1
|
Zhu L, Li W, Zhang X, Wang L, Jin J, Zhou Z, Zhang L. Fully upgrade bamboo biomass into three multifunctional products through biphasic γ-valerolactone and aqueous phosphoric acid pretreatment. BIORESOURCE TECHNOLOGY 2024; 406:130946. [PMID: 38857635 DOI: 10.1016/j.biortech.2024.130946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
In this manuscript, three components of lignocellulosic biomass were obtained by deconstructing bamboo with γ-valerolactone-H2O biphasic system, and the delignification rate of 80.92 % was achieved at 120 °C for 90 min. Lignin nanospheres with diameters ranging from 75 nm to 2 um could be customized by varying the self-assembly rate. Furthermore, the lignin nanospheres-poly(vinyl alcohol) film was prepared by cross-linking lignin nanospheres and poly(vinyl alcohol), which can obtain 90 % ultraviolet absorption capacity, while the light transmittance in non-ultraviolet band was almost unchanged. At the same time, due to the strong hydrogen formation between lignin nanospheres and poly(vinyl alcohol) bond network, the tensile properties of the composite film were also improved by 30 %. Besides, the high specific surface area of biomass-derived porous biochar (2056 m2/g) can be obtained after carbonization of solid residues at 850 °C for 2 h, which was almost 8 times the specific surface area of the direct biomass carbonization due to the removal of lignin and hemicellulose. biomass-derived porous biochar can be used as an adsorbent, with a CO2 capture capacity of 4.5 mmol g-1 at normal temperature (25 °C, 1 bar). The filtrate after the reaction contained a large amount of hemicellulose oligomers, which can be reacted with dichloromethane at 170 °C for 1 h to obtain the furfural yield of 74 %. In summary, the proposed biorefinery scheme achieves a full-component upgrade of lignocellulose and can be further applied in various downstream fields.
Collapse
Affiliation(s)
- Leyu Zhu
- Laboratory Of Low Carbon Clean Energy, University of Science and Technology of China, Hefei 230023, PR China
| | - Wenzhi Li
- Laboratory Of Low Carbon Clean Energy, University of Science and Technology of China, Hefei 230023, PR China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, PR China.
| | - Xia Zhang
- Laboratory Of Low Carbon Clean Energy, University of Science and Technology of China, Hefei 230023, PR China
| | - Liqun Wang
- Laboratory Of Low Carbon Clean Energy, University of Science and Technology of China, Hefei 230023, PR China
| | - Jingting Jin
- Laboratory Of Low Carbon Clean Energy, University of Science and Technology of China, Hefei 230023, PR China
| | - Zheng Zhou
- Laboratory Of Low Carbon Clean Energy, University of Science and Technology of China, Hefei 230023, PR China
| | - Lulu Zhang
- Anhui University Of Science & Technology, School of Chemical and Blasting Engineering, PR China
| |
Collapse
|
2
|
Khan RJ, Guan J, Lau CY, Zhuang H, Rehman S, Leu SY. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. CHEMSUSCHEM 2024; 17:e202301306. [PMID: 38078500 DOI: 10.1002/cssc.202301306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (β-O-4, β-β, β-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable β-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between β-O-4 and S-lignin and between β-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.
