1
|
Ferreira AN, Silva TP, Félix CR, Lopes JL, Dos Santos CWV, Dos Santos DMRC, Landell MF, Gomes FS, Pereira HJV. Use of waste frying oil and coconut pulp for the production, isolation, and characterization of a new lipase from Moesziomyces aphidis. Protein Expr Purif 2025; 225:106584. [PMID: 39178976 DOI: 10.1016/j.pep.2024.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.
Collapse
Affiliation(s)
- Alexsandra Nascimento Ferreira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Tatielle Pereira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Ciro Ramon Félix
- Institute of Biological and Health Sciences, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Julia Lins Lopes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Cláudio Wiliam Victor Dos Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | | | - Melissa Fontes Landell
- Institute of Biological and Health Sciences, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Francis Soares Gomes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil.
| |
Collapse
|
2
|
Jadtanim C, Luong TTH, Poeaim S. Isolation and Characterization of a Promising Lignocellulolytic Enzyme Producer Pseudolagarobasidium acaciicola SL3-03 from Mangrove Soil in Thailand. Curr Microbiol 2024; 82:62. [PMID: 39739044 DOI: 10.1007/s00284-024-04029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025]
Abstract
Lignocellulolytic enzymes isolation from mangrove-derived organisms has many industrial advantages due to their efficiency in dealing with extreme and challenging conditions, such as high temperatures and salt concentrations. This study aimed to isolate fungal enzyme producers from mangrove soil in Thailand to produce lignocellulolytic enzymes (carboxymethyl cellulase: CMCase, xylanase, and laccase) and to characterize these enzymes to support industrial applications. Forty-eight fungi were isolated from the mangrove samples, and their enzyme-producing capabilities were assessed using primary and secondary screening methods. The findings revealed that Pseudolagarobasidium acaciicola SL3-03 emerged as a promising producer of lignocellulolytic enzymes. It exhibited the ability to produce 1.345 U/mL of CMCase, 1.293 U/mL of xylanase, and 43.126 U/mL of laccase. Furthermore, the enzymatic characteristics of P. acaciicola SL3-03 were analyzed. The CMCase exhibited optimal activity at 50 °C and pH 5.5, the xylanase at 50 °C and pH 4.8, and the laccase at 55 °C and pH 5. Besides, the CMCase and xylanase from P. acaciicola SL3-03 expressed high halotolerance abilities that could maintain activity and stability under high salt concentrations (149% activity at 5 M NaCl). Future studies may focus on structural analysis of the enzymes to further characterize and identify their specific types. The results suggest that mangrove soil harbors significant potential for discovering proficient lignocellulolytic enzyme producers with desirable characteristics, which can be advantageous for industrial applications.
Collapse
Affiliation(s)
- Chanaphon Jadtanim
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, Thailand
| | - Thi Thu Huong Luong
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, Thailand
| | - Supattra Poeaim
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, 10520, Thailand.
| |
Collapse
|
3
|
Costa Silva MD, Costa RB, do Nascimento JS, Gomes MMODS, Ferreira AN, Grillo LAM, Luz JMRD, Gomes FS, Pereira HJV. Production of milk-coagulating protease by fungus Pleurotus djamor through solid state fermentation using wheat bran as the low-cost substrate. Prep Biochem Biotechnol 2024; 55:278-284. [PMID: 39222362 DOI: 10.1080/10826068.2024.2399040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proteases are enzymes that hydrolyze peptide bonds present in proteins and peptides. They are widely used for various industrial applications, such as in the detergent, food, and dairy industries. Cheese is one of the most important products of the dairy industry, and the coagulation stage is crucial during the cheese-making process. Enzymatic coagulation is the most common technique utilized for this purpose. Microbial enzymes are frequently used for coagulation due to their advantages in terms of availability, sustainability, quality control, product variety, and compliance with dietary and cultural/religious requirements. In the present study, we identified and subsequently characterized milk coagulant activity from the fungus Pleurotus djamor PLO13, obtained during a solid-state fermentation process, using the agro-industrial residue, wheat bran, as the fermentation medium. Maximum enzyme production and caseinolytic activity occurred 120 h after cultivation. When the enzyme activity against various protease-specific synthetic substrates and inhibitors was analyzed, the enzyme was found to be a serine protease, similar to elastase 2. This elastase-2-like serine protease was able to coagulate pasteurized whole and reconstituted skim milk highly efficiently in the presence and absence of calcium, even at room temperature. The coagulation process was influenced by factors such as temperature, time, and calcium concentration. We demonstrate here, for the first time, an elastase-2-like enzyme in a microorganism and its potential application in the food industry for cheese production.
