1
|
Feng ZT, Xiong JB, Wang GF, Li L, Zhou CF, Zhou CH, Huang HJ. Treatment of swine manure by hydrothermal carbonization: The influential effect and preliminary mechanism of surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174233. [PMID: 38936726 DOI: 10.1016/j.scitotenv.2024.174233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Treatment of swine manure by hydrothermal carbonization (HTC) with the aid of different surfactants was first explored in this study. PEG 400 (polyethylene glycol 400) and Tween 80 facilitated the formation of bio-oil. SLS (sodium lignosulfonate) and SDS (sodium dodecyl sulfate) promoted the formation of water-soluble matters/gases. Span 80 enhanced the formation of hydrochar, which resulted in a 50.19 % mass yield, 92.39 % energy yield, and a caloric value of 28.68 MJ/kg. The hydrochar obtained with Span 80 presented a similar combustion performance to raw swine manure and the best pyrolysis performance. The use of Span 80 promoted the transfer of degradation products to hydrochar, especially hydrophobic ester and ketone compounds. Notedly, Span 80 suppressed the synthesis of PAHs during the HTC process, which was reduced to 0.92 mg/kg. Furthermore, the hydrochar produced with Span 80 contained lower contents of heavy metals. On the whole, Span 80 has shown great potential in enhancing the HTC of swine manure. The acting mechanisms of surfactants in the HTC of swine manure included adsorption, dispersion, and electrostatics repulsion.
Collapse
Affiliation(s)
- Zhen-Tian Feng
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiang-Bo Xiong
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guo-Feng Wang
- Jiangxi Academy of Ecological and Environmental Sciences, Jiangxi Key Laboratory of Environmental Pollution Control, Nanchang 330006, PR China
| | - Lin Li
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chun-Fei Zhou
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China; School of Forestry, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chun-Huo Zhou
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hua-Jun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Mergbi M, Galloni MG, Aboagye D, Elimian E, Su P, Ikram BM, Nabgan W, Bedia J, Amor HB, Contreras S, Medina F, Djellabi R. Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27484-2. [PMID: 37227629 DOI: 10.1007/s11356-023-27484-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
An exponential rise in global pollution and industrialization has led to significant economic and environmental problems due to the insufficient application of green technology for the chemical industry and energy production. Nowadays, the scientific and environmental/industrial communities push to apply new sustainable ways and/or materials for energy/environmental applications through the so-called circular (bio)economy. One of today's hottest topics is primarily valorizing available lignocellulosic biomass wastes into valuable materials for energy or environmentally related applications. This review aims to discuss, from both the chemistry and mechanistic points of view, the recent finding reported on the valorization of biomass wastes into valuable carbon materials. The sorption mechanisms using carbon materials prepared from biomass wastes by emphasizing the relationship between the synthesis route or/and surface modification and the retention performance were discussed towards the removal of organic and heavy metal pollutants from water or air (NOx, CO2, VOCs, SO2, and Hg0). Photocatalytic nanoparticle-coated biomass-based carbon materials have proved to be successful composites for water remediation. The review discusses and simplifies the most raised interfacial, photonic, and physical mechanisms that might take place on the surface of these composites under light irradiation. Finally, the review examines the economic benefits and circular bioeconomy and the challenges of transferring this technology to more comprehensive applications.