Collapse
Affiliation(s)
- Rabia J Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Y Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, 3400-8322
| |
Collapse
|
3
|
Hoang AT, Nguyen XP, Duong XQ, Ağbulut Ü, Len C, Nguyen PQP, Kchaou M, Chen WH. Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. BIORESOURCE TECHNOLOGY 2023; 385:129398. [PMID: 37385558 DOI: 10.1016/j.biortech.2023.129398] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The biorefining process of lignocellulosic biomass has recently emerged as one of the most profitable biofuel production options. However, pretreatment is required to improve the recalcitrant lignocellulose's enzymatic conversion efficiency. Among biomass pretreatment methods, the steam explosion is an eco-friendly, inexpensive, and effective approach to pretreating biomass, significantly promoting biofuel production efficiency and yield. This review paper critically presents the steam explosion's reaction mechanism and technological characteristics for lignocellulosic biomass pretreatment. Indeed, the principles of steam explosion technology for lignocellulosic biomass pretreatment were scrutinized. Moreover, the impacts of process factors on pretreatment efficiency and sugar recovery for the following biofuel production were also discussed in detail. Finally, the limitations and prospects of steam explosion pretreatment were mentioned. Generally, steam explosion technology applications could bring great potential in pretreating biomass, although deeper studies are needed to deploy this method on industrial scales.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Duzce University, 81620, Düzce, Türkiye
| | - Christophe Len
- PSL Research University, Chimie ParisTech, CNRS, Paris Cedex 05, France
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 1, Bisha, Saudi Arabia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
4
|
Argyropoulos DDS, Crestini C, Dahlstrand C, Furusjö E, Gioia C, Jedvert K, Henriksson G, Hulteberg C, Lawoko M, Pierrou C, Samec JSM, Subbotina E, Wallmo H, Wimby M. Kraft Lignin: A Valuable, Sustainable Resource, Opportunities and Challenges. CHEMSUSCHEM 2023:e202300492. [PMID: 37493340 DOI: 10.1002/cssc.202300492] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Kraft lignin, a by-product from the production of pulp, is currently incinerated in the recovery boiler during the chemical recovery cycle, generating valuable bioenergy and recycling inorganic chemicals to the pulping process operation. Removing lignin from the black liquor or its gasification lowers the recovery boiler load enabling increased pulp production. During the past ten years, lignin separation technologies have emerged and the interest of the research community to valorize this underutilized resource has been invigorated. The aim of this Review is to give (1) a dedicated overview of the kraft process with a focus on the lignin, (2) an overview of applications that are being developed, and (3) a techno-economic and life cycle asseeements of value chains from black liquor to different products. Overall, it is anticipated that this effort will inspire further work for developing and using kraft lignin as a commodity raw material for new applications undeniably promoting pivotal global sustainability concerns.
Collapse
Affiliation(s)
- Dimitris D S Argyropoulos
- Departments of Chemistry and Forest Biomaterials, North Carolina State University, 431 Dan Allen Drive, Raleigh, North Carolina, 27695, USA
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30170, Venezia-Mestre, Italy
| | | | - Erik Furusjö
- Division of Bioeconomy and Health, RISE Research Institutes of Sweden, Lindholmspiren 7 A, SE-41756, Göteborg, Sweden
- Division of Energy Science, Luleå University of Technology, Universitetsområdet Porsön, SE-971 87, Luleå, Sweden
| | - Claudio Gioia
- Department of physics, University of Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Kerstin Jedvert
- Division of Materials and Production, RISE Research Institutes of Sweden, Lindholmspiren 7 A, SE-41756, Göteborg, Sweden
| | - Gunnar Henriksson
- Wallenberg Wood Science Center (WWSC), KTH, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Christian Hulteberg
- Department of Chemical Engineering, Faculty of Engineering, Lund University, 221 00, Lund, Sweden
| | - Martin Lawoko
- Wallenberg Wood Science Center (WWSC), KTH, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Clara Pierrou
- RenFuel Materials AB, Rapsgatan 25, SE-754 50, Uppsala, Sweden
| | - Joseph S M Samec
- Ren Fuel K2B AB, Rapsgatan 25, SE-754 50, Uppsala, Sweden
- RenFuel Materials AB, Rapsgatan 25, SE-754 50, Uppsala, Sweden
- Department of Organic Chemistry, Stockholm University, Svante Arhenius väg 16 C, 10691, Stockholm, Sweden
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, 10330, Bangkok, Thailand
| | - Elena Subbotina
- Center for Green Chemistry and Green Engineering, Yale University, 370 Prospect St, New Haven, CT 06511, USA
| | | | - Martin Wimby
- Valmet AB, Regnbågsgatan 6, 41755, Göteborg, Sweden
| |
Collapse
|
5
|
Meng X, Wang Y, Conte AJ, Zhang S, Ryu J, Wie JJ, Pu Y, Davison BH, Yoo CG, Ragauskas AJ. Applications of biomass-derived solvents in biomass pretreatment - Strategies, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023; 368:128280. [PMID: 36368492 DOI: 10.1016/j.biortech.2022.128280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Biomass pretreatment is considered a key step in the 2nd generation biofuel production from lignocellulosic biomass. Research on conventional biomass pretreatment solvents has mainly been focused on carbohydrate conversion efficiency, while their hazardousness and/or carbon intensity were not comprehensively considered. Recent sustainability issues request further consideration for eco-friendly and sustainable alternatives like biomass-derived solvents. Carbohydrate and lignin-derived solvents have been proposed and investigated as green alternatives in many biomass processes. In this review, the applications of different types of biomass pretreatment solvents, including organic, ionic liquid, and deep eutectic solvents, are thoroughly discussed. The role of water as a co-solvent in these pretreatment processes is also reviewed. Finally, current research challenges and prospects of utilizing biomass-derived pretreatment solvents for pretreatment are discussed. Given bioethanol's market potential and increasing public awareness about environmental concerns, it will be a priority adopting sustainable and green biomass pretreatment solvents in biorefinery.
