1
|
Li Q, Jiang M, Yang H, Zong X, Coldea TE, Cheng C, Zhao H. Transcriptome profiling unravels improved ethanol production and acetic acid tolerance in yeast by preculture of wheat gluten hydrolysates. J Biotechnol 2025; 403:103-114. [PMID: 40246175 DOI: 10.1016/j.jbiotec.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
The effects of wheat gluten hydrolysates (WGH) preculture on yeast acetic acid tolerance and fermentation performances were investigated. Results showed that WGH preculture significantly increased yeast growth and viability under acetic acid stress. Particularly, the WGH fraction precipitated with 90 % (v/v) gradient ethanol (WGH-C) preculture significantly improved yeast cell membrane integrity and H+-ATPase activity, thereby decreasing the intracellular accumulation of ROS and acetic acid. Meanwhile, WGH-C preculture promoted the ethanol production efficiency, shortening the fermentation lag time by 12 h and increasing the ethanol yield by 37.46 %. These improvements were attributed to that WGH-C preculture regulated intracellular amino acid composition and transport protein related gene expression of yeast. Transcriptome profiling demonstrated that the cell wall and plasma membrane structures were remodeled, reducing the oxidative stress induced by acetic acid. Furthermore, regulation of energy metabolism and transporter activity are prime mechanisms in improving acetic acid tolerance and fermentation efficiency of yeast.
Collapse
Affiliation(s)
- Qing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xuyan Zong
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Chao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
2
|
Tadioto V, Deoti JR, Müller C, de Souza BR, Fogolari O, Purificação M, Giehl A, Deoti L, Lucaroni AC, Matsushika A, Treichel H, Stambuk BU, Alves Junior SL. Prospecting and engineering yeasts for ethanol production under inhibitory conditions: an experimental design analysis. Bioprocess Biosyst Eng 2022:10.1007/s00449-022-02812-x. [DOI: 10.1007/s00449-022-02812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
|
3
|
Wen P, Liao H, Zhu J, Xu Y, Zhang J. Production of xylo-oligosaccharides and ethanol from corncob by combined tartaric acid hydrolysis with simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2022; 363:127977. [PMID: 36122845 DOI: 10.1016/j.biortech.2022.127977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In organic acid hydrolysis for xylo-oligosaccharides (XOS) production, organic acids with low flash points and explosion limits can lead to explosion and fire risk. Herein, tartaric acid (TA) as an organic acid with high flash point and no explosion limit was used in the hydrolysis of corncob to produce XOS. Then, the TA-hydrolyzed corncob was used for ethanol production. In TA hydrolysis of corncob, a 56.4 % XOS yield was obtained from the hydrolysate with the conditions of 170 °C, 60 mM TA and 10 min. Meanwhile, 92.1 % TA was recovered from the hydrolysate by the addition of calcium hydroxide. After simultaneous saccharification and fermentation of TA-hydrolyzed corncob, an 82.4 % ethanol yield was obtained with a solid loading of 25 % (w/v, 250 g/L) by Saccharomyces cerevisiae H06. This research provided a relatively safe, simple, and efficient technology for producing XOS and ethanol from corncob.
Collapse
Affiliation(s)
- Peiyao Wen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junjun Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
4
|
Microbial pathways for advanced biofuel production. Biochem Soc Trans 2022; 50:987-1001. [PMID: 35411379 PMCID: PMC9162456 DOI: 10.1042/bst20210764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023]
Abstract
Decarbonisation of the transport sector is essential to mitigate anthropogenic climate change. Microbial metabolisms are already integral to the production of renewable, sustainable fuels and, building on that foundation, are being re-engineered to generate the advanced biofuels that will maintain mobility of people and goods during the energy transition. This review surveys the range of natural and engineered microbial systems for advanced biofuels production and summarises some of the techno-economic challenges associated with their implementation at industrial scales.
