1
|
Kang L, Li Q, Dumack K, Zhang K, Xiang Y, Bian J, Ai F. Resource utilization of decarbonized coal gasification slag in soil quality improvement: New insights into microbial community composition and environmental risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118104. [PMID: 40147175 DOI: 10.1016/j.ecoenv.2025.118104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Decarbonized coal gasification slag (DCGS) is a coal-based solid waste generated from raw coal through the processes of gasification and decarbonization. However, the excessive production of DCGS has caused large-scale environmental problems and seriously affected the sustainable development of coal chemical enterprises. It's urgent to explore a high-value utilization approach. Here, a field trial was conducted to evaluate the feasibility of soil amendment using DCGS in a sandy soil. The 16S rRNA gene sequencing, soil quality approach and partial least squares path modeling were used to assess the responses of soil properties and relative forage value (RFV) of Leymus chinensis to DCGS addition in soil-plant-microbe system. Results showed that DCGS addition significantly increased soil pH, soil organic carbon (22.4 %), alkaline phosphatase (ALP) enzyme activity (16.5 %) and α-diversity of bacterial communities (1.37 %). Soil microbial biomass CNP in DCGS1, DCGS2, DCGS3 and DCGS4 treatments were 10.7 %, 21.3 %, 44.8 % and 69.1 % higher than control check (CK) treatment, respectively. Our study emphasized the β-diversity of bacterial communities and topological parameters of microbial co-occurrence networks were significantly altered after DCGS addition. Ultimately, higher soil quality and RFV of Leymus chinensis were obtained in DCGS addition treatments rather than the CK treatment (p < 0.01). Moreover, soil pH and p_Methylomirabilota were identified as the crucial factors affecting soil quality, while soil ALP and p_Entotheonellaeota were key factors affecting RFV of Leymus chinensis according to Mantel test. Our result further evidenced that there were relatively low ecological risk level after DCGS addition (Ecological Risk Index < 150), thus DCGS addition was considered as a potential method in improving soil quality. Taking into account the impact of DCGS addition on soil microbial community, soil quality, and ecological safety, the recommended application rate for sandy soil is 60 t·ha-1 (DCGS3). Our findings elucidate that soil amendment with DCGS not only enhance soil quality and RFV of Leymus chinensis, but also provide potential possibility for safe and environmentally friendly utilization of DCGS. These findings deepened our understanding of sustainable development and efficient management of DCGS.
Collapse
Affiliation(s)
- Longfei Kang
- Shaanxi Key Laboratory of Ecological Restoration in Shaanbei Mining Area, College of Advanced Agricultural Sciences, Yulin University, Yulin, Shaanxi Province 719000, China; Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Qiang Li
- Shaanxi Key Laboratory of Ecological Restoration in Shaanbei Mining Area, College of Advanced Agricultural Sciences, Yulin University, Yulin, Shaanxi Province 719000, China.
