1
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
2
|
Lane MKM, Gilcher EB, Ahrens-Víquez MM, Pontious RS, Wyrtzen NE, Zimmerman JB. Elucidating supercritical fluid extraction of fucoxanthin from algae to enable the integrated biorefinery. BIORESOURCE TECHNOLOGY 2024; 406:131036. [PMID: 38925405 DOI: 10.1016/j.biortech.2024.131036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The emerging nutraceutical, fucoxanthin, shows promise as a high-value product to enable the integrated biorefinery. Fucoxanthin can be extracted from algae through supercritical fluid extraction (SFE), but literature does not agree on optimal extraction conditions. Here, a statistical analysis of literature identifies supercritical carbon dioxide (scCO2) density, ethanol cosolvent amount, and polarity as significant predictors of fucoxanthin yield. Novel SFE experiments are then performed using a fucoxanthin standard, describing its fundamental solubility. These experiments establish solvent system polarity as the key knob to tune fucoxanthin recovery from 0% to 100% and give specific operating conditions for targeted fucoxanthin extraction.Further experiments compare extractions on fucoxanthin standard with extractions from Phaeodactylum tricornutum microalgae to elucidate the effect of the algae matrix. Results show selectivity of fucoxanthin over chlorophyll in scCO2 microalgae extractions that was not seen in extractions with ethanol, indicating a benefit of scCO2 to design selective extraction schemes.
Collapse
Affiliation(s)
- Mary Kate M Lane
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA; Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA
| | - Elise B Gilcher
- Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA; School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Melissa M Ahrens-Víquez
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA
| | - Rachel S Pontious
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA
| | - Nora E Wyrtzen
- Environmental Studies, Yale College, 1 Prospect St, New Haven, CT 06511, USA
| | - Julie B Zimmerman
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06511, USA; Center for Green Chemistry & Green Engineering at Yale, Yale University, 370 Prospect Street, New Haven, CT 06511, USA; School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Tzima S, Georgiopoulou I, Louli V, Magoulas K. Recent Advances in Supercritical CO 2 Extraction of Pigments, Lipids and Bioactive Compounds from Microalgae. Molecules 2023; 28:molecules28031410. [PMID: 36771076 PMCID: PMC9920624 DOI: 10.3390/molecules28031410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Supercritical CO2 extraction is a green method that combines economic and environmental benefits. Microalgae, on the other hand, is a biomass in abundance, capable of providing a vast variety of valuable compounds, finding applications in the food industry, cosmetics, pharmaceuticals and biofuels. An extensive study on the existing literature concerning supercritical fluid extraction (SFE) of microalgae has been carried out focusing on carotenoids, chlorophylls, lipids and fatty acids recovery, as well as the bioactivity of the extracts. Moreover, kinetic models used to describe SFE process and experimental design are included. Finally, biomass pretreatment processes applied prior to SFE are mentioned, and other extraction methods used as benchmarks are also presented.
Collapse
|
4
|
Lee R, Smith BA, Roy HM, Leite GB, Champagne P, Jessop PG. Extraction of lipids from microalgal slurries with liquid CO2. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Vardanega R, Cerezal-Mezquita P, Veggi PC. Supercritical fluid extraction of astaxanthin-rich extracts from Haematococcus pluvialis: Economic assessment. BIORESOURCE TECHNOLOGY 2022; 361:127706. [PMID: 35905884 DOI: 10.1016/j.biortech.2022.127706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The study evaluated the techno-economic feasibility of an industrial SFE plant to produce astaxanthin-rich extracts in Chile based on previously published data. A kinetic study comparing two solvent flow rates (3.62 and 7.24 g/min) at a scale production of 2 × 10 L showed the FER period as the more economically feasible with a cost of manufacturing (COM) of US$ 656.31/kg at 7.24 g/min. The study also demonstrated that the extraction times used at a laboratory scale were not industrially feasible due to the flowrate limits of industrial pumps. After adjusting extraction time to real industrial conditions, the results demonstrated that a 5-fold scale increase (2 × 10 L to 2 × 50 L) decreased the COM by 30 % and the process was profitable at all production scales. Finally, the sensitivity study demonstrated that it is possible to reduce the selling price by 25 % at 2 × 50 L scale.