Collapse
Affiliation(s)
- Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunxuan Wang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Austin J Conte
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Shuyang Zhang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Jiae Ryu
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Jeong Jae Wie
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA; Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea; Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Brian H Davison
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee, Institute of Agriculture, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
6
|
Deivayanai VC, Yaashikaa PR, Senthil Kumar P, Rangasamy G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. BIORESOURCE TECHNOLOGY 2022; 365:128166. [PMID: 36283663 DOI: 10.1016/j.biortech.2022.128166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/16/2023]
Abstract
The globe has dependent on energy generation and utilization for many years; conversely, ecological concerns constrained the world to view hydrogen as an alternative for economic development. Lignocellulosic biomass is broadly accessible as a low-cost renewable feedstock and nonreactive nature; it has received a lot of consideration as a global energy source and the most attractive alternative to replace fossil natural substances for energy production. Pretreatment of lignocellulosic biomass is essential to advance its fragmentation and lower the lignin content for sustainable energy generation. This review's goal is to provide the different pretreatment strategies for enlarging the solubility and surface area of lignocellulosic biomass. The biological conversion of lignocellulosic biomass to hydrogen was reviewed and operational conditions and enhancing methods were discussed. This review summarizes the working conditions, parameters, yield percentages, techno-economic analysis, challenges, and future recommendations on the direct conversion of biomass to hydrogen.
Collapse
Affiliation(s)
- V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
7
|
Wang N, Xu B, Wang X, Lang J, Zhang H. Chemical and Structural Elucidation of Lignin and Cellulose Isolated Using DES from Bagasse Based on Alkaline and Hydrothermal Pretreatment. Polymers (Basel) 2022; 14:2756. [PMID: 35890532 PMCID: PMC9325185 DOI: 10.3390/polym14142756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
The separation of cellulose, hemicellulose, and lignin components using deep eutectic solvent, which is a green solvent, to obtain corresponding chemicals can realize the effective separation and high-value utilization of these components at low cost. In this study, we used waste biomass sugarcane bagasse as the raw material, choline chloride as the hydrogen bond acceptor, and lactic acid as the hydrogen bond donor to synthesize a deep eutectic solvent of choline chloride/lactic acid (L-DES) and treated sugarcane bagasse pretreated by alkali or hydrothermal methods to separate cellulose, hemicellulose, and lignin. In addition, we comparatively studied the effect of different pretreatment methods on lignin removal by DES and found that the lignin removal rate by L-DES after alkaline pretreatment was significantly higher than that after hydrothermal pretreatment, and the mechanism of action causing this difference is discussed.
Collapse
Affiliation(s)
- Na Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
| | - Baoming Xu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
| | - Xinhui Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
| | - Jinyan Lang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
| | - Heng Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 260412, China; (N.W.); (B.X.); (X.W.); (J.L.)