Collapse
|
5
|
Raj T, Chandrasekhar K, Naresh Kumar A, Rajesh Banu J, Yoon JJ, Kant Bhatia S, Yang YH, Varjani S, Kim SH. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126292. [PMID: 34748984 DOI: 10.1016/j.biortech.2021.126292] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jeong-Jun Yoon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungcheongnam-do 31056, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Novel Propagation Strategy of Saccharomyces cerevisiae for Enhanced Xylose Metabolism during Fermentation on Softwood Hydrolysate. FERMENTATION 2021. [DOI: 10.3390/fermentation7040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An economically viable production of second-generation bioethanol by recombinant xylose-fermenting Saccharomyces cerevisiae requires higher xylose fermentation rates and improved glucose–xylose co-consumption. Moreover, xylose-fermenting S. cerevisiae recognises xylose as a non-fermentable rather than a fermentable carbon source, which might partly explain why xylose is not fermented into ethanol as efficiently as glucose. This study proposes propagating S. cerevisiae on non-fermentable carbon sources to enhance xylose metabolism during fermentation. When compared to yeast grown on sucrose, cells propagated on a mix of ethanol and glycerol in shake flasks showed up to 50% higher xylose utilisation rate (in a defined xylose medium) and a double maximum fermentation rate, together with an improved C5/C6 co-consumption (on an industrial softwood hydrolysate). Based on these results, an automated propagation protocol was developed, using a fed-batch approach and the respiratory quotient to guide the ethanol and glycerol-containing feed. This successfully produced 71.29 ± 0.91 g/L yeast with an average productivity of 1.03 ± 0.05 g/L/h. These empirical findings provide the basis for the design of a simple, yet effective yeast production strategy to be used in the second-generation bioethanol industry for increased fermentation efficiency.
Collapse
|
7
|
Xi Y, Xue S, Cao X, Chi Z, Wang J. Quantitative analysis on photon numbers received per cell for triggering β-carotene accumulation in Dunaliella salina. BIORESOUR BIOPROCESS 2021; 8:104. [PMID: 38650246 PMCID: PMC10992135 DOI: 10.1186/s40643-021-00457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
Accumulation of β-carotene in Dunaliella salina is highly dependent on light exposure intensity and duration, but quantitative analysis on photon numbers received per cell for triggering β-carotene accumulation is not available so far. In this study, experiment results showed that significant β-carotene accumulation occurred after at least 8 h illumination at 400 µmol photons·m-2·s-1. To quantify the average number of photons received per cell, correlations of light attenuation with light path, biomass concentration, and β-carotene content were, respectively, established using both Lambert-Beer and Cornet models, and the latter provided better simulation. Using Cornet model, average number of photons received per cell (APRPC) was calculated and proposed as a parameter for β-carotene accumulation, and constant APRPC was maintained by adjusting average irradiance based on cell concentration and carotenoids content changes during the whole induction period. It was found that once APRPC reached 0.7 µmol photons cell-1, β-carotene accumulation was triggered, and it was saturated at 9.9 µmol photons cell-1. This study showed that APRPC can be used as an important parameter to precisely simulate and control β-carotene production by D. salina.
Collapse
Affiliation(s)
- Yimei Xi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Song Xue
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xupeng Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 16023, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jinghan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
van Dijk M, Rugbjerg P, Nygård Y, Olsson L. RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:201. [PMID: 34654441 PMCID: PMC8518171 DOI: 10.1186/s13068-021-02049-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The limited tolerance of Saccharomyces cerevisiae to inhibitors is a major challenge in second-generation bioethanol production, and our understanding of the molecular mechanisms providing tolerance to inhibitor-rich lignocellulosic hydrolysates is incomplete. Short-term adaptation of the yeast in the presence of dilute hydrolysate can improve its robustness and productivity during subsequent fermentation. RESULTS We utilized RNA sequencing to investigate differential gene expression in the industrial yeast strain CR01 during short-term adaptation, mimicking industrial conditions for cell propagation. In this first transcriptomic study of short-term adaption of S. cerevisiae to lignocellulosic hydrolysate, we found that cultures respond by fine-tuned up- and down-regulation of a subset of general stress response genes. Furthermore, time-resolved RNA sequencing allowed for identification of genes that were differentially expressed at 2 or more sampling points, revealing the importance of oxidative stress response, thiamin and biotin biosynthesis. furan-aldehyde reductases and specific drug:H+ antiporters, as well as the down-regulation of certain transporter genes. CONCLUSIONS These findings provide a better understanding of the molecular mechanisms governing short-term adaptation of S. cerevisiae to lignocellulosic hydrolysate, and suggest new genetic targets for improving fermentation robustness.