Collapse
Affiliation(s)
- Monizy da Costa Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Ricardo Bezerra Costa
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Josiel Santos do Nascimento
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | | | - Alexsandra Nascimento Ferreira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Luciano Aparecido Meireles Grillo
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - José Maria Rodrigues da Luz
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Francis Soares Gomes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code, Maceió, Alagoas, Brazil
| |
Collapse
|
4
|
Kholousi Adab F, Mehdi Yaghoobi M, Gharechahi J. Enhanced crystalline cellulose degradation by a novel metagenome-derived cellulase enzyme. Sci Rep 2024; 14:8560. [PMID: 38609443 PMCID: PMC11014956 DOI: 10.1038/s41598-024-59256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Metagenomics has revolutionized access to genomic information of microorganisms inhabiting the gut of herbivorous animals, circumventing the need for their isolation and cultivation. Exploring these microorganisms for novel hydrolytic enzymes becomes unattainable without utilizing metagenome sequencing. In this study, we harnessed a suite of bioinformatic analyses to discover a novel cellulase-degrading enzyme from the camel rumen metagenome. Among the protein-coding sequences containing cellulase-encoding domains, we identified and subsequently cloned and purified a promising candidate cellulase enzyme, Celcm05-2, to a state of homogeneity. The enzyme belonged to GH5 subfamily 4 and exhibited robust enzymatic activity under acidic pH conditions. It maintained hydrolytic activity under various environmental conditions, including the presence of metal ions, non-ionic surfactant Triton X-100, organic solvents, and varying temperatures. With an optimal temperature of 40 °C, Celcm05-2 showcased remarkable efficiency when deployed on crystalline cellulose (> 3.6 IU/mL), specifically Avicel, thereby positioning it as an attractive candidate for a myriad of biotechnological applications spanning biofuel production, paper and pulp processing, and textile manufacturing. Efficient biodegradation of waste paper pulp residues and the evidence of biopolishing suggested that Celcm05-2 can be used in the bioprocessing of cellulosic craft fabrics in the textile industry. Our findings suggest that the camel rumen microbiome can be mined for novel cellulase enzymes that can find potential applications across diverse biotechnological processes.
Collapse
Affiliation(s)
- Faezeh Kholousi Adab
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Mehdi Yaghoobi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Javad Gharechahi
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Santos Gomes MMOD, Nicodemos IS, Costa Silva MD, Santos DMRCD, Santos Costa F, Franco M, Pereira HJV. Optimization of enzymatic saccharification of industrial wastes using a thermostable and halotolerant endoglucanase through Box-Behnken experimental design. Prep Biochem Biotechnol 2024; 54:1-11. [PMID: 37071540 DOI: 10.1080/10826068.2023.2201936] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
This study describes the production, characterization and application of an endoglucanase from Penicillium roqueforti using lignocellulosic agro-industrial wastes as the substrate during solid-state fermentation. The endoglucanase was generated after culturing with different agro-industrial wastes for 96 h without any pretreatment. The highest activity was obtained at 50 °C and pH 4.0. Additionally, the enzyme showed stability in the temperature and pH ranges of 40-80 °C and 4.0-5.0, respectively. The addition of Ca2+, Zn2+, Mg2+, and Cu2+ increased enzymatic activity. Halotolerance as a characteristic of the enzyme was confirmed when its activity increased by 35% on addition of 2 M NaCl. The endoglucanase saccharified sugarcane bagasse, coconut shell, wheat bran, cocoa fruit shell, and cocoa seed husk. The Box-Behnken design was employed to optimize fermentable sugar production by evaluating the following parameters: time, substrate, and enzyme concentration. Under ideal conditions, 253.19 mg/g of fermentable sugars were obtained following the saccharification of wheat bran, which is 41.5 times higher than that obtained without optimizing. This study presents a thermostable, halotolerant endoglucanase that is resistant to metal ions and organic solvents with the potential to be applied in producing fermentable sugars for manufacturing biofuels from agro-industrial wastes.