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Kaiyu Zhang
- Shaanxi Key Laboratory of Ecological Restoration in Shaanbei Mining Area, College of Advanced Agricultural Sciences, Yulin University, Yulin, Shaanxi Province 719000, China
| | - Yulin Xiang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Jiangdong Bian
- Shaanxi Key Laboratory of Ecological Restoration in Shaanbei Mining Area, College of Advanced Agricultural Sciences, Yulin University, Yulin, Shaanxi Province 719000, China; The Limited Liability Company of Yulin Zhongke Environmental Protection Technology Group, Yulin, Shaanxi Province 719000, China
| | - Feng Ai
- Shaanxi Key Laboratory of Ecological Restoration in Shaanbei Mining Area, College of Advanced Agricultural Sciences, Yulin University, Yulin, Shaanxi Province 719000, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
2
|
Wang W, He H, Zhang P, Yan J, He H, Chen X, Wang H, Zhu W, Cui Z, Yuan X. Industrial-scale aerobic composting with the addition of Paenibacillus mucilaginosus: Improving product quality and removing antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124187. [PMID: 39929121 DOI: 10.1016/j.jenvman.2025.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
This study comprehensively investigated the effects of adding Paenibacillus mucilaginosus to industrial-scale compost on compost quality, microbial community dynamics, and antibiotic resistance genes (ARGs). The results of this investigation unequivocally demonstrated that the inclusion of Paenibacillus mucilaginosus prolonged the thermophilic phase of composting, thereby enhancing organic matter decomposition and facilitating nitrogen fraction conversion. Moreover, the inoculation of Paenibacillus mucilaginosus altered the microbial community structure during the rapid heating and thermophilic stages. Significantly, the removal rates of tetM, tetR, and sul1 were 99.84%, 99.68%, and 97.61%, respectively, with inoculation increasing these rates by 8.94%, 9.85%, and 9.34%, respectively, compared to the control (P < 0.05). These findings highlighted the efficacy of incorporating Paenibacillus mucilaginosus into industrial-scale compost as a potent strategy to enhance nutrient transformation processes and mitigate ARG activity.
Collapse
Affiliation(s)
- Weiwei Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huiban He
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jing Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Haoxing He
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaotian Chen
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zongjun Cui
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xufeng Yuan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Saila R, Dhar BR. Effects of aging of polyethylene microplastics and polystyrene nanoplastics on antibiotic resistance gene transfer during primary sludge fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177589. [PMID: 39571815 DOI: 10.1016/j.scitotenv.2024.177589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The increasing presence of nano and microplastics (NPs/MPs) in wastewater treatment plants and their inevitable accumulation in the sludge has raised serious concerns in recent years. This study investigated the effects of pristine and aged polyethylene microplastics (PEMPs), polystyrene nanoplastics (PsNPs), and their mixtures on the primary sludge fermentation process. Pristine MPs/NPs (150 μg/L and 2 g/L for PsNPs and PEMPs, respectively) underwent two weeks of weathering in the presence of humic and alginic acids. The results from a batch fermentation experiment (15 days, pH 10) revealed that the exposure to aged PEMPs/PsNPs experienced greater VFA production than pristine samples. Notably, the aged PEMPs/PsNPs mixture showed a 23.12% increase in VFA production over the pristine mixture. The relative abundance and total concentration of antibiotic resistance genes (ARGs) increased in all PEMPs/PsNPs batches compared to the control, with the most significant rise in total ARGs observed in the aged PEMPs sample. Aged PEMPs exhibited a 26.22-fold increase in tetA genes, while aged mix samples showed a 19.68-fold increase in tetM genes compared to their pristine counterparts. Both pristine and aged PEMPs/PsNPs, particularly the aged PEMPs adversely affected the microbial communities at the genus level and altered the microbial structure. Microbial richness and diversity were enhanced in samples exposed to pristine PEMPs/PsNPs and aged PsNPs but decreased in aged PEMPs and in the aged mixture group, suggesting a negative impact of aged polyethylene microplastics on microbial communities. Correlation analysis suggested that phyla Planctomycetes, Proteobacteria, and TM7 are potential hosts of ARGs. These findings manifest the substantial effects of aged nano/microplastics compared to their pristine forms, emphasizing the complex interplay between various forms of PEMPs/PsNPs and microbial dynamics in sludge fermentation processes.