Collapse
Affiliation(s)
- Marlous van Dijk
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Peter Rugbjerg
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
9
|
Dave N, Varadavenkatesan T, Selvaraj R, Vinayagam R. Modelling of fermentative bioethanol production from indigenous Ulva prolifera biomass by Saccharomyces cerevisiae NFCCI1248 using an integrated ANN-GA approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148429. [PMID: 34412402 DOI: 10.1016/j.scitotenv.2021.148429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Third generation biomass (marine macroalgae) has been projected as a promising alternative energy resource for bioethanol production due to its high carbon and no lignin composition. However, the major challenge in the technologies of production lies in the fermentative bioconversion process. Therefore, in the present study the predictive ability of an integrated artificial neural network with genetic algorithm (ANN-GA) in the modelling of bioethanol production was investigated for an indigenous marine macroalgal biomass (Ulva prolifera) by a novel yeast strain, Saccharomyces cerevisiae NFCCI1248 using six fermentative parameters, viz., substrate concentration, fermentation time, inoculum size, temperature, agitation speed and pH. The experimental model was developed using one-variable-at-a-time (OVAT) method to analyze the effects of the fermentative parameters on bioethanol production and the obtained regression equation was used as a fitness function for the ANN-GA modelling. The ANN-GA model predicted a maximum bioethanol production at 30 g/L substrate, 48 h fermentation time, 10% (v/v) inoculum, 30 °C temperature, 50 rpm agitation speed and pH 6. The maximum experimental bioethanol yield obtained after applying ANN-GA was 0.242 ± 0.002 g/g RS, which was in close proximity with the predicted value (0.239 g/g RS). Hence, the developed ANN-GA model can be applied as an efficient approach for predicting the fermentative bioethanol production from macroalgal biomass.
Collapse
Affiliation(s)
- Niyam Dave
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
10
|
Xu J, Xu L, Qiao X, Zheng Y, Xie Y, Yang Z. Stimulated biodegradation of all alkanes in soil. CHEMOSPHERE 2021; 278:130444. [PMID: 33845439 DOI: 10.1016/j.chemosphere.2021.130444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/13/2020] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
This study aim to investigate the biodegradation of all alkanes in soil by adding stimulater and indigenous bacteria. The experiments were carried out by adding native bacteria and the stimulater to the soil S1 (total petroleum hydrocarbon (TPH) = 22,745 mg/kg) and soil S2 (TPH = 13,833 mg/kg) to explored the effect and mechanism of the stimulated biodegradation of all alkanes in soil. The results showed that most alkanes were used as the main carbon source of TPH in the late stimulation stage, so that all alkanes could be biodegraded by stimulating. The biodegradation of C10 - C19 (4527 mg/kg) and C20 - C30 (8530 mg/kg) were much higher than the stimulated biodegradation of partial alkanes, which indicated that the biodegradation effect of TPH was greatly improved. In addition, for the stimulated biodegradation of all alkanes group, the relative activity of TPH (TPH biodegradation/DOC consumption) was nearly 5 times that of the stimulated biodegradation of partial alkanes group in the late stimulation stage. The amount of ammonia allocated to TPH in the late stimulation stage was nearly 10 times that of DOC, and the organic matter components changed greatly in the early stimulation stage, but there was basically no change in the later stage. It showed that the hydrocarbon degraders in the stimulated biodegradation of all alkanes group used DOC as the main carbon source in the early stimulation stage and mainly degrade TPH in the later stage, which improved the biodegradation efficiency of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Lu Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Xue Qiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Yuanyuan Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Youlin Xie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Zhengli Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055, Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