Collapse
Affiliation(s)
- Meriem Mergbi
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Melissa Greta Galloni
- Dipartimento di Chimica, Università Degli Studi Di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ehiaghe Elimian
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Peidong Su
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Belhadj M Ikram
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Chemical and Environmental Engineering, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Jorge Bedia
- Chemical Engineering Department, Autonomous University of Madrid, Madrid, Spain
| | - Hedi Ben Amor
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
| | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Francisco Medina
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
3
|
Wei Y, Fakudze S, Yang S, Zhang Y, Xue T, Han J, Chen J. Synergistic citric acid-surfactant catalyzed hydrothermal liquefaction of pomelo peel for production of hydrocarbon-rich bio-oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159235. [PMID: 36208756 DOI: 10.1016/j.scitotenv.2022.159235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Citric acid showed good performance of hydrothermal liquefaction (HTL) of biomass waste via promoting the depolymerization of macromolecules. The synergistic effects of citric acid-surfactants/solid catalysts in the low-temperature (200 °C) catalytic hydrothermal liquefaction of pomelo peel (PP) were studied for the first time. It turned out that citric acid-surfactants promoted the conversion of pomelo peel to bio-oil with a higher yield (26.10-67.72 wt%), higher heating value (17.79-24.77 MJ/kg) and energy yield (33.53-114.11 %), while citric acid-solid catalysts were more conducive to the formation of gas and other products. FT-IR and GC-MS analysis testified that citric acid-surfactants increased the selectivity of hydrocarbons from 49.99 % to 74.19 %. Additionally, the chemical functional groups of bio-oil were characterized by 1H NMR and 13C NMR, indicating that the highest aliphatic content of bio-oils was 89.67 %. Moreover, citric acid-surfactant more environmentally friendly for low temperature liquefaction of biomass.
Collapse
Affiliation(s)
- Yingyuan Wei
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sandile Fakudze
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; Department of Environmental Science, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Zhang
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tianjiao Xue
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiangang Han
- Department of Environmental Science, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Jianqiang Chen
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
4
|
Li S, Huang D, Cheng M, Wei Z, Du L, Wang G, Chen S, Lei L, Chen Y, Li R. Application of sludge biochar nanomaterials in Fenton-like processes: Degradation of organic pollutants, sediment remediation, sludge dewatering. CHEMOSPHERE 2022; 307:135873. [PMID: 35932922 DOI: 10.1016/j.chemosphere.2022.135873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In today's society, wastewater sludge has become solid waste, and the preparation of wastewater sludge into sludge biochar nanomaterials (SBCs) for resource utilization has become a promising method. SBCs have advantages over other biomasses, including their complex composition, wide range of raw materials, and especially the presence of various transition metals with catalytic properties. Heterogeneous Fenton processes using SBCs as catalyst carriers have shown great potential in the removal of pollutants. In this review, the synthesis methods of SBCs are reviewed and the effects of different synthesis methods on their physicochemical properties are discussed. Furthermore, the successful applications of raw SBCs, metal-modified SBCs, and Fenton sludge-SBCs in organic pollutant degradation, sediment remediation, and sludge dewatering are reviewed. The mechanisms occurring with different metals as active sites are explored, and the review shows that the degradation efficiency and stability of SBCs are very satisfactory. We also provide an outlook on the future development of SBCs. We hope that this review will help readers gain a clearer and deeper understanding of SBCs and promote the development of SBCs.
Collapse
Affiliation(s)
- Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Zhen Wei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
5
|
Zhang Y, Zhou C, Deng Z, Li X, Liu Y, Qu J, Li X, Wang L, Dai J, Fu J, Zhang C, Yu M, Yu H. Influence of corn straw on distribution and migration of nitrogen and heavy metals during microwave-assisted pyrolysis of municipal sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152303. [PMID: 34896502 DOI: 10.1016/j.scitotenv.2021.152303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
This study explored pyrolysis characteristics, nitrogen transformation and migration of heavy metals during microwave-assisted pyrolysis of municipal sewage sludge in a continuously operated auger pyrolyser at different temperatures and corn straw ratios. The results showed higher temperatures and more corn straw resulted in more gas yield (e.g., CO2, CO, CH4 and H2) and less char yield. 5 wt% corn straw addition at 750 °C achieved high-quality bio-oil with less O-containing compounds, which was more favorable for upgrading to transportation fuels. Sludge chars prepared at higher corn straw ratios had lower ratios of H/C and N/C, and higher carbon content. Nitrogen transformation pathways and mechanisms were investigated. The residual ratio of heavy metals (except Cd) in sludge char was 67.74-100%. However, the residual ratio of Cd decreased significantly to 6.46% at 750 °C. Concentrations of all heavy metals in sludge char conformed to national standard (CJ/T 362-2011, China), and the potential ecological risk was slight. Sludge chars prepared in the presence of corn straw had lower ecological risk and higher retention capacity of heavy metals (e.g., Pb, Cr, Mn, Cu, Zn, and Ni) compared with pyrolysis of sewage sludge.