- Guangdong Provincial Key Lab of Green Chemical Product Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Fan J, Yu Q, Li M, Chen J, Wang Y, Zhang Y, Li G, Ma X, Zhong H, Yu Y. Optimization of ethanol-extracted lignin from palm fiber by response surface methodology and preparation of activated carbon fiber for dehumidification. BIORESOUR BIOPROCESS 2022; 9:61. [PMID: 38647770 PMCID: PMC10992789 DOI: 10.1186/s40643-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Lignin is a renewable bioresource that can be used for a variety of value-added applications. However, the effective separation of lignin from lignocellulosic biomass remains an ongoing challenge. In this study, lignin was extracted from waste palm fiber and successfully converted into a dehumidifying material. The following four process parameters of lignin extraction from palm fiber were optimized systematically and comprehensively using the response surface methodology: reaction time, extraction temperature, ethanol concentration and solid/liquid ratio. The results revealed that under the optimum processing conditions (111 min of extraction at 174 °C using 73% ethanol at 1/16 g/mL solid/liquid ratio), the extraction yield of lignin was 56.2%. The recovery of ethanol solvent was as high as 91.8%. Further, the lignin could be directly used without purification to produce lignin-based activated carbon fibers (LACFs) with specific surface area and total pore volume of 1375 m2/g and 0.881 cm3/g, respectively. Compared with the commercial pitch-based activated carbon fiber, the LACF has a higher specific area and superior pore structure parameters. This work provides a feasible route for extracting lignin from natural palm fiber and demonstrates its use in the preparation of activated carbon fiber with a remarkable performance as a solid dehumidification agent.
Collapse
Affiliation(s)
- Jie Fan
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Qiongfen Yu
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China.
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China.
| | - Ming Li
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Jie Chen
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Yunfeng Wang
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Ying Zhang
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Guoliang Li
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Xun Ma
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Hao Zhong
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| | - Yamei Yu
- Solar Energy Research Institute, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory of Solar Heating and Cooling Technology of Yunnan Provincial Universities, Kunming, 650500, China
| |
Collapse
|
9
|
Zhan Y, Cheng J, Liu X, Huang C, Wang J, Han S, Fang G, Meng X, Ragauskas AJ. Assessing the availability of two bamboo species for fermentable sugars by alkaline hydrogen peroxide pretreatment. BIORESOURCE TECHNOLOGY 2022; 349:126854. [PMID: 35176465 DOI: 10.1016/j.biortech.2022.126854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
This study comprehensively investigated two bamboo species (i.e. Neosinocalamus affinis and Phyllostachys edulis) in terms of their cell wall ultrastructure, chemical compositions, enzymatic saccharification, and lignin structure before and after alkaline hydrogen peroxide pretreatment (AHP). During AHP, Neosinocalamus affinis (NAB) had higher delignification than Phyllostachys edulis (PEB), and thus showed better enzymatic digestibility (93.05% vs 53.57% for glucan). The fundamental chemical behavior of the bamboo lignins was analyzed by fluorescence microscope (FM), confocal Raman microscope (CRM), molecular weight analysis, and 2D HSQC-NMR. Results indicated that the PEB has thicker cell wall and more concentrated lignin in its compound middle lamella and cell corner middle lamella than NAB. Moreover, PEB lignin contains more G units (S/G of 0.95), in evident contrast to that of NAB lignin (S/G of 1.30), which favor the formation of C-C linkages, thus impeding its degradation during the AHP.
Collapse
Affiliation(s)
- Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Xuze Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shanming Han
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
Khan RJ, Lau CY, Guan J, Lam CH, Zhao J, Ji Y, Wang H, Xu J, Lee DJ, Leu SY. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. BIORESOURCE TECHNOLOGY 2022; 346:126419. [PMID: 34838966 DOI: 10.1016/j.biortech.2021.126419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Aromatic compounds are important fuels and key chemical precursors for organic synthesis, however the current aromatics market are mainly relying on fossil resources which will eventually contribute to carbon emissions. Lignin has been recognized as a drop-in substitution to conventional aromatics, with its values gradually realized after tremendous research efforts in the recent five years. To facilitate the development of a possible lignin economics, this study overviewed the recent advances of various biorefinery techniques and the remaining challenging for lignin valorization. Starting with recent discovery of unexplored lignin structures, the potential functions of lignin related chemical structures were emphasized. The important breakthrough of lignin-first pretreatment, catalytic lignin depolymerization, and the high value products with possible benchmark with modern aromatics were reviewed with possible future targets. Possible retrofit of conventional petroleum refinery for lignin products were also introduced and hopefully paving a way to progressively migrate the industry towards carbon neutrality.
