1
|
Jiang W, Wei H, Xu Z, Kang J, Wang S, Liu D, Ren Y, Ngo HH, Guo W, Ye Y. Lighting promotes sulfate removal and improves microbial community stability in upflow anaerobic sludge bed reactors under low ratio of chemical oxygen demand to sulfate. BIORESOURCE TECHNOLOGY 2025; 428:132473. [PMID: 40174651 DOI: 10.1016/j.biortech.2025.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
The anaerobic treatment of sulfur-laden organic wastewater is common; however, competition between sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) can result in low removal efficiencies and unstable systems. Photosynthetic bacteria, capable of oxidizing reduced sulfides, can alleviate sulfide toxicity to microorganisms, thereby enhancing sulfate removal. This study compared the performance of anaerobic reactors under identical organic loads but with varying light conditions and different carbon-to-sulfur (C/S) ratios. The illuminated reactors outperformed the non-illuminated ones, achieving sulfate removal rates exceeding 85% when the light wavelength was optimized. Sludge analysis revealed that the illuminated group had larger particle sizes and higher protein and polysaccharide contents compared to the non-illuminated group. These findings suggest that light exposure enhances the removal of sulfate and organic matter, mitigates competitive inhibition, and promotes synergistic interactions among microbial populations, offering valuable insights for treating sulfate-rich wastewater using photosynthetic bacteria.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haoyi Wei
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi Xu
- CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China
| | - Jianxiong Kang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Songlin Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongqi Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongzheng Ren
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuanyao Ye
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Shu W, Du B, Wu G. Strategies for enriching targeted sulfate-reducing bacteria and revealing their microbial interactions in anaerobic digestion ecosystems. WATER RESEARCH 2025; 270:122842. [PMID: 39615201 DOI: 10.1016/j.watres.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 01/06/2025]
Abstract
Deciphering relationships between sulfate-reducing bacteria (SRB) and other microorganisms is crucial for stable operation of anaerobic digestion systems when treating sulfate-containing wastewater. However, few studies have differentiated the incomplete oxidizing SRB (IO-SRB) and complete oxidizing SRB (CO-SRB) in anaerobic digestion ecosystems. Four ethanol-fed bioreactors were operated under two operational modes (sequencing batch reactor, SBR; and continuous-flow reactor, CFR) and two chemical oxygen demand (COD) to sulfate ratios (1 and 2) to systematically explore strategies for enriching IO-SRB and/or CO-SRB and their microbial interactions with other microorganisms. Compared to SBRs, CFRs could enhance sulfate removal and demonstrated higher microbial activities in sulfate and ethanol degradation. IO-SRB competed with ethanol oxidizing bacteria in all reactors, and IO-SRB's contribution to ethanol degradation increased from 62.9 %-67.1 % to 69.0 %-82.1 % as the COD/sulfate ratio decreased from 2 to 1. Moreover, CO-SRB competed acetotrophic methanogens exclusively in CFRs, as CO-SRB could not be efficiently enriched in SBRs. Low COD/sulfate ratios facilitated the enrichment of Desulfococcus (CO-SRB), and the CFR operational mode further strengthened its enrichment. Additionally, hydrogenotrophic SRB outperformed hydrogenotrophic methanogens in all four reactors. In general, IO-SRB and CO-SRB possessed distinct microbial interactions with methanogens, with potential syntrophic relationships between IO-SRB and acetotrophic methanogens while competitive relationships between CO-SRB and acetotrophic methanogens.