Collapse
Affiliation(s)
- Renata Vardanega
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA) - Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud (FACSA), Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, P.O. Box: 170, Chile
| | - Pedro Cerezal-Mezquita
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA) - Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud (FACSA), Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, P.O. Box: 170, Chile
| | - Priscilla Carvalho Veggi
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau 210, 09913-030 Diadema, SP, Brazil.
| |
Collapse
|
6
|
Calijuri ML, Silva TA, Magalhães IB, Pereira ASADP, Marangon BB, Assis LRD, Lorentz JF. Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. CHEMOSPHERE 2022; 305:135508. [PMID: 35777544 DOI: 10.1016/j.chemosphere.2022.135508] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are a potential feedstock for several bioproducts, mainly from its primary and secondary metabolites. Lipids can be converted in high-value polyunsaturated fatty acids (PUFA) such as omega-3, carbohydrates are potential biohydrogen (bioH2) sources, proteins can be converted into biopolymers (such as bioplastics) and pigments can achieve high concentrations of valuable carotenoids. This work comprehends the current practices for the production of such products from microalgae biomass, with insights on technical performance, environmental and economical sustainability. For each bioproduct, discussion includes insights on bioprocesses, productivity, commercialization, environmental impacts and major challenges. Opportunities for future research, such as wastewater cultivation, arise as environmentally attractive alternatives for sustainable production with high potential for resource recovery and valorization. Still, microalgae biotechnology stands out as an attractive topic for it research and market potential.
Collapse
Affiliation(s)
- Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Thiago Abrantes Silva
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Iara Barbosa Magalhães
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Alexia Saleme Aona de Paula Pereira
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bianca Barros Marangon
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Letícia Rodrigues de Assis
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Juliana Ferreira Lorentz
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
7
|
Moghadam AJ, Aghababai Beni A. Comparison of biodiesel production from Dunaliella salina teodor and Chlorella vulgaris microalgae using supercritical fluid technique. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022; 41:150-160. [DOI: 10.1016/j.sajce.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Bibik JD, Weraduwage SM, Banerjee A, Robertson K, Espinoza-Corral R, Sharkey TD, Lundquist PK, Hamberger BR. Pathway Engineering, Re-targeting, and Synthetic Scaffolding Improve the Production of Squalene in Plants. ACS Synth Biol 2022; 11:2121-2133. [PMID: 35549088 PMCID: PMC9208017 DOI: 10.1021/acssynbio.2c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants are increasingly becoming an option for sustainable bioproduction of chemicals and complex molecules like terpenoids. The triterpene squalene has a variety of biotechnological uses and is the precursor to a diverse array of triterpenoids, but we currently lack a sustainable strategy to produce large quantities for industrial applications. Here, we further establish engineered plants as a platform for production of squalene through pathway re-targeting and membrane scaffolding. The squalene biosynthetic pathway, which natively resides in the cytosol and endoplasmic reticulum, was re-targeted to plastids, where screening of diverse variants of enzymes at key steps improved squalene yields. The highest yielding enzymes were used to create biosynthetic scaffolds on co-engineered, cytosolic lipid droplets, resulting in squalene yields up to 0.58 mg/gFW or 318% higher than a cytosolic pathway without scaffolding during transient expression. These scaffolds were also re-targeted to plastids where they associated with membranes throughout, including the formation of plastoglobules or plastidial lipid droplets. Plastid scaffolding ameliorated the negative effects of squalene biosynthesis and showed up to 345% higher rates of photosynthesis than without scaffolding. This study establishes a platform for engineering the production of squalene in plants, providing the opportunity to expand future work into production of higher-value triterpenoids.