Collapse
Affiliation(s)
- Romana Saila
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
4
|
Pourrostami Niavol K, Bordoloi A, Suri R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41745-41774. [PMID: 38853230 PMCID: PMC11219439 DOI: 10.1007/s11356-024-33844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
5
|
Zhang Z, Li C, Wang G, Yang X, Zhang Y, Wang R, Angelidaki I, Miao H. Mechanistic insights into Fe 3O 4-modified biochar relieving inhibition from erythromycin on anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118459. [PMID: 37399623 DOI: 10.1016/j.jenvman.2023.118459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Anaerobic digestion (AD) of antibiotic manufacturing wastewater to degrade residual antibiotics and produce mixture of combustible gases has been investigated actively in the past decades. However, detrimental effect of residual antibiotic to microbial activities is commonly faced in AD process, leading to the reduction of treatment efficiency and energy recovery. Herein, the present study systematically evaluated the detoxification effect and mechanism of Fe3O4-modified biochar in AD of erythromycin manufacturing wastewater. Results showed that Fe3O4-modified biochar had stimulatory effect on AD at 0.5 g/L erythromycin existence. A maximum methane yield of 327.7 ± 8.0 mL/g COD was achieved at 3.0 g/L Fe3O4-modified biochar, leading to the increase of 55.7% compared to control group. Mechanistic investigation demonstrated that different levels of Fe3O4-modified biochar could improve methane yield via different metabolic pathways involved in specific bacteria and archaea. Low levels of Fe3O4-modified biochar (i.e., 0.5-1.0 g/L) led to the enrichment of Methanothermobacter sp., strengthening the hydrogenotrophic pathway. On the contrary, high levels of Fe3O4-modified biochar (2.0-3.0 g/L) favored the proliferation of acetogens (e.g., Lentimicrobium sp.) and methanogen (Methanosarcina sp.) and their syntrophic relations played vital role on the simulated AD performance at erythromycin stress. Additionally, the addition of Fe3O4-modified biochar significantly decreased the abundance of representative antibiotic resistant genes (ARGs), benefiting the reduction of environmental risk. The results of this study verified that the application of Fe3O4-modified biochar could be an efficient approach to detoxify erythromycin on AD system, which brings high impacts and positive implications for biological antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Ruming Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
Wang Q, Yang S, Sun S, Wang L, Yang G, Luo J, Sun Y, Li X, Wang N, Chen B. Spatiotemporal dynamics, traceability analysis, and exposure risks of antibiotic resistance genes in PM 2.5 in Handan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100584-100595. [PMID: 37639087 DOI: 10.1007/s11356-023-29492-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Fine particulate matter (PM2.5) seriously affects environmental air quality and human health, and antibiotic resistance genes (ARGs) in PM2.5 posed a great challenge to clinical medicine. The year of 2013-2017 was an important 5-year period for the implementation of Air Pollution Prevention and Control Action Plan (APPCAP) in China. Here, we took Handan, a PM2.5 polluted city in northern China, as the research object and analyzed ARGs in PM2.5 in winter (January) from 2013 to 2017. The results showed that the abundance of ARGs was the highest in 2013 (3.7 × 10-2 copies/16S rRNA), and ARGs were positively correlated with air quality index (AQI) (r = 0.328, P < 0.05) and PM2.5 concentration (r = 0.377, P = 0.020 < 0.05) in the 5-year period. The ARGs carried by PM2.5 in four functional regions of sewage treatment plant, steel works, university, and park showed that sul1 and qepA had higher abundance in each functional region, and the total ARG abundance in sewage treatment plant (1.3 × 10-1 copies/16S rRNA) was the highest, while lowest in park (2.0 × 10-3 copies/16S rRNA). Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) model were used to trace the pollutants at the sampling points, which indicated that the surrounding cities contributed more than quarter to the sampling points. Therefore, regional transportation reduces the spatial distribution difference of ARGs in PM2.5. The exposure dose of ARGs in different functional regions illustrated that the total inhaled dose of ARGs in sewage treatment plant (1.7 × 105 copies/d) was the highest, while lowest in park (3.2 × 104 copies/d). This study is of great significance for assessing the distribution and sources of ARGs under the clean air initiative in China.