11
|
Silage Fermentation on Sweet Sorghum Whole Plant for Fen-Flavor Baijiu. Foods 2021; 10:foods10071477. [PMID: 34202182 PMCID: PMC8306382 DOI: 10.3390/foods10071477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The technology for producing bioethanol from sweet sorghum stalks by solid-state fermentation has developed rapidly in recent years, and has many similarities with traditional Chinese liquor production. However, the product from sweet sorghum stalks was lacking in volatile flavors, and the level of harmful contents were uncertain, therefore it could not be sold as liquor. In this study, the protein, fat, and tannin in the clusters and leaves of sweet sorghum were utilized to increase the content of flavor compounds in the ethanol product through the anaerobic fermentation of Saccharomyces cerevisiae. Meanwhile, the silage fermentation method was used to extend the preservation time of the raw materials and to further enhance the flavors of Fen-flavor liquor, with ethyl acetate as the characteristic flavor. The effects of different feedstock groups on ethyl acetate, ethyl lactate, methanol, acetaldehyde, acetal, fusel oil, total acid, and total ester were evaluated by analyzing the chemical composition of different parts of sweet sorghum and determined by gas chromatograph. The effect of different fermentation periods on the volatile flavor of sweet sorghum Baijiu was evaluated. The yield of the characteristic volatile flavor was increased by the extension of the fermentation time. Sweet sorghum Baijiu with a high ester content can be used as a flavoring liquor, blended with liquor with a shorter fermentation period to prepare the finished Fen-flavor Baijiu, conforming to the Chinese national standard for sale.
Collapse
|
12
|
Characterization and RNA-seq transcriptomic analysis of a Scenedesmus obliqnus mutant with enhanced photosynthesis efficiency and lipid productivity. Sci Rep 2021; 11:11795. [PMID: 34083552 PMCID: PMC8175553 DOI: 10.1038/s41598-021-88954-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
Microalgae have received significant attention as potential next-generation microbiologic cell factories for biofuels. However, the production of microalgal biofuels is not yet sufficiently cost-effective for commercial applications. To screen higher lipid-producing strains, heavy carbon ion beams are applied to induce a genetic mutant. An RNA-seq technology is used to identify the pathways and genes of importance related to photosynthesis and biofuel production. The deep elucidation of photosynthesis and the fatty acid metabolism pathway involved in lipid yield is valuable information for further optimization studies. This study provided the photosynthetic efficiency and transcriptome profiling of a unicellular microalgae, Scenedesmus obliqnus mutant SO120G, with enhanced lipid production induced by heavy carbon ion beams. The lipid yield (52.5 mg L−1) of SO120G mutant were enhanced 2.4 fold compared with that of the wild strain under the nitrogen deficient condition. In addition, the biomass and growth rate were 57% and 25% higher, respectively, in SO120G than in the wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis. As for the major pigment compositions, the content of chlorophyll a and carotenoids was higher in SO120G than in the wild type. The transcriptome data confirmed that a total of 2077 genes with a change of at least twofold were recognized as differential expression genes (DEGs), of which 1060 genes were up-regulated and 1017 genes were down-regulated. Most of the DEGs involved in lipid biosynthesis were up-regulated with the mutant SO120G. The expression of the gene involved in the fatty acid biosynthesis and photosynthesis of SO120G was upregulated, while that related to starch metabolism decreased compared with that of the wild strain. This work demonstrated that heavy-ion irradiation is an promising strategy for quality improvement. In addition, the mutant SO120G was shown to be a potential algal strain for enhanced lipid production. Transcriptome sequencing and annotation of the mutant suggested the possible genes responsible for lipid biosynthesis and photosynthesis, and identified the putative target genes for future genetic manipulation and biotechnological applications.