Collapse
Affiliation(s)
| | | | - Monizy da Costa Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | | |
Collapse
|
6
|
Dixit M, Shukla P. Analysis of endoglucanases production using metatranscriptomics and proteomics approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:211-231. [PMID: 38220425 DOI: 10.1016/bs.apcsb.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The cellulases are among the most used enzyme in industries for various purposes. They add up to the green economy perspective and cost-effective production of enterprises. Biorefineries, paper industries, and textile industries are foremost in their usage. The production of endoglucanases from microorganisms is a valuable resource and can be exploited with the help of biotechnology. The present review provides some insight into the uses of endoglucanases in different industries and the potent fungal source of these enzymes. The advances in the enzyme technology has helped towards understanding some pathways to increase the production of industrial enzymes from microorganisms. The proteomics analysis and systems biology tools also help to identify these pathways for the enhanced production of such enzymes. This review deciphers the use of proteomics tools to analyze the potent microorganisms and identify suitable culture conditions to increase the output of endoglucanases. The review also includes the role of quantitative proteomics which is a powerful technique to get results faster and more timely. The role of metatranscriptomic approaches are also described which are helpful in the enzyme engineering for their efficient use under industrial conditions. Conclusively, this review helps to understand the challenges faced in the industrial use of endoglucanases and their further improvement.
Collapse
Affiliation(s)
- Mandeep Dixit
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
7
|
Ferreira AN, Da Silva AT, Nascimento JSD, Souza CBD, Silva MDC, Grillo LAM, Luz JMRD, Pereira HJV. Production, characterization, and application of a new chymotrypsin-like protease from Pycnoporus sanguineus. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2196362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
| | | | | | - Cledson Barros de Souza
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Monizy da Costa Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - José Maria Rodrigues da Luz
- Universidade Federal de Viçosa (UFV), Departamento de Microbiologia, Laboratório de Associações Micorrizicas -LAMIC, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
8
|
Castro-Ochoa LD, Hernández-Leyva SR, Medina-Godoy S, Gómez-Rodríguez J, Aguilar-Uscanga MG, Castro-Martínez C. Integration of agricultural residues as biomass source to saccharification bioprocess and for the production of cellulases from filamentous fungi. 3 Biotech 2023; 13:43. [PMID: 36643402 PMCID: PMC9834466 DOI: 10.1007/s13205-022-03444-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/17/2022] [Indexed: 01/13/2023] Open
Abstract
The production of second-generation bioethanol has several challenges, among them finding cheap and efficient enzymes for a sustainable process. In this work, we analyzed two native fungi, Cladosporium cladosporioides and Penicillium funiculosum, as a source of cellulolytic enzyme production, and corn stover, wheat bran, chickpeas, and bean straw as a carbon source in two fermentation systems: submerged and solid fermentation. Corn stover was selected for cellulase production in both fermentation systems, because we found the highest enzymatic activities when carboxymethyl cellulase activity (CMCase) was assessed using CMC as substrate. C. cladosporioides showed the highest CMCase activity (1.6 U/mL), while P. funiculosum had the highest filter paper activity (Fpase) (0.39 U/mL). The ß-glucosidase activities produced by both fungi were similar in submerged fermentation using corn stover as substrate. Through in-gel zymography, three polypeptides with cellulolytic activities were identified in each fungus: with molecular weights of ~ 38, 45 and 70 kDa in C. cladosporioides and ~ 21, 63 and 100 kDa in P. funiculosum. The best results for saccharification (10.11 g/L of reducing sugars) of diluted acid pretreated corn stover were obtained after 36 h of the hydrolytic process at pH 5 and 50 °C using the enzyme extract of P. funiculosum. This is the first report of cellulase identification in C. cladosporioides and the saccharification of corn stover using enzymes of this fungus. Enzymatic extracts of C. cladosporioides and P. funiculosum obtained from low-cost lignocellulosic biomass have great potential for use in the production of second-generation bioethanol.
