0.46 g/g). Fatty acid analysis of microbial lipids demonstrated that OMW addition in blended media and in excess carbon media with high glycerol concentration favored oleic acid production.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Anna Rapti
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Nikolaos Papafotis
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| | - Apostolis A Koutinas
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
25
|
Hardman D, Ukey R, Fakas S. Phosphatidate phosphatase activity is induced during lipogenesis in the oleaginous yeast Yarrowia lipolytica. Yeast 2018; 35:619-625. [DOI: 10.1002/yea.3353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Derell Hardman
- Department of Food and Animal Sciences; Alabama A&M University; Normal Alabama
| | - Rahul Ukey
- Department of Food and Animal Sciences; Alabama A&M University; Normal Alabama
| | - Stylianos Fakas
- Department of Food and Animal Sciences; Alabama A&M University; Normal Alabama
| |
Collapse
|