Collapse
|
13
|
Jeong D, Park H, Jang BK, Ju Y, Shin MH, Oh EJ, Lee EJ, Kim SR. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124603. [PMID: 33406467 DOI: 10.1016/j.biortech.2020.124603] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
In the quest to reduce global food loss and waste, fruit processing wastes, particularly citrus peel waste (CPW), have emerged as a promising and sustainable option for biorefinery without competing with human foods and animal feeds. CPW is largely produced and, as recent studies suggest, has the industrial potential of biological valorization into fuels and chemicals. In this review, the promising aspects of CPW as an alternative biomass were highlighted, focusing on its low lignin content. In addition, specific technical difficulties in fermenting CPW are described, highlighting that citrus peel is high in pectin that consist of non-fermentable sugars, mainly galacturonic acid. Last, recent advances in the metabolic engineering of yeast and other microbial strains that ferment CPW-derived sugars to produce value-added products, such as ethanol and mucic acid, are summarized. For industrially viable CPW-based biorefinery, more studies are needed to improve fermentation efficiency and to diversify product profiles.
Collapse
Affiliation(s)
- Deokyeol Jeong
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Heeyoung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Byeong-Kwan Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - YeBin Ju
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Min Hye Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, South Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
14
|
Xi Y, Kong F, Chi Z. ROS Induce β-Carotene Biosynthesis Caused by Changes of Photosynthesis Efficiency and Energy Metabolism in Dunaliella salina Under Stress Conditions. Front Bioeng Biotechnol 2021; 8:613768. [PMID: 33520962 PMCID: PMC7844308 DOI: 10.3389/fbioe.2020.613768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
The unicellular alga Dunaliella salina is regarded as a promising cell factory for the commercial production of β-carotene due to its high yield of carotenoids. However, the underlying mechanism of β-carotene accumulation is still unclear. In this study, the regulatory mechanism of β-carotene accumulation in D. salina under stress conditions was investigated. Our results indicated that there is a significant positive correlation between the cellular ROS level and β-carotene content, and the maximum quantum efficiency (Fv/Fm) of PSII is negatively correlated with β-carotene content under stress conditions. The increase of ROS was found to be coupled with the inhibition of Fv/Fm of PSII in D. salina under stress conditions. Furthermore, transcriptomic analysis of the cells cultivated with H2O2 supplementation showed that the major differentially expressed genes involved in β-carotene metabolism were upregulated, whereas the genes involved in photosynthesis were downregulated. These results indicated that ROS induce β-carotene accumulation in D. salina through fine-tuning genes which were involved in photosynthesis and β-carotene biosynthesis. Our study provided a better understanding of the regulatory mechanism involved in β-carotene accumulation in D. salina, which might be useful for overaccumulation of carotenoids and other valuable compounds in other microalgae.
Collapse
Affiliation(s)
- Yimei Xi
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
15
|
Tesfaw A, Oner ET, Assefa F. Optimization of ethanol production using newly isolated ethanologenic yeasts. Biochem Biophys Rep 2021; 25:100886. [PMID: 33490643 PMCID: PMC7806873 DOI: 10.1016/j.bbrep.2020.100886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/27/2020] [Accepted: 12/18/2020] [Indexed: 10/25/2022] Open
Abstract
Yeasts are important microorganisms used for ethanol production; however, they are not equally efficient in the amount of ethanol production under different environmental conditions. It is, therefore, necessary to screen for elite strains to utilize them for commercial production of these commodities. In this study, yeasts were isolated from different Ethiopian traditional fermented alcoholic beverages (teji, tella, shamiata and areqe tinisis), milk and ergo, teff and maize dough, soil and compost, flowers, and fruits to evaluate their potential use for ethanol fermentation process. Isolates were screened for efficient ethanol production and the selected ones were identified using phenotypic and genetic characters