Collapse
Affiliation(s)
- Wenhui Shu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Bang Du
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
3
|
Yang Q, Li J, Ma L, Du X. Impact and mechanism of polyethylene terephthalate microplastics with different particle sizes on sludge anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125494. [PMID: 39653267 DOI: 10.1016/j.envpol.2024.125494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Municipal wastewater treatment plants (WWTPs) are important sinks for microplastics, and the vast majority of microplastics entering WWTPs are trapped in residual sludge. In order to investigate the effect of microplastics on anaerobic digestion of sludge, polyethylene terephthalate (PET) microplastics with common particle size and physical aging were selected to conduct a comparative study. Regardless of aging, the addition of 300 and 500 μm PET microplastics inhibited methane production, with their cumulative methane production reduced by 11.3-24.9% compared to the control group. In contrast, when 100 μm microplastics were added, the raw PET promoted methane production, yielding 337 L CH4/kg VS, while the aged experimental group showed similar yields to the control group. For the 800 μm microplastics treatment group, aged microplastics facilitated methane production while raw microplastics inhibited it, with methane production of 91.0% and 111% of the control group, respectively. The effects were also investigated by model fitting, stage discussion, and microbial community structure analysis. The results discovered that the main rate-limiting steps of adding microplastics with smaller or larger particle sizes (100, 800 μm) to methane production were solubilization and hydrolysis, while the main rate-limiting step of microplastics with medium particle sizes (300, 500 μm) was methanogenesis. Physically aged PET microplastics with smaller or larger sizes showed a more significant effect on methane production. Furthermore, PET microplastics altered the microbial community structure, shifting methanogens from acetotrophic pathways to hydrotrophic pathways. This study offers new insights into the performance analysis of sludge anaerobic digestion in practical WWTPs.
Collapse
Affiliation(s)
- Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Xue Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
4
|
Huang Q, Liu Y, Dhar BR. Deciphering the microbial interactions and metabolic shifts at different COD/sulfate ratios in electro-assisted anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135801. [PMID: 39270585 DOI: 10.1016/j.jhazmat.2024.135801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
This research aims to investigate the influence of sulfate on the performance of microbial electrolysis cell-assisted anaerobic digester (MEC-AD) across varying sulfate conditions, including no sulfate and reduced COD/sulfate ratios from 20 to 1. The principal results indicate a gradual decline in methane yield in the MEC-AD from 78.7 ± 2.3 % under no sulfate conditions to 56.2 ± 2.0 % at a COD/sulfate ratio of 1, contrasting with a more substantial decrease in the control reactor (69.9 ± 3.6 % to 32.8 ± 1.5 %). The MEC-AD reactor exhibits heightened resilience to sulfide toxicity, showcasing higher specific methanogenic activities. Key findings suggest that the MEC-AD reactor maintains lower free sulfide concentrations, attributed to its higher pH and potential anodic sulfide oxidation. Additionally, the study reveals the promotion of syntrophic partnerships in the MEC-AD reactor, particularly between sulfate-reducing bacteria (SRB) such as Desulfovibrio, Desulfomicrobium, and Desulfobulbus, and other microbial groups, including hydrogenotrophic methanogens and electroactive bacteria. The integration of these mechanisms highlights the MEC-AD reactor's ability to effectively mitigate sulfate-induced challenges and enhance overall anaerobic digestion performance. This study presents a significant step forward in the development of resilient anaerobic digestion systems capable of efficiently handling sulfate stress.
Collapse
Affiliation(s)
- Qi Huang
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada; School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
5
|
Li J, Feng Y, Wang D, Li Y, Cai M, Tian Y, Pan Y, Chen X, Zhang Q, Li A. Optimization of sulfate reduction and methanogenesis via phase separation in a two-phase internal circulation reactor for the treatment of high-sulfate organic wastewater. WATER RESEARCH 2024; 260:121918. [PMID: 38896887 DOI: 10.1016/j.watres.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
To enhance the performance of the internal circulation (IC) reactor when treating high-sulfate organic wastewater, a laboratory-scale two-phase IC reactor with distinct phase separation capabilities was designed, and the sulfate reduction and methanogenesis processes were optimized by segregating the reactor into two specialized reaction zones. The results demonstrated that the first and second reaction areas of the two-phase IC reactor could be maintained at 4.5-6.0 and 7.5-8.5, respectively, turning them into the specialized phase for sulfate reduction and methanogenesis. Through phase separation, the two-phase IC reactor achieved a COD degradation and sulfate reduction efficiency of more than 80% when the influent sulfate concentration exceeded 5,000 mg/L, which were 32.32% and 16.04% higher than that before phase separation. Functional analyses indicated a greater activity of both the dissimilatory and assimilatory sulfate reduction pathways in the acidogenic phase, largely due to a rise in the relative abundance of the genera Desulfovibrio, Bacteroides, and Lacticaseibacillus, the primary carriers of sulfate reduction functional genes. In contrast, all the acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis pathways were inhibited in the acidogenic phase but thrived in the methanogenic phase, coinciding with shifts in the genus Methanothrix, which harbors the mcrA, mcrB, and mcrG genes essential for the final transformation step of all three methanogenesis pathways.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yifan Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Duanhao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minhui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yechao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xun Chen
- Yangtze River Innovation Center for Ecological Civilization, Nanjing 210019, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou, 362008, PR China.