Collapse
Affiliation(s)
- Qing Wang
- Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Shengjuan Yang
- Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Shaojing Sun
- Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China.
| | - Litao Wang
- Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Guang Yang
- Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Jinghui Luo
- Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Yan Sun
- Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Xuli Li
- Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Bin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Haffiez N, Chung TH, Zakaria BS, Shahidi M, Mezbahuddin S, Hai FI, Dhar BR. A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. BIORESOURCE TECHNOLOGY 2022; 354:127189. [PMID: 35439559 DOI: 10.1016/j.biortech.2022.127189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The overuse and inappropriate disposal of antibiotics raised severe public health risks worldwide. Specifically, the incomplete antibiotics metabolism in human and animal bodies contributes to the significant release of antibiotics into the natural ecosystems and the proliferation of antibiotic-resistant bacteria carrying antibiotic-resistant genes. Moreover, the organic feedstocks used for anaerobic digestion are often highly-rich in residual antibiotics and antibiotic-resistant genes. Hence, understanding their fate during anaerobic digestion has become a significant research focus recently. Previous studies demonstrated that various process parameters could considerably influence the propagation of the antibiotic-resistant genes during anaerobic digestion and their transmission via land application of digestate. This review article scrutinizes the influences of process parameters on antibiotic-resistant genes propagation in anaerobic digestion and the inherent fundamentals behind their effects. Based on the literature review, critical research gaps and challenges are summarized to guide the prospects for future studies.
Collapse
Affiliation(s)
- Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tae Hyun Chung
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Manjila Shahidi
- 4S Analytics & Modelling Ltd., Edmonton, AB, T6W 3V6, Canada
| | | | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
8
|
Wang G, Chu Y, Zhu J, Sheng L, Liu G, Xing Y, Fu P, Li Q, Chen R. Multi-faceted influences of biochar addition on swine manure digestion under tetracycline antibiotic pressure. BIORESOURCE TECHNOLOGY 2022; 346:126352. [PMID: 34798251 DOI: 10.1016/j.biortech.2021.126352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
This study explored the influence of biochar (BC) on anaerobic digestion (AD) of swine manure under various tetracycline (TC) pressures. It was found that both low (0.5 mg/L) and high (50 mg/L) TC pressures inhibited AD performance, while BC mitigated it in multi-facets. Under high TC pressure, BC accelerated syntrophic methanogenesis by boosting direct interspecies electron transfer pathway. The TC removal efficiencies were enhanced by 24.3-158.2% with BC assistance, which was attributed to the enhanced biological degradation rather than BC's physiochemical adsorption. Moreover, BC possibly acted as a protective role to alleviate intensive extracellular polymeric substances secretion under TC pressures. Integrated microbial community, metabolic function predicting, and antibiotic resistance genes (ARG) analysis revealed that BC addition not only enriched Anaerolineceae, which likely responsible for the 24.2-41.9% higher level expression of organics metabolic pathways and xenobiotics biodegradation, but also reduced ARG abundance by controlling the potential ARG host (Firmicutes) proliferation.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yuxi Chu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Jinglin Zhu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Caosi East Road, Xi'an 710311, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Caosi East Road, Xi'an 710311, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
9
|
Yang Y, Chen N, Sun L, Zhang Y, Wu Y, Wang Y, Liao X, Mi J. Short-term cold stress can reduce the abundance of antibiotic resistance genes in the cecum and feces in a pig model. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125868. [PMID: 34492815 DOI: 10.1016/j.jhazmat.2021.125868] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive studies on the effects of cold stress on antibiotic resistance genes (ARGs) in the intestines and feces remain scarce. In this study, pigs were selected as the animal model and divided into a normal temperature group and a 48-h short-term cold stress group. The ARG profiles in fecal, cecal content and cecal mucosa samples were analyzed. The results showed that the normalized abundance of ARGs in the cecal mucosa samples in the cold stress group was significantly higher than that in the normal temperature group, while the normalized ARG abundances in the fecal and cecal content samples were significantly lower than those in the normal temperature group (P < 0.05). The bacterial community composition (especially Firmicutes) was the major driver impacting the ARG profile and accounted for 32.2% of the variation in the ARG profile, followed by metabolites (especially creatinine and oxypurinol) and mobile genetic elements (MGEs) (especially plasmids and insertion elements). And it was found that creatinine and oxypurinol can reduce the abundance of ARGs and Firmicutes in the in vitro experiment. The results indicate that short-term cold stress can reduce the abundance of ARGs in the cecum and feces of pigs, providing reference data for environmental safety.