Collapse
Affiliation(s)
- Lelie Denise Castro-Ochoa
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México
| | - Sandy Rocío Hernández-Leyva
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México
| | - Sergio Medina-Godoy
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México
| | - Javier Gómez-Rodríguez
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo de Alimentos (UNIDA), H. Veracruz, México
| | - María Guadalupe Aguilar-Uscanga
- Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo de Alimentos (UNIDA), H. Veracruz, México
| | - Claudia Castro-Martínez
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR Sinaloa, Blvd. Juan de Dios Bátiz Paredes No. 250. Col. San Joachin, CP 81101 Guasave, Sinaloa México
| |
Collapse
|
9
|
Dixit M, Shukla P. Multi-efficient endoglucanase from Aspergillus niger MPS25 and its potential applications in saccharification of wheat straw and waste paper deinking. CHEMOSPHERE 2023; 313:137298. [PMID: 36427581 DOI: 10.1016/j.chemosphere.2022.137298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The deinking in the paper industry is in great demand, and microbial enzymes are key players. In the present study, the endoglucanase production from newly isolated fungi Aspergillus niger MPS25 is reported. The optimization of endoglucanase production was carried out using one factor at a time approach resulting in endoglucanase activity (2.37 IU/ml) at 45 °C and pH 8 in submerged fermentation (SmF), which shows optimum enzyme activity at 60 °C. Interestingly, the metal ions viz. Co2+ stimulated the endoglucanase activity, whereas Mn2+ reduced the enzyme activity, which shows that this enzyme can be used for effluent treatment released through deinking. The enzymatic hydrolysis of wheat straw produced 26.96 ± 0.108 mg/g of reducing sugars, indicating its potential in saccharification and the biofuel industry. Furthermore, the validation of the deinking efficiency of this enzyme resulted in improved deinking of mixed office waste and old newspapers by 31.5% and 20.4%, respectively. The strength properties, viz. burst factor and tear index, breaking length, and tensile index of the handmade paper sheets, were also improved which were analyzed by the scanning electron micrographs. The FTIR and XRD analysis of pulp provided insights into the changes in functional groups and cellulose crystallinity, respectively. These results indicate that multi-efficient endoglucanase from Aspergillus niger MPS25 is suitable for enzyme-based eco-friendly deinking for waste paper recycling and lignocellulosic biomass saccharification.
Collapse
Affiliation(s)
- Mandeep Dixit
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pratyoosh Shukla
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India; Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Silva TP, de Albuquerque FS, Nascimento Ferreira A, Santos DMRCD, Santos TVD, Meneghetti SMP, Franco M, Luz JMRD, Pereira HJV. Dilute acid pretreatment for enhancing the enzymatic saccharification of agroresidues using a Botrytis ricini endoglucanase. Biotechnol Appl Biochem 2023; 70:184-192. [PMID: 35338782 DOI: 10.1002/bab.2341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
The enormous amount of agroindustrial residues generated in Brazil can be used as biomass to produce fermentable sugars. This study compared the pretreatments with different proportions of dilute acid. The method involved pretreatment with 0.5%, 1%, and 1.5% (v/v) sulfuric acid, followed by hydrolysis using the halotolerant and thermostable endoglucanase from Botrytis ricini URM 5627. The physicochemical characterization of plant biomass was performed using XRD, FTIR, and SEM. The pretreatment significantly increased the production of fermentable sugars following enzymatic saccharification from wheat bran, sugarcane bagasse, and rice husk: 153.67%, 91.98%, and 253.21% increment in sugar production; 36.39 mg⋅g-1 ± 1.23, 39.55 mg⋅g-1 ± 1.70, and 42.53 mg⋅g-1 ± 7.61 mg⋅L-1 of glucose; and 3.26 ± 0.35 mg⋅g-1 , 3.61mg⋅g-1 ± 0.74 and 3.59 mg⋅g-1 ± 0.80 of fructose were produced, respectively. In conclusion, biomass should preferably be pretreated before the enzymatic saccharification using B. ricini URM 5627 endoglucanase.