Collapse
Affiliation(s)
- Jacob D. Bibik
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sarathi M. Weraduwage
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aparajita Banerjee
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ka’shawn Robertson
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
| | - Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas D. Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Peter K. Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Björn R. Hamberger
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Kim B, Youn Lee S, Lakshmi Narasimhan A, Kim S, Oh YK. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. BIORESOURCE TECHNOLOGY 2022; 343:126124. [PMID: 34653624 DOI: 10.1016/j.biortech.2021.126124] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The green microalga Haematococcus pluvialis is an excellent source of astaxanthin, a powerful antioxidant widely used in cosmetics, aquaculture, health foods, and pharmaceuticals. This review explores recent developments in cell disruption and astaxanthin extraction techniques applied using H. pluvialis as a model species for large-scale algal biorefinery. Notably, this alga develops a unique cyst-like cell with a rigid three-layered cell wall during astaxanthin accumulation (∼4% of dry weight) under stress. The thick (∼2 µm), acetolysis-resistant cell wall forms the strongest barrier to astaxanthin extraction. Various physical, chemical, and biological cell disruption methods were discussed and compared based on theoretical mechanisms, biomass status (wet, dry, and live), cell-disruption efficacy, astaxanthin extractability, cost, scalability, synergistic combinations, and impact on the stress-sensitive astaxanthin content. The challenges and future prospects of the downstream processes for the sustainable and economic development of advanced H. pluvialis biorefineries are also outlined.
Collapse
Affiliation(s)
- Bolam Kim
- School of Chemical Engineering, and Institute for Environment & Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Aditya Lakshmi Narasimhan
- School of Chemical Engineering, and Institute for Environment & Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sangui Kim
- School of Chemical Engineering, and Institute for Environment & Energy, Pusan National University, Busan 46241, Republic of Korea
| | - You-Kwan Oh
- School of Chemical Engineering, and Institute for Environment & Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
10
|
Lu Q, Liu J, Ma L. Recent advances in selective catalytic hydrogenation of nitriles to primary amines. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Sirohi R, Ummalyma SB, Sagar NA, Sharma P, Awasthi MK, Badgujar PC, Madhavan A, Rajasekharan R, Sindhu R, Sim SJ, Pandey A. Strategies and advances in the pretreatment of microalgal biomass. J Biotechnol 2021; 341:63-75. [PMID: 34537253 DOI: 10.1016/j.jbiotec.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Modification of structural components, especially the cell wall, through adequate pretreatment strategies is critical to the bioconversion efficiency of algal biomass to biorefinery products. Over the years, several physical, physicochemical, chemical and green pretreatment methods have been developed to achieve maximum productivity of desirable by-products to sustain a circular bioeconomy. The effectiveness of the pretreatment methods is however, species specific due to diversity in the innate nature of the microalgal cell wall. This review provides a comprehensive overview of the most notable and promising pretreatment strategies for several microalgae species. Methods including the application of stress, ultrasound, electromagnetic fields, pressure, heat as well as chemical solvents (ionic liquids, supercritical fluids, deep eutectic solvents etc.) have been detailed and analyzed. Enzyme and hydrolytic microorganism based green pretreatment methods have also been reviewed. Metabolic engineering of microorganisms for product specificity and lower inhibitors can be a future breakthrough in microalgal pretreatment.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226001, Uttar Pradesh, India.
| | | | - Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat 131028, Haryana, India.
| | - Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226025, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, Haryana, India.
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India.
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea.