Collapse
Affiliation(s)
- Rabia Jalil Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Yin Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying Ji
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Huaimin Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Marzlan AA, Hussin ASM, Bourke P, Chaple S, Barroug S, Muhialdin BJ. Combination of Green Extraction Techniques and Essential Oils to Develop Active Packaging for Improving the Quality and Shelf Life for Chicken Meat. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anis Asyila Marzlan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Science, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland
| | - Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Soukaina Barroug
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Belal J Muhialdin
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
12
|
|
13
|
Monteiro VAC, da Silva KT, da Silva LRR, Mattos ALA, de Freitas RM, Mazzetto SE, Lomonaco D, Avelino F. Selective acid precipitation of Kraft lignin: a tool for tailored biobased additives for enhancing PVA films properties for packaging applications. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Rodrigues JS, Lima V, Araújo LCP, Botaro VR. Lignin Fractionation Methods: Can Lignin Fractions Be Separated in a True Industrial Process? Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jéssica S. Rodrigues
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Vitor Lima
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Luísa C. P. Araújo
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Vagner R. Botaro
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| |
Collapse
|
15
|
Wang YY, Scheidemantle B, Wyman CE, Cai CM, Ragauskas AJ. Polyurethanes Based on Unmodified and Refined Technical Lignins: Correlation between Molecular Structure and Material Properties. Biomacromolecules 2021; 22:2129-2136. [PMID: 33900737 DOI: 10.1021/acs.biomac.1c00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The structural complexity and robust intermolecular interactions have challenged the incorporation of technical lignin into value-added polymeric materials for decades. To study the correlation between lignin molecular structure and material properties of lignin-based polyurethanes, we applied co-solvent enhanced lignocellulosic fractionation pretreatment followed by sequential precipitation to produce three distinct lignin preparations with narrowly distributed (molecular weight dispersity <2) and comparatively low molecular weight (<1500 g/mol) from poplar biomass. Structural characterization indicated that these lignin preparations differed in average molecular chain length and stiffness as well as hydroxyl group distribution. Secondary hydroxyl group providers such as aliphatic diols and polyethers were incorporated as building blocks into the lignin-based polyurethanes to provide additional hydrogen capacity to improve the dispersion of lignin in the polyurethane network. The selected aliphatic diols and polyethers interacted with lignin molecules at different levels of strength depending on their molecular structure, and their impacts were ultimately reflected in the mechanical and thermal properties of the resulting lignin-based polyurethanes. The copolymerization of technical lignin with tailored structure and secondary hydroxyl providers could provide new strategies in formulating lignin-based/containing polyurethanes for various functional applications.
Collapse
Affiliation(s)
- Yun-Yan Wang
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Brent Scheidemantle
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, California 92507, United States.,The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charles E Wyman
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, California 92507, United States.,The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California 92521, United States
| | - Charles M Cai
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, California 92507, United States.,The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, Riverside, California 92521, United States
| | - Arthur J Ragauskas
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States.,The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
16
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani AE, Kumar G, Yang YH. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144429. [PMID: 33385808 DOI: 10.1016/j.scitotenv.2020.144429] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Biohydrogen is a clean and renewable source of energy. It can be produced by using technologies such as thermochemical, electrolysis, photoelectrochemical and biological, etc. Among these technologies, the biological method (dark fermentation) is considered more sustainable and ecofriendly. Dark fermentation involves anaerobic microbes which degrade carbohydrate rich substrate and produce hydrogen. Lignocellulosic biomass is an abundantly available raw material and can be utilized as an economic and renewable substrate for biohydrogen production. Although there are many hurdles, continuous advancements in lignocellulosic biomass pretreatment technology, microbial fermentation (mixed substrate and co-culture fermentation), the involvement of molecular biology techniques, and understanding of various factors (pH, T, addition of nanomaterials) effect on biohydrogen productivity and yield render this technology efficient and capable to meet future energy demands. Further integration of biohydrogen production technology with other products such as bio-alcohol, volatile fatty acids (VFAs), and methane have the potential to improve the efficiency and economics of the overall process. In this article, various methods used for lignocellulosic biomass pretreatment, technologies in trends to produce and improve biohydrogen production, a coproduction of other energy resources, and techno-economic analysis of biohydrogen production from lignocellulosic biomass are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill 171005, H.P, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Andhra Pradesh 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
17
|
Gómez-Cruz I, del Mar Contreras M, Romero I, Castro E. A biorefinery approach to obtain antioxidants, lignin and sugars from exhausted olive pomace. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Ajao O, Benali M, El Mehdi N. Experimental and computer aided solubility quantification of diverse lignins and performance prediction. Chem Commun (Camb) 2021; 57:1782-1785. [PMID: 33475102 DOI: 10.1039/d0cc04228e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trial-and-error approaches for lignin applications and new product development is resource intensive. By quantifying the solubility parameters for 45 different lignins encompassing all sources as well as existing commercial scale processes for their recovery, computer-based predictions of lignin solvent-based fractionation and compatibility with various polymers are now possible, paving a pathway for improved chemical analytics and industrial applications.