| |
Collapse
|
6
|
Qiu Y, Zhang J, Tong YW, He Y. Reverse electron transfer: Novel anaerobic methanogenesis pathway regulated through exogenous CO 2 synergized with biochar. BIORESOURCE TECHNOLOGY 2024; 401:130741. [PMID: 38670292 DOI: 10.1016/j.biortech.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Acid accumulation and carbon emission are two major challenges in anaerobic digestion. Syntrophic consortia can employ reverse electron transfer (RET) to facilitate thermodynamically unfavorable redox reactions during acetogenesis. However, the potential mechanisms and regulatory methods of RET remain unclear. This study examines the regulatory mechanisms by which exogenous CO2 affects RET and demonstrates that biochar maximizes CO2 solubility at 25.8 mmol/L to enhance effects further. CO2 synergized with biochar significantly increases cumulative methane production and propionate degradation rate. From the bioenergetic perspective, CO2 decreases energy level to a maximum of -87 kJ/mol, strengthening the thermodynamic viability. The underlying mechanism can be attributed to RET promotion, as indicated by increased formate dehydrogenase and enrichment of H2/formate-producing bacteria with their partner Methanospirillum hungatei. Moreover, the 5 % 13CH4 and methane contribution result show that CO2 accomplishes directed methanogenesis. Overall, this investigation riches the roles of CO2 and biochar in AD surrounding RET.
Collapse
Affiliation(s)
- Yang Qiu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Zhou X, Fernández-Palacios E, Dorado AD, Lafuente J, Gamisans X, Gabriel D. The effect of slime accumulated in a long-term operating UASB using crude glycerol to treat S-rich wastewater. J Environ Sci (China) 2024; 135:353-366. [PMID: 37778810 DOI: 10.1016/j.jes.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 10/03/2023]
Abstract
An up-flow anaerobic sludge blanket (UASB) reactor targeting sulfate reduction was operated under a constant TOC/S-SO42- ratio of 1.5 ± 0.3 g C/g S for 639 days using crude glycerol as carbon source. A filamentous and fluffy flocculant material, namely slime-like substances (SLS), was gradually accumulated in the bioreactor after the cease of methanogenic activity. The accumulation of SLS was followed by a decrease in the removal efficiencies and a deterioration in the performance. Selected characteristics of SLS were investigated to explore the causes of its formation and the effect of SLS on the UASB performance. Results showed that glycerol fermentation and sulfate reduction processes taking place in the reactor were mainly accomplished in the bottom part of the UASB reactor, as the sludge concentration in the bottom was higher. The accumulation of SLS in the UASB reactor caused sludge flotation that further led to biomass washout, which decreased the sulfate and glycerol removal efficiencies. Batch activity tests performed with granular sludge (GS), slime-covered granular sludge (SCGS) and SLS showed that there was no difference between GS and SLS in the mechanism of glycerol fermentation and sulfate reduction. However, the specific sulfate reduction rate of GS was higher than that of SLS, while SLS showed a higher glycerol fermentation rate than that of GS. The different rates in GS and SLS were attributed to the higher relative abundances of fermentative microorganisms found in SLS and higher relative abundances of sulfate reducing bacteria (SRB) found in GS.