using D1/D2 region of LSU rDNA sequence analysis. The yeast isolates were evaluated based on their growth and fermentation of different carbon sources. Response surface methodology (RSM) was applied to optimize temperature, pH and incubation time using central composite design (CCD) in Design-Expert 7.0.0. A total of 211 yeasts colonies were isolated of which 60% were ethanologenic yeasts (ethanol producers) and 40% were non-ethanol producers. The yeast population detected from various sources was in the range of 10 5 CFU from traditional foods and beverages to that of 10 3 CFU from fruits and soil samples. The data also showed that the number of colony types (diversity) did not correlate with population density. The highly fermentative isolates were taxonomically characterized into four genera, of which 65% of the isolates (ETP37, ETP50; ETP53, ETP89, ETP94) were categorized under Saccharomyces cerevisiae, and the remaining were Pichia fermentans ETP22, Kluyveromyces marxianus ETP87, and Candida humilis ETP122. The S. cerevisiae isolates produced ethanol (7.6-9.0 g/L) similar with K. marxianus ETP87 producing 7.97 g/L; comparable to the ethanol produced from commercial baker's yeast (8.43 g/L) from 20 g/L dextrose; whereas C. humilis ETP122 and P. fermentans ETP22 produced 5.37 g/L and 6.43 g/L ethanol, respectively. S. cerevisiae ETP53, K. marxianus ETP87, P. fermentans ETP22 and C. humilis ETP122 tolerated 10% extraneous ethanol but the percentage of ethanol tolerance considerably decreased upon 15%. S. cerevisiae ETP53 produced ethanol optimally at pH 5.0, 60 h, and 34 o C. pH 4.8, temperature 36 o C, and 65 h of time were optimal growth conditions of ethanol fermentation by K. marxianus ETP87. The ethanol fermentation conditions of P. fermentans ETP22 was similar to S. cerevisiae ETP53 though the ethanol titer of S. cerevisiae ETP53 was higher than P. fermentans ETP22. Therefore, S. cerevisiae ETP53, K. marxianus and P. fermentans ETP22 are good candidates for ethanol production.
Collapse
Affiliation(s)
- Asmamaw Tesfaw
- Department of Biology, Debre Berhan University, P.O Box,445, Debre Berhan, Ethiopia
| | - Ebru Toksoy Oner
- , Department of Bioengineering, Marmara University, Goztepe Campus, P.O.Box 34722, Istanbul, Turkey
| | - Fassil Assefa
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, P.O Box,1176, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Lopes da Costa N, Guedes Pereira L, Mendes Resende JV, Diaz Mendoza CA, Kaiser Ferreira K, Detoni C, M.V.M. Souza M, N.D.C. Gomes F. Phosphotungstic acid on activated carbon: A remarkable catalyst for 5-hydroxymethylfurfural production. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
van Dijk M, Mierke F, Nygård Y, Olsson L. Nutrient-supplemented propagation of Saccharomyces cerevisiae improves its lignocellulose fermentation ability. AMB Express 2020; 10:157. [PMID: 32857229 PMCID: PMC7455642 DOI: 10.1186/s13568-020-01070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
Propagation conditions have been shown to be of considerable importance for the fermentation ability of Saccharomyces cerevisiae. The limited tolerance of yeast to inhibitors present in lignocellulosic hydrolysates is a major challenge in second-generation bioethanol production. We have investigated the hypothesis that the addition of nutrients during propagation leads to yeast cultures with improved ability to subsequently ferment lignocellulosic materials. This hypothesis was tested with and without short-term adaptation to wheat straw or corn stover hydrolysates during propagation of the yeast. The study was performed using the industrial xylose-fermenting S. cerevisiae strain CR01. Adding a mixture of pyridoxine, thiamine, and biotin to unadapted propagation cultures improved cell growth and ethanol yields during fermentation in wheat straw hydrolysate from 0.04 g g−1 to 0.19 g g−1 and in corn stover hydrolysate from 0.02 g g−1 to 0.08 g g−1. The combination of short–term adaptation and supplementation with the vitamin mixture during propagation led to ethanol yields of 0.43 g g−1 in wheat straw hydrolysate fermentation and 0.41 g g−1 in corn stover hydrolysate fermentation. These ethanol yields were improved compared to ethanol yields from cultures that were solely short-term adapted (0.37 and 0.33 g g−1). Supplementing the propagation medium with nutrients in combination with short-term adaptation was thus demonstrated to be a promising strategy to improve the efficiency of industrial lignocellulosic fermentation.