Collapse
Affiliation(s)
- Yingwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunbao Zhou
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zeyu Deng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueguang Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junshen Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangtong Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianjun Dai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jie Fu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changfa Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyan Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hejie Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Neibloom D, Bevan MA, Frechette J. Droplet Formation and Growth Mechanisms in Reaction-Induced Spontaneous Emulsification of 3-(Trimethoxysilyl) Propyl Methacrylate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11625-11636. [PMID: 34569795 DOI: 10.1021/acs.langmuir.1c02048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spontaneous emulsification of 3-(trimethoxysilyl) propyl methacrylate (TPM) can produce complex and active colloids, nanoparticles, or monodisperse Pickering emulsions. Despite the applicability of TPM in particle synthesis, the nucleation and growth mechanisms of TPM emulsions are still poorly understood. We investigate droplet formation and growth of TPM in aqueous solutions under quiescent conditions. Our results show that in the absence of stirring the mechanisms of diffusion and stranding likely drive the spontaneous emulsification of TPM through the formation of co-soluble species during hydrolysis. In addition, turbidity and dynamic light scattering experiments show that the pH modulates the growth mechanism. At pH 10.1, the droplets grow via Ostwald ripening, while at pH 11.5, the droplets grow via monomer addition. Adding surfactants [Tween, sodium dodecyl sulfate (SDS), or cetyltrimethylammonium bromide] leads to <100 nm droplets that are kinetically stable. The growth of Tween droplets occurs through addition of TPM species while the number density of droplets is kept constant. In addition, in the presence of the ionic surfactant SDS, electrostatic repulsion between the solubilized TPM species and SDS leads to a significant increase in the number density of droplets as well as additional nucleation events. Finally, imaging of the solubilization of TPM in capillaries shows that in the absence of a surfactant, TPM hydrolysis is likely the rate-limiting step for emulsification, whereas the presence of silica particles in the aqueous phase likely acts as a catalyst of TPM hydrolysis. Our experiments highlight the importance of diffusion and solubilization of TPM species in the aqueous phase in the nucleation and growth of droplets.
Collapse
Affiliation(s)
- Denise Neibloom
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael A Bevan
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, California 94760, United States
| |
Collapse
|
7
|
Hydrothermal carbonization of sewage sludge: Catalytic effect of Cl− on hydrochars physicochemical properties. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Evaluation of Crystalline Cellulose of Corn Straw through Different Pretreatments Via X-Ray Diffraction, Scanning Electron Microscopy and Infrared Spectroscopy. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Waste recycling is beneficial not only for the environment but also for the economy and the society at large. Corn stalks, the most abundant crop waste, are processed with oven drying, steaming, complex enzymatic hydrolysis (cellulase, xylanase, β-glucanase and pectinase), and fermentation (by Candida utilis and Pachysolen tannophilus), were analyzed via X-ray diffraction, Scanning Electron Microscopy (SEM) and Infrared Spectroscopy (IR). The results indicated that thermophilic digestion destroyed glycosidic bonds and fibrous crystal have a significant effect on the degradation of the corn stalks, while complex enzyme hydrolysis only slightly degraded fibrous crystal. Fermentation did not significantly reduce fibrous crystal. Therefore, our research suggested that thermophilic digestion is the appropriate way to increase the saccharification rate and feed yield of corn stalks.