Collapse
Affiliation(s)
- Xudong Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eva Fernández-Palacios
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antoni D Dorado
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08242 Manresa, Spain
| | - Javier Lafuente
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08242 Manresa, Spain
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
8
|
Jung H, Yu H, Lee C. Direct interspecies electron transfer enables anaerobic oxidation of sulfide to elemental sulfur coupled with CO 2-reducing methanogenesis. iScience 2023; 26:107504. [PMID: 37636045 PMCID: PMC10448109 DOI: 10.1016/j.isci.2023.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Electric syntrophy between fatty acid oxidizers and methanogens through direct interspecies electron transfer (DIET) is essential for balancing acidogenesis and methanogenesis in anaerobic digestion. Promoting DIET using electrically conductive additives proved effective in enhancing methanogenesis; however, its possibility to affect other microbial redox reactions in methanogenic systems has been little studied. This study provides the first confirmation of the electro-syntrophic coupling of sulfide oxidation to S0 with CO2-reducing methanogenesis in sulfur-rich methanogenic cultures supplemented with conductive magnetite (100-700-nm particle size). The H2S content in biogas, initially exceeding 5000 ppmv, decreased to below 1 ppmv along with an accumulation of extracellular S0 (60-70 mg/L; initially <1 mg/L) at a magnetite dose of 20 mM Fe, while there were no significant changes in methane yield. A comprehensive polyphasic approach demonstrated that the S0 formation occurs through electro-syntrophic oxidation of sulfide coupled with CO2-reducing methanogenesis, involving Methanothrix as the dominant methanogen.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyeonjung Yu
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
9
|
Du J, Zhou X, Yin Q, Zuo J, Wu G. Revealing impacts of operational modes on anaerobic digestion systems coupling with sulfate reduction. BIORESOURCE TECHNOLOGY 2023:129431. [PMID: 37394044 DOI: 10.1016/j.biortech.2023.129431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Anaerobic digestion (AD) is promising for treating high-strength wastewater. However, the effect of operational parameters on microbial communities of AD with sulfate is not yet fully understood. To explore this, four reactors were operated under rapid- and slow-filling modes with different organic carbons. Reactors in the rapid-filling mode generally exhibited a fast kinetic property. For example, the degradation of ethanol was 4.6 times faster in ASBRER than in ASBRES, and the degradation of acetate was 11.2 times faster in ASBRAR than in ASBRAS. Nevertheless, reactors in the slow-filling mode could mitigate propionate accumulation when using ethanol as organic carbon. Taxonomic and functional analysis further supported that rapid- and slow-filling modes were suitable for the growth of r-strategists (e.g., Desulfomicrobium) and K-strategists (e.g., Geobacter), respectively. Overall, this study provides valuable insights into microbial interactions of AD processes with sulfate through the application of the r/K selection theory.
Collapse
Affiliation(s)
- Jin Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xingzhao Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, Guangdong, China
| | - Jiane Zuo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
10
|
Puigserver D, Herrero J, Carmona JM. Mobilization pilot test of PCE sources in the transition zone to aquitards by combining mZVI and biostimulation with lactic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162751. [PMID: 36921871 DOI: 10.1016/j.scitotenv.2023.162751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 03/05/2023] [Indexed: 05/06/2023]
Abstract
The potential toxic and carcinogenic effects of chlorinated solvents in groundwater on human health and aquatic ecosystems require very effective remediation strategies of contaminated groundwater to achieve the low legal cleanup targets required. The transition zones between aquifers and bottom aquitards occur mainly in prograding alluvial fan geological contexts. Hence, they are very frequent from a hydrogeological point of view. The transition zone consists of numerous thin layers of fine to coarse-grained clastic fragments (e.g., medium sands and gravels), which alternate with fine-grained materials (clays and silts). When the transition zones are affected by DNAPL spills, free-phase pools accumulate on the less conductive layers. Owing to the low overall conductivity of this zone, the pools are very recalcitrant. Little field research has been done on transition zone remediation techniques. Injection of iron microparticles has the disadvantage of the limited accessibility of this reagent to reach the entire source of contamination. Biostimulation of indigenous microorganisms in the medium has the disadvantage that few of the microorganisms are capable of complete biodegradation to total mineralization of the parent contaminant and metabolites. A field pilot test was conducted at a site where a transition zone existed in which DNAPL pools of PCE had accumulated. In particular, the interface with the bottom aquitard was where PCE concentrations were the highest. In this pilot test, a combined strategy using ZVI in microparticles and biostimulation with lactate in the form of lactic acid was conducted. Throughout the test it was found that the interdependence of the coupled biotic and abiotic processes generated synergies between these processes. This resulted in a greater degradation of the PCE and its transformation products. With the combination of the two techniques, the mobilization of the contaminant source of PCE was extremely effective.