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226001, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
12
|
Ren Y, Deng J, Huang J, Wu Z, Yi L, Bi Y, Chen F. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. BIORESOURCE TECHNOLOGY 2021; 340:125736. [PMID: 34426245 DOI: 10.1016/j.biortech.2021.125736] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Astaxanthin is one of the secondary carotenoids involved in mediating abiotic stress of microalgae. As an important antioxidant and nutraceutical compound, astaxanthin is widely applied in dietary supplements and cosmetic ingredients. However, most astaxanthin in the market is chemically synthesized, which are structurally heterogeneous and inefficient for biological uptake. Astaxanthin refinery from Haematococcus pluvialis is now a growing industrial sector. H. pluvialis can accumulate astaxanthin to ∼5% of dry weight. As productivity is a key metric to evaluate the production feasibility, understanding the biological mechanisms of astaxanthin accumulation is beneficial for further production optimization. In this review, the biosynthesis mechanism of astaxanthin and production strategies are summarized. The current research on enhancing astaxanthin accumulation and the potential joint-production of astaxanthin with lipids was also discussed. It is conceivable that with further improvement on the productivity of astaxanthin and by-products, the algal-derived astaxanthin would be more accessible to low-profit applications.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhaoming Wu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuge Bi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Cui H, Zhao C, Xu W, Zhang H, Hang W, Zhu X, Ji C, Xue J, Zhang C, Li R. Characterization of type-2 diacylglycerol acyltransferases in Haematococcus lacustris reveals their functions and engineering potential in triacylglycerol biosynthesis. BMC PLANT BIOLOGY 2021; 21:20. [PMID: 33407140 PMCID: PMC7788937 DOI: 10.1186/s12870-020-02794-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 12/09/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous. RESULTS Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents. CONCLUSIONS Our study represents systematic work on the characterization of HpDGAT2s by integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.
Collapse
Affiliation(s)
- Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunchao Zhao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wenxin Xu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Hongjiang Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wei Hang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Xiaoli Zhu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| |
Collapse
|
14
|
Ma R, Wang B, Chua ET, Zhao X, Lu K, Ho SH, Shi X, Liu L, Xie Y, Lu Y, Chen J. Comprehensive Utilization of Marine Microalgae for Enhanced Co-Production of Multiple Compounds. Mar Drugs 2020; 18:md18090467. [PMID: 32948074 PMCID: PMC7551828 DOI: 10.3390/md18090467] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Marine microalgae are regarded as potential feedstock because of their multiple valuable compounds, including lipids, pigments, carbohydrates, and proteins. Some of these compounds exhibit attractive bioactivities, such as carotenoids, ω-3 polyunsaturated fatty acids, polysaccharides, and peptides. However, the production cost of bioactive compounds is quite high, due to the low contents in marine microalgae. Comprehensive utilization of marine microalgae for multiple compounds production instead of the sole product can be an efficient way to increase the economic feasibility of bioactive compounds production and improve the production efficiency. This paper discusses the metabolic network of marine microalgal compounds, and indicates their interaction in biosynthesis pathways. Furthermore, potential applications of co-production of multiple compounds under various cultivation conditions by shifting metabolic flux are discussed, and cultivation strategies based on environmental and/or nutrient conditions are proposed to improve the co-production. Moreover, biorefinery techniques for the integral use of microalgal biomass are summarized. These techniques include the co-extraction of multiple bioactive compounds from marine microalgae by conventional methods, super/subcritical fluids, and ionic liquids, as well as direct utilization and biochemical or thermochemical conversion of microalgal residues. Overall, this review sheds light on the potential of the comprehensive utilization of marine microalgae for improving bioeconomy in practical industrial application.
Collapse
Affiliation(s)
- Ruijuan Ma
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Baobei Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China;
| | - Elvis T. Chua
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xurui Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (X.Z.); (Y.L.)
| | - Kongyong Lu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Shih-Hsin Ho
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinguo Shi
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Youping Xie
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Y.X.); (J.C.); Tel.: +86-591-22866373 (Y.X. & J.C.)
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (X.Z.); (Y.L.)