Collapse
Affiliation(s)
- Olumoye Ajao
- Natural Resources Canada, CanmetENERGY, P.O. Box 4800, Varennes, Quebec J3X 1S6, Canada.
| | | | | |
Collapse
|
19
|
Xue B, Yang Y, Tang R, Xue D, Sun Y, Li X. Efficient dissolution of lignin in novel ternary deep eutectic solvents and its application in polyurethane. Int J Biol Macromol 2020; 164:480-488. [DOI: 10.1016/j.ijbiomac.2020.07.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
|
20
|
Zhao ZM, Liu ZH, Pu Y, Meng X, Xu J, Yuan JS, Ragauskas AJ. Emerging Strategies for Modifying Lignin Chemistry to Enhance Biological Lignin Valorization. CHEMSUSCHEM 2020; 13:5423-5432. [PMID: 32750220 DOI: 10.1002/cssc.202001401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Biological lignin valorization represents a promising approach contributing to sustainable and economic biorefineries. The low level of valuable lignin-derived products remains a major challenge hindering the implementation of microbial lignin conversion. Lignin's properties play a significant role in determining the efficiency of lignin bioconversion. To date, despite significant progress in the development of biomass pretreatment, lignin fractionation, and fermentation over the last few decades, little efforts have gone into identifying the ideal lignin substrates for an efficient microbial metabolism. In this Minireview, emerging and state-of-the-art strategies for biomass pretreatment and lignin fractionation are summarized to elaborate their roles in modifying lignin structure for bioconversion. Fermentation strategies aimed at enhancing lignin depolymerization for microbial utilization are systematically reviewed as well. With an improved understanding of the ideal lignin structure elucidated by comprehensive metabolic pathways and/or big data analysis, modifying lignin chemistry could be more directional and effective. Ultimately, together with the progress of fermentation process optimization, biological lignin valorization will become more competitive in biorefineries.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Controlling and Wastes Recycling, Inner Mongolia University, Hohhot, 010021, P. R. China
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Zhi-Hua Liu
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Jifei Xu
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Controlling and Wastes Recycling, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Joshua S Yuan
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| |
Collapse
|
21
|
Xu J, Li C, Dai L, Xu C, Zhong Y, Yu F, Si C. Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. CHEMSUSCHEM 2020; 13:4284-4295. [PMID: 32672385 DOI: 10.1002/cssc.202001491] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Indexed: 05/12/2023]
Abstract
Lignin, as the most abundant aromatic biopolymer in nature, has attracted great attention due to the complexity and richness of its functional groups for value-added applications. The yield of production of lignin and the reactivity of prepared lignin are very important to guarantee the study and development of lignin-based chemicals and materials. Various fractionation techniques have been developed to obtain high yield and relatively high-purity lignin as well as carbohydrates (hemicelluloses and celluloses) and to reduce the condensed and degraded nature of conventional biorefinery lignin. Herein, novel and efficient biomass fractionation and lignin fractionation towards lignin valorization are summarized and discussed.