Collapse
|
18
|
|
19
|
Johnson A, He JL, Kong F, Huang YC, Thomas S, Lin HTV, Kong ZL. Surfactin-Loaded ĸ-Carrageenan Oligosaccharides Entangled Cellulose Nanofibers as a Versatile Vehicle Against Periodontal Pathogens. Int J Nanomedicine 2020; 15:4021-4047. [PMID: 32606662 PMCID: PMC7293418 DOI: 10.2147/ijn.s238476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Periodontitis is a chronic inflammatory disease associated with microbial accumulation. The purpose of this study was to reuse the agricultural waste to produce cellulose nanofibers (CNF) and further modification of the CNF with κ-carrageenan oligosaccharides (CO) for drug delivery. In addition, this study is focused on the antimicrobial activity of surfactin-loaded CO-CNF towards periodontal pathogens. MATERIALS AND METHODS A chemo-mechanical method was used to extract the CNF and the modification was done by using CO. The studies were further proceeded by adding different quantities of surfactin [50 mg (50 SNPs), 100 mg (100 SNPs), 200 mg (200 SNPs)] into the carrier (CO-CNF). The obtained materials were characterized, and the antimicrobial activity of surfactin-loaded CO-CNF was evaluated. RESULTS The obtained average size of CNF and CO-CNF after ultrasonication was 263 nm and 330 nm, respectively. Microscopic studies suggested that the CNF has a short diameter with long length and CO became cross-linked to form as beads within the CNF network. The addition of CO improved the degradation temperature, crystallinity, and swelling property of CNF. The material has a controlled drug release, and the entrapment efficiency and loading capacity of the drug were 53.15 ± 2.36% and 36.72 ± 1.24%, respectively. It has antioxidant activity and inhibited the growth of periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis by preventing the biofilm formation, reducing the metabolic activity, and promoting the oxidative stress. CONCLUSION The study showed the successful extraction of CNF and modification with CO improved the physical parameters of the CNF. In addition, surfactin-loaded CO-CNF has potential antimicrobial activity against periodontal pathogens. The obtained biomaterial is economically valuable and has great potential for biomedical applications.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Jia-Ling He
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, GA30602, U.S.A
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala686560, India
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| |
Collapse
|
20
|
Milessi TS, Perez CL, Zangirolami TC, Corradini FAS, Sandri JP, Foulquié-Moreno MR, Giordano RC, Thevelein JM, Giordano RLC. Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed-bed reactor. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:85. [PMID: 32426034 PMCID: PMC7216711 DOI: 10.1186/s13068-020-01722-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The search for sustainable energy sources has become a worldwide issue, making the development of efficient biofuel production processes a priority. Immobilization of second-generation (2G) xylose-fermenting Saccharomyces cerevisiae strains is a promising approach to achieve economic viability of 2G bioethanol production from undetoxified hydrolysates through operation at high cell load and mitigation of inhibitor toxicity. In addition, the use of a fixed-bed reactor can contribute to establish an efficient process because of its distinct advantages, such as high conversion rate per weight of biocatalyst and reuse of biocatalyst. RESULTS This work assessed the influence of alginate entrapment on the tolerance of recombinant S. cerevisiae to acetic acid. Encapsulated GSE16-T18SI.1 (T18) yeast showed an outstanding performance in repeated batch fermentations with cell recycling in YPX medium supplemented with 8 g/L acetic acid (pH 5.2), achieving 10 cycles without significant loss of productivity. In the fixed-bed bioreactor, a high xylose fermentation rate with ethanol yield and productivity values of 0.38 gethanol/gsugars and 5.7 g/L/h, respectively were achieved in fermentations using undetoxified sugarcane bagasse hemicellulose hydrolysate, with and without medium recirculation. CONCLUSIONS The performance of recombinant strains developed for 2G ethanol production can be boosted strongly by cell immobilization in alginate gels. Yeast encapsulation allows conducting fermentations in repeated batch mode in fixed-bed bioreactors with high xylose assimilation rate and high ethanol productivity using undetoxified hemicellulose hydrolysate.