Collapse
Affiliation(s)
- Tatielle Pereira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | - Fabiana Sarmento de Albuquerque
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | - Alexsandra Nascimento Ferreira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | | | - Thatiane Veríssimo Dos Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - José Maria Rodrigues da Luz
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| |
Collapse
|
11
|
Characterization of a novel end product tolerant and thermostable cellulase from Neobacillus sedimentimangrovi UE25. Enzyme Microb Technol 2023; 162:110133. [DOI: 10.1016/j.enzmictec.2022.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
12
|
Production of a halotolerant endo-1,4-β-glucanase by a newly isolated Bacillus velezensis H1 on olive mill wastes without pretreatment: purification and characterization of the enzyme. Arch Microbiol 2022; 204:681. [DOI: 10.1007/s00203-022-03300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
|
13
|
Mohammadi S, Tarrahimofrad H, Arjmand S, Zamani J, Haghbeen K, Aminzadeh S. Expression, characterization, and activity optimization of a novel cellulase from the thermophilic bacteria Cohnella sp. A01. Sci Rep 2022; 12:10301. [PMID: 35717508 PMCID: PMC9206686 DOI: 10.1038/s41598-022-14651-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Shima Mohammadi
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
14
|
Dixit M, Kumar Gupta G, Yadav M, Chhabra D, Kumar Kapoor R, Pathak P, Bhardwaj NK, Shukla P. Improved deinking and biobleaching efficiency of enzyme consortium from Thermomyces lanuginosus VAPS25 using genetic Algorithm-Artificial neural network based tools. BIORESOURCE TECHNOLOGY 2022; 349:126846. [PMID: 35158033 DOI: 10.1016/j.biortech.2022.126846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The present study reports the combined enzymatic production efficiency of thermophilic fungus Thermomyces lanuginosus VAPS25 using a combinatory artificial intelligence-based tool, resulting in 2.7 IU/ml, 5.2 IU/ml, and 18.85 U/ml activity of endoglucanase, amylase, and lipase, respectively with good thermostability at 90 °C (pH 8-10). Interestingly, the metal ions viz. Cu2+ and Mg2+ increased the endoglucanase activity to 5 folds, i.e.,5.6 IU/ml compared to control. Further, the amylase and lipase activity was also enhanced by Fe2+ and Co2+ to 5.4 IU/ml and 19.57 U/ml, respectively. Additionally, the deinking efficiency was improved by 68.9%, 42.7%, and 52.8% by endoglucanase, amylase, and lipase, respectively, while the consortium increased the deinking efficiency to 72.7%. The bio-bleached paper strength parameters such as burst index, breaking length, tear index, and tensile index of sheets were significantly improved by 1.38%, 13.54%, 7.54%, and 20.88%, respectively. These enzymes at an industrial scale would help develop an economical paper recycling process.
Collapse
Affiliation(s)
- Mandeep Dixit
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Guddu Kumar Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Enzyme and Fermentation Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Monika Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Deepak Chhabra
- Department of Mechanical Engineering, University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Rajeev Kumar Kapoor
- Enzyme and Fermentation Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Puneet Pathak
- Avantha Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana 135001, India
| | - Nishi K Bhardwaj
- Avantha Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana 135001, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
15
|
Nogueira LS, Tavares IMDC, Santana NB, Ferrão SPB, Teixeira JM, Costa FS, Silva TP, Pereira HJV, Irfan M, Bilal M, de Oliveira JR, Franco M. Thermostable trypsin-like protease by Penicillium roqueforti secreted in cocoa shell fermentation: Production optimization, characterization, and application in milk clotting. Biotechnol Appl Biochem 2021; 69:2069-2080. [PMID: 34617635 DOI: 10.1002/bab.2268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
The increased demand for cheese and the limited availability of calf rennet justifies the search for milk-clotting enzymes from alternative sources. Trypsin-like protease by Penicillium roqueforti was produced by solid-state fermentation using cocoa shell waste as substrate. The production of a crude enzyme extract that is rich in this enzyme was optimized using a Doehlert-type multivariate experimental design. The biochemical characterization showed that the enzyme has excellent activity and stability at alkaline pH (10-12) and an optimum temperature of 80°C, being stable at temperatures above 60°C. Enzymatic activity was maximized in the presence of Na+ (192%), Co2+ (187%), methanol (153%), ethanol (141%), and hexane (128%). Considering the biochemical characteristics obtained and the milk coagulation activity, trypsin-like protease can be applied in the food industry, such as in milk clotting and in the fabrication of cheeses.