Collapse
Affiliation(s)
- Jiayun Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi, Turku FI, 20500, Finland
| | - Chenyu Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, No. 1 at Dali road, Tianjin, 300050, P. R. China
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi, Turku FI, 20500, Finland
| | - Yongda Zhong
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| | - Faxin Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| |
Collapse
|
22
|
Liao X, Zhang WH, Ge Q. A cage-like supramolecular draw solute that promotes forward osmosis for wastewater remediation and source recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Meng X, Scheidemantle B, Li M, Wang YY, Zhao X, Toro-González M, Singh P, Pu Y, Wyman CE, Ozcan S, Cai CM, Ragauskas AJ. Synthesis, Characterization, and Utilization of a Lignin-Based Adsorbent for Effective Removal of Azo Dye from Aqueous Solution. ACS OMEGA 2020; 5:2865-2877. [PMID: 32095708 PMCID: PMC7033985 DOI: 10.1021/acsomega.9b03717] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/23/2020] [Indexed: 05/06/2023]
Abstract
How to effectively remove toxic dyes from the industrial wastewater using a green low-cost lignocellulose-based adsorbent, such as lignin, has become a topic of great interest but remains quite challenging. In this study, cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment and Mannich reaction were combined to generate an aminated CELF lignin which is subsequently applied for removal of methylene blue and direct blue (DB) 1 dye from aqueous solution. 31P NMR was used to track the degree of amination, and an orthogonal design was applied to determine the relationship between the extent of amination and reaction parameters. The physicochemical, morphological, and thermal properties of the aminated CELF lignin were characterized to confirm the successful grafting of diethylenetriamine onto the lignin. The aminated CELF lignin proved to be an effective azo dye-adsorbent, demonstrating considerably enhanced dye decolorization, especially toward DB 1 dye (>90%). It had a maximum adsorption capacity of DB 1 dye of 502.7 mg/g, and the kinetic study suggested the adsorption process conformed to a pseudo-second-order kinetic model. The isotherm results also showed that the modified lignin-based adsorbent exhibited monolayer adsorption. The adsorbent properties were mainly attributed to the incorporated amine functionalities as well as the increased specific surface area of the aminated CELF lignin.
Collapse
Affiliation(s)
- Xianzhi Meng
- Department
of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- E-mail: (X.M.)
| | - Brent Scheidemantle
- Center
of Environmental and Research Technology (CE-CERT), University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Mi Li
- Department
of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Yun-yan Wang
- Department
of Forestry, Wildlife, and Fisheries; Center for Renewable Carbon, The University of Tennessee Knoxville, Institute of
Agriculture, Knoxville, Tennessee 37996, United States
| | - Xianhui Zhao
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Miguel Toro-González
- Isotope
and Fuel Cycle Technology Division, Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Priyanka Singh
- Center
of Environmental and Research Technology (CE-CERT), University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Yunqiao Pu
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charles E. Wyman
- Center
of Environmental and Research Technology (CE-CERT), University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Soydan Ozcan
- Department
of Mechanical, Aerospace, Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Manufacturing
Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, Knoxville, Tennessee 37932, United States
| | - Charles M. Cai
- Center
of Environmental and Research Technology (CE-CERT), University of California, Riverside, California 92507, United States
- Department
of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Arthur J. Ragauskas
- Department
of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Forestry, Wildlife, and Fisheries; Center for Renewable Carbon, The University of Tennessee Knoxville, Institute of
Agriculture, Knoxville, Tennessee 37996, United States
- E-mail: (A.J.R.)
| |
Collapse
|
24
|
Li J, Zhang W, Xu S, Hu C. The Roles of H 2O/Tetrahydrofuran System in Lignocellulose Valorization. Front Chem 2020; 8:70. [PMID: 32117893 PMCID: PMC7020750 DOI: 10.3389/fchem.2020.00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Lignocellulosic biomass as a potential alternative to fossil resource for the production of valuable chemicals and fuels has attracted substantial attention, while reducing the recalcitrance of lignocellulosic biomass is still challenging due to the complex and cross-linking structure of biomass. Solvent system plays important roles in the pretreatment of lignocellulose, enabling the transformation of solid biomass to liquid fluid with better mass and heat transfer, as well as in the selective formation of target products. In particular, H2O/tetrahydrofuran (H2O/THF) system has recently been widely applied in lignocellulose valorization, which has been proved to exhibit outstanding efficiency for the conversion of lignocellulose, solubilization of the intermediates and products, and shifting reaction equilibrium, thereby significantly improving the yield and selectivity of target products, as well as the full utilization of lignocellulose. In addition, THF shows low toxicity, and is known as a renewable solvent which can be produced from bio-derived chemicals. Herein, this review concentrates on the advances of H2O/THF system in lignocellulose valorization in recent years. Several aspects relative to the roles of H2O/THF system are discussed as follows: the pretreatment of lignin, conversion of hemicellulose and cellulose components in lignocelluloses, and the promoting formation of valuable chemicals like furfural, 5-hydroxymethyl furfural (HMF), levulinic acid, and so on, as well as the inhibiting role in humins formation. This review might provide useful information for the design of effective solvent system in full utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
| | | | | | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Ramakoti B, Dhanagopal H, Deepa K, Rajesh M, Ramaswamy S, Tamilarasan K. Solvent fractionation of organosolv lignin to improve lignin homogeneity: Structural characterization. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Meng X, Crestini C, Ben H, Hao N, Pu Y, Ragauskas AJ, Argyropoulos DS. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat Protoc 2019; 14:2627-2647. [PMID: 31391578 DOI: 10.1038/s41596-019-0191-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30-120 min).