Collapse
|
9
|
Hu C, Feng J, Zhou N, Zhu J, Zhang S. Hydrochar from corn stalk used as bio-asphalt modifier: High-temperature performance improvement. ENVIRONMENTAL RESEARCH 2021; 193:110157. [PMID: 32896538 DOI: 10.1016/j.envres.2020.110157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/04/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Biomass utilization, even for conversion products like hydrochar or biochar, has an increasing demand because improper disposal can cause intensive pollution. In this study, hydrochar obtained by hydrothermal treatment of corn stalk was added to virgin asphalt as a novel modifier by manual stirring and high-speed shearing. This hydrochar-modified asphalt (HCMA) showed a better high-temperature performance compared to unmodified asphalt, and the optimized dosage was 6 wt% with Rutting Index reaching 76 °C, and its penetration and softening point reaching 31.70 (0.1 mm) and 54.70 °C, respectively. The macroscopic representation of modified asphalt was conducted by microscopic characterization methods such as Fourier Transform Infrared Spectroscopy (FTIR) and Gel Permeation Chromatography (GPC). It was demonstrated that the performance was improved by the good blending state between hydrochar and asphalt. The application of hydrochar in modifying asphalt can reduce pollution and enhance its high-temperature performance, which has a potentially extensive application prospect in pavement engineering in subtropical and tropical climate.
Collapse
Affiliation(s)
- Chichun Hu
- College of Civil Engineering & Transportation, South China University of Technology, Guangzhou, China
| | - Jianqiang Feng
- College of Civil Engineering & Transportation, South China University of Technology, Guangzhou, China
| | - Nan Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jiang Zhu
- School of Architecture, South China University of Technology, Guangzhou, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
10
|
Xu Z, Qi R, Xiong M, Zhang D, Gu H, Chen W. Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: Mechanisms and combustion behaviors. BIORESOURCE TECHNOLOGY 2021; 321:124450. [PMID: 33264746 DOI: 10.1016/j.biortech.2020.124450] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The cotton textile was an abundant energy resource while was otherwise treated as waste. In this work, surfactants were used as catalysts in the hydrothermal carbonization (HTC) to transform cotton textile waste (CTW) into clean solid fuel. Furthermore, the conversion mechanisms of hydrothermal products during surfactant-assisted HTC were preliminarily proposed. The results showed that Span 80 and sodium dodecylbenzenesulfonate facilitated the transformation of CTW into bio-oil, while Tween 80 was more conducive to the development of pseudo-lignin, which endowed hydrochars higher energy density and updated the fuel quality and combustion behavior. Therefore, the research presented an effective method to convert CTW to clean solid fuel through the HTC treatment combining with surfactants.
Collapse
Affiliation(s)
- Zhihua Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China.
| | - Renzhi Qi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Mengmeng Xiong
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - He Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| | - Weifang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, PR China
| |
Collapse
|
11
|
Zhang L, Tan J, Xing G, Dou X, Guo X. Cotton stalk-derived hydrothermal carbon for methylene blue dye removal: investigation of the raw material plant tissues. BIORESOUR BIOPROCESS 2021; 8:10. [PMID: 38650223 PMCID: PMC10992739 DOI: 10.1186/s40643-021-00364-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
Conversion of the abundant agricultural residual cotton stalk (CS) into useful chemicals or functional materials could alleviate the fossil fuels caused energy shortages and environmental crises. Although some advances have been achieved, less attention has been paid to the plant tissues effect. In this study, the plant tissue of CS was changed by part degradation of some components (hemicelluloses and lignin, for example) with the aid of acid/base (or both). The pretreated CS was transformed into hydrochar by hydrothermal carbonization (HTC) method. Morphological and chemical compositions of CS hydrochar were analyzed by various techniques, including elemental analysis, Fourier transform infrared (FTIR), BET analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Methylene blue (MB) removal of prepared CS hydrochar was used to evaluate CS hydrochar pollutions adsorption capacity. Results reveal acid/base (or both) pretreatment is beneficial for CS raw material to prepare high-quality CS hydrochar. The effects of some parameters, such as initial MB concentration, temperature, pH value and recyclability on the adsorption of MB onto both acid and base-pretreated CS hydrochar (CS-H2SO4 + NaOH-HTC) were studied. The present work exhibits the importance of agricultural waste biomass material plant tissues on its derived materials, which will have a positive effect on the direct utilization of waste biomass.