Collapse
Affiliation(s)
- Laísa Santana Nogueira
- Department of Rural and Animal Technology, State University of Southwest Bahia, Itapetinga, Bahia, Brazil
| | | | - Nívio Batista Santana
- Department of Rural and Animal Technology, State University of Southwest Bahia, Itapetinga, Bahia, Brazil
| | | | | | | | - Tatielle Pereira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
16
|
Huang K, Huang J, Lin J, Li H, Xin J, Ma Z, Sang J, Hong Z, Zeng G, Hu X, Li O. Directional bioconversion and optimization of stevioside into rubusoside by Lelliottia sp. LST-1. J Appl Microbiol 2021; 132:1887-1899. [PMID: 34606155 DOI: 10.1111/jam.15316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS The present study aimed to specifically transform stevioside (ST) into rubusoside (RS) through bioconversion with high efficiency, seeking to endow steviol glycosides (SGs) with subtle flavours for commercial acceptability. METHODS AND RESULTS An endophytic bacterium named Lelliottia LST-1 was screened and confirmed to specifically convert ST into RS, reaching a conversion rate of 75.4% after response surface optimization. Phylogenetic analysis combined with complete genome sequencing demonstrated that LST-1 was also presumed to be a new species. To further explore the principle and process of biological transformation, the potential beta-glucosidases GH3-1, GH3-2, GH3-3 and GH3-4 were expressed, purified and reacted with SGs. High-performance liquid chromatography revealed that all enzymes hydrolysed ST and generated RS, but substrate specificity analysis indicated that GH3-2 had the highest substrate specificity towards STs and the highest enzyme activity. CONCLUSION The potential β-glucosidase GH3-2 in Lelliottia sp. LST-1 was found to specifically and efficiently convert ST to RS. SIGNIFICANCE AND IMPACT OF STUDY The efficient biotransformation of ST into RS will be beneficial to its large-scale production and extensive application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ke Huang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jingyu Huang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Lin
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongwei Li
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiaqi Xin
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ziyang Ma
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junhao Sang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiyun Hong
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guohong Zeng
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiufang Hu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ou Li
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
17
|
Almeida LEDS, Ribeiro GCA, Aparecida de Assis S. β-Glucosidase produced by Moniliophthora perniciosa: Characterization and application in the hydrolysis of sugarcane bagasse. Biotechnol Appl Biochem 2021; 69:963-973. [PMID: 33855775 DOI: 10.1002/bab.2167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/03/2021] [Indexed: 11/11/2022]
Abstract
β-Glucosidases (BGLs) belong to the group of enzymes of cellulases and act in the last stage of cellulose degradation, releasing glucose molecules, eliminating the inhibitory effect of cellobiose. This study focused on the production, characterization, and application of BGL from Moniliophthora perniciosa in the hydrolysis of pretreated sugarcane bagasse (3% NaOH + 6% Na2 SO3 ), with varying enzymatic loads and reaction times. The enzyme showed an optimum pH of 4.5 and 60°C. It was stable at all temperatures analyzed (50-90°C) and retained about 100% of its activity at 50°C after 60 min of incubation. Among the ions analyzed, BaCl2 increased BGL activity 9.04 ± 1.41 times. The maximum production of reducing sugars (89.15%) was achieved after 48 h with 10 mg of protein.