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ningxue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Zhou C, Pan Y, Ge S, Coulon F, Yang Z. Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Liu T, Kumar Awasthi M, Jiao M, Kumar Awasthi S, Qin S, Zhou Y, Liu H, Li J, Zhang Z. Changes of fungal diversity in fine coal gasification slag amendment pig manure composting. BIORESOURCE TECHNOLOGY 2021; 325:124703. [PMID: 33476856 DOI: 10.1016/j.biortech.2021.124703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate fungal diversity and relative abundance (RA) during pig manure composting via high-throughput sequencing approach. Fine coal gasification slag (FCGS) (0%, 2%, 4%, 6%, 8% and 10%) were added into composting raw materials as additive and performed 42 days. Adjust C/N and moisture to 30 and 65%. Results showed that dominant phyla were Ascomycota (99.62%) and Basidiomycota (0.38%). The main genera were Epicoccum (1.26%), Alternaria (83.35%), Aspergillus (12.08%) and Gibberella (1.69%). 10% treatment got the higher abundance and operational taxonomic units number from rank abundance curve and petals diagram. Compared with control, FCGS amendment composting could increase the sanitary time (3-7 d) and total nitrogen (0.05-12.03%). The principal component analysis was considered that FCGS treatments and control had significantly difference. The RA of fungi varied among all treatments. Therefore, 10% treatment was a potential candidate to enhance fungal diversity and composting quality.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
12
|
Yang Y, Chen Y, Cai Y, Xing S, Mi J, Liao X. The relationship between culturable doxycycline-resistant bacterial communities and antibiotic resistance gene hosts in pig farm wastewater treatment plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111164. [PMID: 32858327 DOI: 10.1016/j.ecoenv.2020.111164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Pig farm wastewater treatment plants (WWTPs) are an important repository for resistant bacterial communities (RBCs) and antibiotic resistance genes (ARGs). However, the relationship between RBCs and ARG hosts has not been well characterized. In this study, water samples from influent and effluent from five pig farm WWTPs were collected. Gradient concentrations of doxycycline (DOX) were used to screen the culturable RBCs. The abundance of 21 subtypes of ARGs and the bacterial community were investigated. This study detected a large number of culturable DOX-RBCs and ARGs in the influent and effluent of pig farm WWTPs. The abundances of ARGs and RBCs in all effluent samples was significantly lower than that in the influent samples (P < 0.05), which indicated that the WWTPs can effectively remove most ARGs and RBCs in pig farm wastewater. The main potential culturable RBCs in pig farm wastewater were the dominant bacteria Proteobacteria, Actinobacteria, Pseudomonas, and Rheinheimera. However, most of the ARGs were mainly present in Bacteroidetes, Actinobacteria, Corynebacteriaceae, Macellibacteroides, Acinetobacter, and Enterobacteriaceae, which are considered potential ARG hosts. The results presented here showed that there were obvious differences between the species of culturable DOX-RBCs and ARG hosts in the pig farm WWTPs, which may be due to various environmental factors. This highlights the urgent need for further research on the relationship between RBCs and ARG hosts.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China
| | - Yingxi Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China
| | - Yingfeng Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China
| | - Sicheng Xing
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agriculture University, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Cui G, Lü F, Zhang H, Shao L, He P. Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes. BIORESOURCE TECHNOLOGY 2020; 317:123974. [PMID: 32799078 DOI: 10.1016/j.biortech.2020.123974] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
Antibiotic resistance genes (ARGs) in biowaste, such as livestock manure and excess activated sludge, pose potential threat to human and ecological health when applied to agricultural fields. Biological treatment approaches, such as thermophilic composting/vermicomposting and anaerobic digestion, widely adopted to stabilize biowaste have demonstrated significant effects on the fate of ARGs. However, the influence of these biological treatments on ARGs is not known. This review summarizes the occurrence of ARGs in biowaste and the impact of thermophilic composting, vermicomposting, and anaerobic digestion on the fate of ARGs with discussion on factors, including substrate properties, pretreatments, additives, and operational parameters, associated with ARGs during biological treatment of biowaste. Finally, this review explores the research implications and proposes new avenues in the field of biological treatment of organic waste.