Collapse
Affiliation(s)
- Libo Zhang
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 834000, People's Republic of China.
| | - Junyan Tan
- Shenzhen College of International Education, Shenzhen, 518048, People's Republic of China
| | - Gangying Xing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xintong Dou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xuqiang Guo
- State Key Laboratory of Heavy Oil Processing, College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 834000, People's Republic of China
| |
Collapse
|
12
|
Jiang E, Cheng S, Tu R, He Z, Jia Z, Long X, Wu Y, Sun Y, Xu X. High yield self-nitrogen-oxygen doped hydrochar derived from microalgae carbonization in bio-oil: Properties and potential applications. BIORESOURCE TECHNOLOGY 2020; 314:123735. [PMID: 32619806 DOI: 10.1016/j.biortech.2020.123735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
In this work, the high yield self-N-O doped hydrochar had been prepared through the hydrothermal carbonization of microalgae in the aqueous bio-oil. The effects of temperature, residence time and the ratio of Chlorella and bio-oil on the solid yield were investigated. The results showed that the hydrochar had excellent thermal stability and abundant nitrogen and oxide functional groups, its solid yield reached 199.33%. After activated by KOH at high temperature, the hydrochar was transformed into a porous carbon material with high nitrogen content. The porous carbon showed high CO2 absorption of 5.57 mmol/g at 0 °C and 1 bar. It also exhibited a high specific capacitance of 216.6F/g at 0.2 A/g and a good electrochemical stability with 88% capacitance retention after consecutive 5000 cycles.
Collapse
Affiliation(s)
- Enchen Jiang
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Shuchao Cheng
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Ren Tu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Zhen He
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Zhiwen Jia
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Xuantian Long
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Yujian Wu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Yan Sun
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Xiwei Xu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
13
|
Korai RM, Wachemo AC, Yue L, Jaffar M, Li Z, Shahbaz M, Yuan H, Li X. Effect of ultrasonic application during KOH pretreatment and anaerobic process on digestion performance of wheat straw. RSC Adv 2020; 10:9290-9298. [PMID: 35497248 PMCID: PMC9050064 DOI: 10.1039/d0ra00525h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/18/2020] [Indexed: 12/02/2022] Open
Abstract
The digester performance was enhanced by ultrasonic application during pretreatment and the anaerobic digestion (AD) process. Two setups (with and without ultrasonic application) were applied during pretreatment and AD, to untreated and potassium hydroxide (KOH) pretreated wheat straw. The results confirmed that the ultrasonic application enhanced the hydrolysis process during pretreatment. The highest total volatile fatty acid (TVFA) (3012 ± 18 mg L−1) production and overall lignin, hemicellulose, and cellulose (LHC) reductions (22.4 ± 0.5%) were obtained from ultrasonic assisted KOH pretreated (KOHU) samples, after 36 hours of pretreatment. Similarly, the SEM analysis showed obvious disruption in the outer structure of KOHU samples. However, the ultrasonic application during AD showed significant improvement in biodegradation rate, biogas and biomethane production. Obvious reduction in sonication time (76%) along with enhanced biogas (570 ± 9 mL gm−1 VS) and biomethane (306 ± 12 mL gm−1 VS) production were observed from KOH pretreated digesters, when ultrasonication was applied during AD. Moreover, the biodegradation rate reached up to 76% along with highest total solid (TS) and volatile solid (VS) reductions from digesters with single KOH pretreatment and ultrasonic influence during AD. Finally, the digester effluent ranged in between the stable values, confirming the completion of the AD process. These results suggested that ultrasonic application was more effective when applied during AD due to the higher liquid to solid ratio. The reduction in energy input can be beneficial for commercial applications and to recognize the better stage for ultrasonic application for enhanced biomethane yield. The effect of ultrasonic application during KOH pretreatment and anaerobic digestion of wheat straw.![]()