Collapse
Affiliation(s)
- Thais S. Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, 37500-903 Itajubá, MG Brazil
| | - Caroline L. Perez
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Teresa C. Zangirolami
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Felipe A. S. Corradini
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Juliana P. Sandri
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Maria R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Roberto C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| |
Collapse
|
21
|
van Dijk M, Erdei B, Galbe M, Nygård Y, Olsson L. Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2019; 292:121922. [PMID: 31398543 DOI: 10.1016/j.biortech.2019.121922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
The limited tolerance of Saccharomyces cerevisiae to the inhibitors present in lignocellulosic hydrolysates is a major challenge in second-generation bioethanol production. Short-term adaptation of the yeast to lignocellulosic hydrolysates during cell propagation has been shown to improve its tolerance, and thus its performance in lignocellulose fermentation. The aim of this study was to investigate the short-term adaptation effects in yeast strains with different genetic backgrounds. Fed-batch propagation cultures were supplemented with 40% wheat straw hydrolysate during the feed phase to adapt two different pentose-fermenting strains, CR01 and KE6-12. The harvested cells were used to inoculate fermentation media containing 80% or 90% wheat straw hydrolysate. The specific ethanol productivity during fermentation was up to 3.6 times higher for CR01 and 1.6 times higher for KE6-12 following adaptation. The influence of physiological parameters such as viability, storage carbohydrate content, and metabolite yields following short-term adaptation demonstrated that short-term adaptation was strain dependent.
Collapse
Affiliation(s)
- Marlous van Dijk
- Chalmers University of Technology, Dept. Biology and Bioengineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Borbála Erdei
- Lund University, Dept. Chemical Engineering, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mats Galbe
- Lund University, Dept. Chemical Engineering, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Yvonne Nygård
- Chalmers University of Technology, Dept. Biology and Bioengineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Lisbeth Olsson
- Chalmers University of Technology, Dept. Biology and Bioengineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden.
| |
Collapse
|
22
|
Botella C, Zhang K, Baugh A, Liang Y, Sivakumar S. Reversible acid pretreatment scale up studies for the production of cellulosic ethanol from ensiled sweet sorghum. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Xu J, Zhang Q, Li D, Du J, Wang C, Qin J. Rapid degradation of long-chain crude oil in soil by indigenous bacteria using fermented food waste supernatant. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:361-373. [PMID: 30803591 DOI: 10.1016/j.wasman.2018.12.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The objective of this study is to explore how to stimulate soil indigenous bacteria for the degradation of long-chain crude oil by adding fermented food waste supernatant (FS). Four concentrations of FS (0 mL, 0.1 mL, 1 mL, and 3 mL) were added to two oil-contaminated soils S1 and S2 for 30 days of bioremediation experiments. The results showed that the biodegradation of long-chain alkanes (C29 - C24) could reach up to 1756 mg/kg (49.3%, S1) and 3937 mg/kg (43.9%, S2), which were 3.1 and 3.2 times that of the non-nutrient system. In addition, the logarithmic growth rate of the indigenous hydrocarbon degraders (IHD) reached 41.5%. The long-chain crude oil can be rapidly degraded by indigenous bacteria with FS added in a short time. The glucose and acetic acid accelerated the consumption of ammonia nitrogen (NH4+-N) in the prophase of bioremediation and the molar ratio of consumed carbon (contained in glucose and acetic acid) to consumed NH4+-N (C/N) was high by adding FS. Thus, the IHD can multiply rapidly. The analysis of microbial diversity revealed that the IHD (genera Acinetobacter and Aquabacterium) became the dominant bacteria. Long-chain alkanes became the main carbon sources for IHD after 14 days in soil S1 and 16 days in soil S2. Thus, the rapid biodegradation of long-chain crude oil was achieved. The genus Aquabacterium which was uncultivable on crude oil medium became the dominant bacteria. This study provides an environment-friendly and sustainable remediation technology for bioremediation of oil-contaminated soils.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiuju Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dongyuan Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Juan Du
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Shaanxi, Xi'an, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinyi Qin
- School of Architecture and Engineering, Chang'an University, 710055 Shaanxi, Xi'an, China
| |
Collapse
|