Collapse
Affiliation(s)
- Diana Puigserver
- Department of Mineralogy, Petrology and Applied Geology. Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), Serra Húnter Tenure-elegible Lecturer, C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - Jofre Herrero
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - José M Carmona
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| |
Collapse
|
11
|
Wang Y, Gao Y, Hussain A, Lee HS. Optimization of biofilm conductance measurement with two-electrode microbial electrochemical cells (MECs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159577. [PMID: 36283518 DOI: 10.1016/j.scitotenv.2022.159577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
This study was conducted to develop a standardized and consistent method for biofilm conductance measurement for an improved comprehension of extracellular electron transfer. Biofilm conductance (2.12 ± 0.25 × 10-4 S) with and without a fixed anode potential did not show significant difference. The conductance showed a sigmoidal relationship with anode potential. The current-voltage profile of the tested biofilm at applied voltage larger than 100 mV showed deviation from Ohm's law. Up to 69% decrease in biofilm conductance and deviation from Ohm's law were observed in the current-voltage profile when the measurement time increased. By choosing the voltage range (0- 100 mV) and step (25 mV), measurement time (100-s at each voltage step), and anode control mode, these operation settings were found more suitable for consistent and accurate biofilm conductance measurement in the 2-Au MEC system. This represents the first study that comprehensively evaluated the environmental and instrumental parameters for biofilm conductance measurement.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yaohuan Gao
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Abid Hussain
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Institute for Environmental and Climate Technology, Korea Institute of Energy Technology, Naju-si, Jeollanam-do, Republic of Korea.
| |
Collapse
|
12
|
Yongchao Z, Lei T, Wenming Z, Yiping Z, Lei F, Tuqiao Z. Iron carbon particle dosing for odor control in sewers: Laboratory tests. ENVIRONMENTAL RESEARCH 2023; 216:114476. [PMID: 36202246 DOI: 10.1016/j.envres.2022.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Treatment of malodor in the sewer system is a priority in many municipalities for human health concerns, sewer pipe corrosion prevention. In this study, the removal effects of iron-carbon (Fe-C) particles on the inhibition of sulfide in the liquid phase, as well as hydrogen sulfide (H2S) and methyl mercaptan (MeSH) in the headspace were investigated using laboratory-scale reactors simulating gravity-flow sewer system. The results indicated that the sulfide in the liquid phase can be reduced from 15.1 to 16.5 mg S/L to 0.05 and 0.14 mg S/L after 70 g/L and 50 g/L Fe-C particles dosing. The flux of H2S and MeSH in the headspace was also inhibited, and its flux decreased by up to 99%. Meanwhile, the microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in the sediment surface and water were also analyzed, and the results revealed that the relative abundance of SRB in the water and sediment surface was inhibited greatly after adding Fe-C particles, especially for Sulfurospirillum, Clostridium, and Desulfovibrio, while Fe-C particles promoted the growth of SOB. Moreover, the surface deposition was collected and analyzed through X-ray photoelectron spectroscopy (XPS), and the results indicated that sulfide can be removed by co-precipitation with ferrous ions formed through micro-electrolysis of Fe-C. This study provides a new approach to control the in-situ odor pollution for sewage systems.