Collapse
Affiliation(s)
- Rashid Mustafa Korai
- Department of Environmental Engineering, Beijing University of Chemical Technology No. 15 Beisanhuan East Road, Chaoyang District Beijing 10029 PR China +861064432281 +861064432281.,Department of Petroleum & Gas Engineering, Dawood University of Engineering & Technology New MA Jinnah Road Karachi-74800 Pakistan
| | - Akiber Chufo Wachemo
- Department of Environmental Engineering, Beijing University of Chemical Technology No. 15 Beisanhuan East Road, Chaoyang District Beijing 10029 PR China +861064432281 +861064432281.,Department of Water Supply and Environmental Engineering, Arba Minch University P. O Box 21 Arba Minch Ethiopia
| | - Liu Yue
- Department of Environmental Engineering, Beijing University of Chemical Technology No. 15 Beisanhuan East Road, Chaoyang District Beijing 10029 PR China +861064432281 +861064432281
| | - Muhammad Jaffar
- Department of Civil Engineering, Mehran University of Engineering & Technology (SZAB Campus) Khairpur Mir's Pakistan
| | - Zhengwei Li
- Department of Environmental Engineering, Beijing University of Chemical Technology No. 15 Beisanhuan East Road, Chaoyang District Beijing 10029 PR China +861064432281 +861064432281
| | - Muhammad Shahbaz
- Department of Environmental Engineering, Beijing University of Chemical Technology No. 15 Beisanhuan East Road, Chaoyang District Beijing 10029 PR China +861064432281 +861064432281
| | - Hairong Yuan
- Department of Environmental Engineering, Beijing University of Chemical Technology No. 15 Beisanhuan East Road, Chaoyang District Beijing 10029 PR China +861064432281 +861064432281
| | - Xiujin Li
- Department of Environmental Engineering, Beijing University of Chemical Technology No. 15 Beisanhuan East Road, Chaoyang District Beijing 10029 PR China +861064432281 +861064432281
| |
Collapse
|
14
|
Su Y, Böhm W, Wenzel M, Paasch S, Acker M, Doert T, Brunner E, Henle T, Weigand JJ. Mild hydrothermally treated brewer's spent grain for efficient removal of uranyl and rare earth metal ions. RSC Adv 2020; 10:45116-45129. [PMID: 35516275 PMCID: PMC9058606 DOI: 10.1039/d0ra08164g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
The increasing concerns on uranium and rare earth metal ion pollution in the environment require sustainable strategies to remove them from wastewater. The present study reports an eco-friendly approach to convert a kind of protein-rich biomass, brewer's spent grain (BSG), into effective biosorbents for uranyl and rare earth metal ions. The employed method reduces the energy consumption by performing the hydrothermal treatment at a significantly lower temperature (150 °C) than conventional hydrothermal carbonization. In addition, with the aid of the Maillard reaction between carbohydrates and proteins forming melanoidins, further activation processes are not required. Treatment at 150 °C for 16 h results in an altered biosorbent (ABSG) with increased content of carboxyl groups (1.46 mmol g−1) and a maximum adsorption capacity for La3+, Eu3+, Yb3+ (pH = 5.7) and UO22+ (pH = 4.7) of 38, 68, 46 and 221 mg g−1, respectively. Various characterization methods such as FT-IR, 13C CP/MAS NMR, SEM-EDX and STA-GC-MS analysis were performed to characterize the obtained material and to disclose the adsorption mechanisms. Aside from oxygen-containing functional groups, nitrogen-containing functional groups also contribute to the adsorption. These results strongly indicate that mild hydrothermal treatment of BSG could be applied as a greener, low-cost method to produce effective adsorbents for uranyl and rare earth metal ion removal. Effective biosorbent ABSG is obtained via hydrothermal treatment of BSG at low temperature without activation, minimizing energy consumption and environmental impact.![]()
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Wendelin Böhm
- Chair of Food Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Margret Acker
- Central Radionuclide Laboratory
- TU Dresden
- 01062 Dresden
- Germany
| | - Thomas Doert
- Chair of Inorganic Chemistry II
- TU Dresden
- 01062 Dresden
- Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Thomas Henle