Collapse
Affiliation(s)
- Guangyu Cui
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fan Lü
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Pinjing He
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Jia J, Cheng M, Xue X, Guan Y, Wang Z. Characterization of tetracycline effects on microbial community, antibiotic resistance genes and antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius auratus Linnaeus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110182. [PMID: 31958628 DOI: 10.1016/j.ecoenv.2020.110182] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The gut of aquatic animals was a significant niche for dissemination of antibiotic resistance genes (ARGs) and direct response of living conditions. In this study, the gut microbiota of goldfish Carassius auratus Linnaeus was sampled at 7 days and 21 days after treatment with tetracycline at 0.285 and 2.85 μg L-1 to investigate the influences on the microbial structure and antibiotic resistance. The proportion of tetracycline resistance bacteria was 1.02% in the control group, while increased to 23.00%, 38.43%, 62.05% in groups of high concentration for 7 days (H7), low concentration for 21 days (L21) and high concentration for 21 days (H21), respectively. Compared to the control group, the diversity of isolated Aeromonas spp. was decreased in the treatment groups and the minimal inhibitory concentration (MIC) of resistant isolates was enhanced from 32 to 256 μg mL-1 with the treatment of tetracycline in time- and dose-dependent manners. Furthermore, the abundance of most genes was increased in treatment groups and efflux genes mainly responded to the stress of tetracycline with an average level of 1.0 × 10-2. After treatment with tetracycline, the predominant species were changed both at phylum and genus levels. The present study explored the impact of tetracycline on gut microbiota of goldfish at environmentally realistic concentrations for the first time and our findings will provide a reference for characterizing the microbiome of fish in the natural environment.
Collapse
Affiliation(s)
- Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengqian Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
15
|
Zou Y, Xiao Y, Wang H, Fang T, Dong P. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121433. [PMID: 31685315 DOI: 10.1016/j.jhazmat.2019.121433] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate.
Collapse
Affiliation(s)
- Yina Zou
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yao Xiao
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Ding J, Yin Y, Sun AQ, Lassen SB, Li G, Zhu D, Ke X. Effects of biochar amendments on antibiotic resistome of the soil and collembolan gut. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:186-194. [PMID: 31163347 DOI: 10.1016/j.jhazmat.2019.05.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
A diverse array of ARGs has been detected in the guts of soil fauna residing in farmland soil. Biochar has been widely used in farmland for soil remediation and improvement of soil quality; however, the effects of biochar amendment on the gut-associated ARGs of soil fauna remain unclear. In the present study, collembolans were cultivated in soils amended with 6 types of biochars. High-throughput qPCR was used to establish ARG profiles of the collembolan guts as well as the surrounding soils. A total of 73 and 162 subtypes of ARGs were detected in the collembolan guts and soils, respectively. Biochar amendment significantly altered the ARG compositions of the collembolan guts and soils, in a biochar quality-dependent manner. However, only manure-derived biochar, which contained elevated concentrations of heavy metals, increased the relative abundance of gut-associated ARGs. Changes in the gut microbial community, MGEs and biochar properties explained 84% of the total ARG variations in the collembolan guts. The findings of this study suggested that biochar properties should receive more attention, as high doses of heavy metals in biochar could increase the abundance of ARGs in collembolan guts, thereby contributing to the spread of ARGs in the environment through collembolan movement.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - An-Qi Sun
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Simon Bo Lassen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|