Collapse
Affiliation(s)
- Larissa Emanuelle da Silva Almeida
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Geise Camila Araújo Ribeiro
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Sandra Aparecida de Assis
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
18
|
Joshi N, Kaushal G, Singh SP. Biochemical characterization of a novel thermo-halo-tolerant GH5 endoglucanase from a thermal spring metagenome. Biotechnol Bioeng 2021; 118:1531-1544. [PMID: 33410140 DOI: 10.1002/bit.27668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/31/2022]
Abstract
A novel endoglucanase gene, celM , was cloned from a thermal spring metagenome. The gene was expressed in Escherichia coli, and the protein was extracted and purified. The protein catalyzed the hydrolysis of amorphous cellulose in a wide range of temperatures, 30-95°C, with optimal activity at 80°C. It was able to tolerate high temperature (80°C) with a half-life of 8 h. Its activity was eminent in a wide pH range of 3.0-11.0, with the highest activity at pH 6.0. The enzyme was tested for halostability. Any significant loss was not recorded in the activity of CelM after the exposure to salinity (3 M NaCl) for 30 days. Furthermore, CelM displayed a substantial resistance toward metal ions, denaturant, reducing agent, organic solvent, and non-ionic surfactants. The amorphous cellulose, treated with CelM , was randomly cleaved, generating cello-oligosaccharides of 2-5 degree of polymerization. Furthermore, CelM was demonstrated to catalyze the hydrolysis of cellulose fraction in the delignified biomass samples, for example, sweet sorghum bagasse, rice straw, and corncob, into cello-oligosaccharides. Given that CelM is a thermo-halo-tolerant GH5 endoglucanase, with resistance to detergents and organic solvent, the biocatalyst could be of potential usefulness for a variety of industrial applications.
Collapse
Affiliation(s)
- Namrata Joshi
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| |
Collapse
|
19
|
Zhao B, Al Rasheed H, Ali I, Hu S. Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. BIORESOURCE TECHNOLOGY 2021; 319:124115. [PMID: 32949831 DOI: 10.1016/j.biortech.2020.124115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Herein, we studied two strains of halophilic fungi (Aspergillus flavus and Aspergillus penicillioides) as potential potent sources of hydrolases under solid-state fermentation conditions. We found that the co-culture of these two fungal species was associated with maximal CMCase, FPase, xylanase, and β-xylosidase activity under optimized fermentation conditions. These enzymes functioned optimally at pH values from 9.0 to 10.0, at temperatures from 50 °C to 60 °C, and in the presence of 15-20% NaCl. These enzymes were also stable in metal salt solutions and the presence of ionic liquids. Reducing sugar yields following the cellulase-hemicellulase co-treatment of untreated, alkaline-pretreated, and ionic liquid-pretreated bamboo were higher than those associated with separate cellulase and hemicellulase treatments, thus confirming the synergistic activity of cellulase-hemicellulase co-treatment in the context of bamboo saccharification. These results indicate that these two fungi are promising hydrolase producers that can facilitate the bioconversion of bamboo biomass.
Collapse
Affiliation(s)
- Bo Zhao
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang 621010, China
| | - Haroon Al Rasheed
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang 621010, China
| | - Imran Ali
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Shanglian Hu
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
20
|
A novel high performance in-silico screened metagenome-derived alkali-thermostable endo-β-1,4-glucanase for lignocellulosic biomass hydrolysis in the harsh conditions. BMC Biotechnol 2020; 20:56. [PMID: 33076889 PMCID: PMC7574624 DOI: 10.1186/s12896-020-00647-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Background Lignocellulosic biomass, is a great resource for the production of bio-energy and bio-based material since it is largely abundant, inexpensive and renewable. The requirement of new energy sources has led to a wide search for novel effective enzymes to improve the exploitation of lignocellulose, among which the importance of thermostable and halotolerant cellulase enzymes with high pH performance is significant. Results The primary aim of this study was to discover a novel alkali-thermostable endo-β-1,4-glucanase from the sheep rumen metagenome. At first, the multi-step in-silico screening approach was utilized to find primary candidate enzymes with superior properties. Among the computationally selected candidates, PersiCel4 was found and subjected to cloning, expression, and purification followed by functional and structural characterization. The enzymes’ kinetic parameters, including Vmax, Km, and specific activity, were calculated. The PersiCel4 demonstrated its optimum activity at pH 8.5 and a temperature of 85 °C and was able to retain more than 70% of its activity after 150 h of storage at 85 °C. Furthermore, this enzyme was able to maintain its catalytic activity in the presence of different concentrations of NaCl and several metal ions contains Mg2+, Mn2+, Cu2+, Fe2+ and Ca2+. Our results showed that treatment with MnCl2 could enhance the enzyme’s activity by 78%. PersiCel4 was ultimately used for enzymatic hydrolysis of autoclave pretreated rice straw, the most abundant agricultural waste with rich cellulose content. In autoclave treated rice straw, enzymatic hydrolysis with the PersiCel4 increased the release of reducing sugar up to 260% after 72 h in the harsh condition (T = 85 °C, pH = 8.5). Conclusion Considering the urgent demand for stable cellulases that are operational on extreme temperature and pH conditions and due to several proposed distinctive characteristics of PersiCel4, it can be used in the harsh condition for bioconversion of lignocellulosic biomass.