Collapse
Affiliation(s)
- Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Claudia Crestini
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Venice, Italy.
| | - Haoxi Ben
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Naijia Hao
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA. .,Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA. .,Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| | - Dimitris S Argyropoulos
- Departments of Chemistry and Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
27
|
Ma Y, Xia Q, Liu Y, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H. Production of Nanocellulose Using Hydrated Deep Eutectic Solvent Combined with Ultrasonic Treatment. ACS OMEGA 2019; 4:8539-8547. [PMID: 31459944 PMCID: PMC6648160 DOI: 10.1021/acsomega.9b00519] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/06/2019] [Indexed: 05/24/2023]
Abstract
Pretreatment approaches are highly desirable to improve the commercial viability of nanocellulose production. In this study, we propose a new approach to mass produce nanocellulose using a hydrated choline chloride/oxalic acid dihydrate deep eutectic solvent (DES) combined with an ultrasonic process. The hydrogen bond acidity, polarizability, and solvation effect reflected by the Kamlet-Taft solvatochromic parameters did not decrease even after the addition of large amounts of water. Instead, the water facilitated the ionization of H+ and delocalization of Cl- ions, forming new Cl-H2O ionic hydrogen and oxalate-H2O hydrogen bonds, which are critical for improving the solvent characteristics. One pass of kraft pulp through the hydrated DESs (80 °C, 1 h) was sufficient to dissociate the kraft pulp into cellulose nanofibers or cellulose nanocrystals using an 800 W ultrasonic treatment. The present study represents an alternative route for the kraft pulp pretreatment and the large-scale production of nanocellulose.
Collapse
Affiliation(s)
| | | | - Yongzhuang Liu
- Key Laboratory of Bio-based
Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Wenshuai Chen
- Key Laboratory of Bio-based
Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based
Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qingwen Wang
- Key Laboratory of Bio-based
Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yixing Liu
- Key Laboratory of Bio-based
Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based
Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based
Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| |
Collapse
|
28
|
Dąbkowska K, Alvarado-Morales M, Kuglarz M, Angelidaki I. Miscanthus straw as substrate for biosuccinic acid production: Focusing on pretreatment and downstream processing. BIORESOURCE TECHNOLOGY 2019; 278:82-91. [PMID: 30684727 DOI: 10.1016/j.biortech.2019.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The main aim of this study was to optimize pretreatment strategies of Miscanthus × giganteus for biosuccinic acid production. A successful pretreatment with organosolv method (80% w/w of glycerol, 1.25% of H2SO4), prevented sugars conversion to furfurals and organic acids, and thereby resulted in high sugar recovery (glucan > 98%, xylan > 91%) and biomass delignification (60%). Pretreated biomass was subjected to hydrolysis with various cellulolytic enzyme cocktails (Viscozyme® L, Carezyme 1000L®, β-Glucanase, Cellic® CTec2, Cellic® HTec2). The most effective enzymes mixture composed of Cellic® CTec2 (10% w/w), β-Glucanase (5% w/w) and Cellic® HTec2 (1% w/w) resulted in high glucose (93.1%) and xylose (69.2%) yields after glycerol-based pretreatment. Succinic acid yield of 75-82% was obtained after hydrolysates fermentation, using Actinobacillus succinogenes 130Z. Finally a successful downstream concept for succinic acid purification was proposed. The succinic acid recovery with high purity (>98%) was developed.
Collapse
Affiliation(s)
- Katarzyna Dąbkowska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Waryńskiego 1, Poland
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800 Lyngby, Denmark
| | - Mariusz Kuglarz
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800 Lyngby, Denmark
| |
Collapse
|