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Y.X.); (J.C.); Tel.: +86-591-22866373 (Y.X. & J.C.)
| |
Collapse
|
15
|
Duereh A, Sugimoto Y, Ota M, Sato Y, Inomata H. Kamlet–Taft Dipolarity/Polarizability of Binary Mixtures of Supercritical Carbon Dioxide with Cosolvents: Measurement, Prediction, and Applications in Separation Processes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alif Duereh
- Graduate School of Engineering, Research Center of Supercritical Fluid Technology, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
| | - Yuta Sugimoto
- Graduate School of Engineering, Research Center of Supercritical Fluid Technology, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
| | - Masaki Ota
- Graduate School of Engineering, Research Center of Supercritical Fluid Technology, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshiyuki Sato
- Faculty of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama, Kasumicho, Taihakuku, Sendai 982-8577, Japan
| | - Hiroshi Inomata
- Graduate School of Engineering, Research Center of Supercritical Fluid Technology, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
16
|
Zhuang Y, Jiang GL, Zhu MJ. Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Costa JAV, Freitas BCB, Moraes L, Zaparoli M, Morais MG. Progress in the physicochemical treatment of microalgae biomass for value-added product recovery. BIORESOURCE TECHNOLOGY 2020; 301:122727. [PMID: 31983577 DOI: 10.1016/j.biortech.2019.122727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Interest in microalgae-derived products is growing, mostly due to their unique characteristics and range of industrial applications. To obtain different products, one must employ specific pretreatments that retain the properties of the biologically active compounds extracted from microalgae biomass; thus, new extraction techniques require frequent upgrades. Due to increased interest in economically viable and ecologically friendly processes, new extraction methods that can be incorporated into microalgae biorefinery systems have become the main focus of research. Therefore, this review aims to address the potential applications, future prospects, and economic scenario of the new physicochemical treatments used in the extraction of bioactive microalgae compounds.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil.
| | - Bárbara Catarina Bastos Freitas
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Luiza Moraes
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Munise Zaparoli
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Michele Greque Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| |
Collapse
|
18
|
Gallego R, Bueno M, Herrero M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.030] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Molino A, Mehariya S, Iovine A, Larocca V, Di Sanzo G, Martino M, Casella P, Chianese S, Musmarra D. Extraction of Astaxanthin and Lutein from Microalga Haematococcus pluvialis in the Red Phase Using CO₂ Supercritical Fluid Extraction Technology with Ethanol as Co-Solvent. Mar Drugs 2018; 16:E432. [PMID: 30400304 PMCID: PMC6266296 DOI: 10.3390/md16110432] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023] Open
Abstract
Astaxanthin and lutein, antioxidants used in nutraceutics and cosmetics, can be extracted from several microalgal species. In this work, investigations on astaxanthin and lutein extraction from Haematococcus pluvialis (H. pluvialis) in the red phase were carried out by means of the supercritical fluid extraction (SFE) technique, in which CO₂ supercritical fluid was used as the extracting solvent with ethanol as the co-solvent. The experimental activity was performed using a bench-scale reactor in semi-batch configuration with varying extraction times (20, 40, 60, and 80 min), temperatures (50, 65, and 80 °C) and pressures (100, 400, and 550 bar). Moreover, the performance of CO₂ SFE with ethanol was compared to that without ethanol. The results show that the highest astaxanthin and lutein recoveries were found at 65 °C and 550 bar, with ~18.5 mg/g dry weight (~92%) astaxanthin and ~7.15 mg/g dry weight (~93%) lutein. The highest astaxanthin purity and the highest lutein purity were found at 80 °C and 400 bar, and at 65 °C and 550 bar, respectively.
Collapse
Affiliation(s)
- Antonio Molino
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
| | - Sanjeet Mehariya
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| | - Angela Iovine
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| | - Vincenzo Larocca
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Department of Sustainability-CR Trisaia. SS Jonica 106, km 419+500, 7026 Rotondella (MT), Italy.
| | - Giuseppe Di Sanzo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Department of Sustainability-CR Trisaia. SS Jonica 106, km 419+500, 7026 Rotondella (MT), Italy.
| | - Maria Martino
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Department of Sustainability-CR Trisaia. SS Jonica 106, km 419+500, 7026 Rotondella (MT), Italy.
| | - Patrizia Casella
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Department of Sustainability-CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy.
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy.
| |
Collapse
|