- Chair of Food Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Jan J. Weigand
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| |
Collapse
|
15
|
Xu X, Tu R, Sun Y, Wu Y, Jiang E, Gong Y, Li Y. The correlation of physicochemical properties and combustion performance of hydrochar with fixed carbon index. BIORESOURCE TECHNOLOGY 2019; 294:122053. [PMID: 31563742 DOI: 10.1016/j.biortech.2019.122053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Hydrothermal carbonization (HTC) is effective method for improving fuel properties of biomass. Investigating the relationship between the HTC severity and the physicochemical properties of hydrochar is beneficial for the large-scale utilization. The fixed carbon index (FCI) based on the hydrothermal carbonization severity is introduced to predict the physicochemical properties, pelletization and combustion performance of hydrochar. The results showed the relationship between decarbonization, dehydrogenation, deoxygenation and FCI fits exponential function. It was predicted that the hydrochar pellets with FCI = 0.15-0.45 possessed the highest bulk density (>1175 kg/m3), the lowest specific energy consumption (<16.07 kJ/kg) and the strongest radial compressive strength (>10.7Mpa). Moreover, the activation energy of hydrochar combustion in FCI (0.15-0.25) is higher (the maximum is 216 kJ/mol). The study provides based datas for predicting the fuel properties of hydrochar and obtains high quality solid fuel.
Collapse
Affiliation(s)
- Xiwei Xu
- College of Materials and Energy in South, China Agricultural University, Guangzhou 510640, China
| | - Ren Tu
- College of Materials and Energy in South, China Agricultural University, Guangzhou 510640, China
| | - Yan Sun
- College of Materials and Energy in South, China Agricultural University, Guangzhou 510640, China
| | - Yujian Wu
- College of Materials and Energy in South, China Agricultural University, Guangzhou 510640, China
| | - Enchen Jiang
- College of Materials and Energy in South, China Agricultural University, Guangzhou 510640, China.
| | - Yulin Gong
- College of Materials and Energy in South, China Agricultural University, Guangzhou 510640, China
| | - Yan Li
- College of Materials and Energy in South, China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
16
|
Tu R, Sun Y, Wu Y, Fan X, Wang J, Shen X, He Z, Jiang E, Xu X. Effect of surfactant on hydrothermal carbonization of coconut shell. BIORESOURCE TECHNOLOGY 2019; 284:214-221. [PMID: 30939383 DOI: 10.1016/j.biortech.2019.03.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The effect of surfactant on the hydrothermal carbonization performance and pseudo-lignin formation were investigated. Especially, the fuel properties and combustion characteristics of hydrochar and solid product were determined. Furthermore, the mechanism of surfactant acted in hydrothermal carbonization was also identified in this article. The results showed that surfactant improved the content of solid products, lignin, heavy bio-oil (HBO), H2 and CO. Moreover, sodium dodecylbenzenesulfonate promoted the increase of the surface area of hydrochar from 4.93 to 41.43 m2/g. The mechanism showed surfactant formed water/oil film around the hydrochar to prevent HBO from leaving the pore or surface of hydrochar and promoted the condensation and polymerization of 5-hydroxymethylfurfura (5-HMF) with hydroxymethylfurfura (HMF) to form pseudo-lignin. The HBO and pseudo-lignin were beneficial for improving integrated combustion characteristic index (SN) during combustion. The article provides a new method to promote hydrothermal carbonization (HTC) for obtaining high value hydrochar as fuels.
Collapse
Affiliation(s)
- Ren Tu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Yan Sun
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Yujian Wu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Xudong Fan
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Jiamin Wang
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Xiaowen Shen
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Zhen He
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China
| | - Enchen Jiang
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China.
| | - Xiwei Xu
- College of Materials and Energy in South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|