Collapse
|
21
|
dos Santos KA, da Costa Ilhéu Fontan R, Santos LS, de Carvalho Batista I, Gandolfi ORR, de Sousa Castro S, Sampaio VS, Veloso CM, Bonomo RCF. Partitioning of amylase produced by Aspergillus niger in solid state fermentation using aqueous two-phase systems. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
A Thermostable Aspergillus fumigatus GH7 Endoglucanase Over-Expressed in Pichia pastoris Stimulates Lignocellulosic Biomass Hydrolysis. Int J Mol Sci 2019; 20:ijms20092261. [PMID: 31067833 PMCID: PMC6540056 DOI: 10.3390/ijms20092261] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022] Open
Abstract
In the context of avoiding the use of non-renewable energy sources, employing lignocellulosic biomass for ethanol production remains a challenge. Cellulases play an important role in this scenario: they are some of the most important industrial enzymes that can hydrolyze lignocellulose. This study aims to improve on the characterization of a thermostable Aspergillus fumigatus endo-1,4-β-glucanase GH7 (Af-EGL7). To this end, Af-EGL7 was successfully expressed in Pichia pastoris X-33. The kinetic parameters Km and Vmax were estimated and suggested a robust enzyme. The recombinant protein was highly stable within an extreme pH range (3.0-8.0) and was highly thermostable at 55 °C for 72 h. Low Cu2+ concentrations (0.1-1.0 mM) stimulated Af-EGL7 activity up to 117%. Af-EGL7 was tolerant to inhibition by products, such as glucose and cellobiose. Glucose at 50 mM did not inhibit Af-EGL7 activity, whereas 50 mM cellobiose inhibited Af-EGL7 activity by just 35%. Additionally, the Celluclast® 1.5L cocktail supplemented with Af-EGL7 provided improved hydrolysis of sugarcane bagasse "in natura", sugarcane exploded bagasse (SEB), corncob, rice straw, and bean straw. In conclusion, the novel characterization of Af-EGL7 conducted in this study highlights the extraordinary properties that make Af-EGL7 a promising candidate for industrial applications.
Collapse
|
23
|
Sun L, Huang D, Zhu L, Zhang B, Peng C, Ma T, Deng X, Wu J, Wang W. Novel thermostable enzymes from Geobacillus thermoglucosidasius W-2 for high-efficient nitroalkane removal under aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2019; 278:73-81. [PMID: 30682639 DOI: 10.1016/j.biortech.2019.01.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, a thermophilic facultative anaerobic strain Geobacillus thermoglucosidasius W-2 was found to degrade nitroalkane under both aerobic and anaerobic conditions. Bioinformatical analysis revealed three putative nitroalkane-oxidizing enzymes (Gt-NOEs) genes from the W-2 genome. The three identified proteins Gt2929, Gt1378, and Gt1208 displayed optimal activities at high temperatures (70, 70, and 80 °C, respectively). Among these, Gt2929 exhibited excellent degradation capability, pH stability, and metal ion tolerance for nitronates under aerobic condition. Interestingly, under anaerobic condition, only Gt1378 still maintained high activity for 2-nitropropane and nitroethane, indicating that the W-2 strain utilized various pathways to degrade nitronates under aerobic and anaerobic conditions, respectively. Taken together, the first revelation of thermophilic nitroalkane-degrading mechanism under both aerobic and anaerobic conditions provides guidance and platform for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Lin Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Junli Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|