Collapse
Affiliation(s)
- Zhou Yongchao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Tang Lei
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Wenming
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zhang Yiping
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Fang Lei
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China.
| | - Zhang Tuqiao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Shi K, Cheng W, Jiang Q, Xue J, Qiao Y, Cheng D. Insight of the bio-cathode biofilm construction in microbial electrolysis cell dealing with sulfate-containing wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127695. [PMID: 35905879 DOI: 10.1016/j.biortech.2022.127695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Signaling molecules are useful in biofilm formation, but the mechanism for biofilm construction still needs to be explored. In this study, a signaling molecule, N-butyryl-l-Homoserine lactone (C4-HSL), was supplied to enhance the construction of the sulfate-reducing bacteria (SRB) bio-cathode biofilm in microbial electrolysis cell (MEC). The sulfate reduction efficiency was more than 90% in less time under the system with C4-HSL addition. The analysis of SRB bio-cathode biofilms indicated that the activity, distribution, microbial population, and secretion of extracellular polymers prompted by C4-HSL, which accelerate the sulfate reduction, in particular for the assimilatory sulfate reduction pathway. Specifically, the relative abundance of acidogenic fermentation bacteria increased, and Desulfovibrio was co-metabolized with acidogenic fermentation bacteria. This knowledge will help to reveal the potential of signaling molecules to enhance the SRB bio-cathode biofilm MEC construction and improve the performance of treating sulfate-containing wastewater.
Collapse
Affiliation(s)
- Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Weimin Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology Qingdao, Shandong 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology Qingdao, Shandong 266590, China.
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology Qingdao, Shandong 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
14
|
Wu X, Zhou Y, Liang M, Lu X, Chen G, Zan F. Insights into the role of biochar on the acidogenic process and microbial pathways in a granular sulfate-reducing up-flow sludge bed reactor. BIORESOURCE TECHNOLOGY 2022; 355:127254. [PMID: 35525408 DOI: 10.1016/j.biortech.2022.127254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
In this study, the effect of biochar on sulfate reduction and anaerobic acidogenic process was explored in a granular sulfate-reducing up-flow sludge bed reactor in both long-term operation and batch tests. Both bioreactors had a high sulfate reduction efficiency of over 95% during the long-term operation, while the reactor with biochar addition showed higher sulfate reduction efficiency and stronger robustness against volatile fatty acids accumulation with a higher organic loading and sulfate loading rate. Batch tests showed that adding biochar significantly lessened the lag phase of the sulfate-reducing process, accelerated the adaption of acidogens, and facilitated both production and utilization of volatile fatty acids. The microbial pathways proved that biochar could regulate the acidification fermentation pathway and facilitate the enrichment of assimilative desulfurization bacteria. Overall, this study revealed that the acidogenic sulfate-reducing metabolic pathway could be enhanced by biochar, offering a potential application for effective sulfate-laden wastewater treatment.
Collapse
Affiliation(s)
- Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Yawu Zhou
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Muxiang Liang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Huang J, Zeng C, Luo H, Bai J, Liu G, Zhang R. Enhanced sulfur recovery and sulfate reduction using single-chamber bioelectrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153789. [PMID: 35150675 DOI: 10.1016/j.scitotenv.2022.153789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to investigate the feasibility of sulfate removal and elemental sulfur (S0) recovery in the single-chamber bioelectrochemical system (S-BES). The performance of S-BES was compared with that of dual-chamber bioelectrochemical system (D-BES). The S-BES was constructed with graphite felt as the anode and graphite brush as the cathode. The D-BES was constructed with proton exchange membrane as the separator between anode and cathode chambers. With an applied voltage of 1.0 V and 1 g/L acetate as the substrate, the S-BES and D-BES were tested by feeding with 480 mg/L SO42- in the phosphate buffer. Results showed that the maximum current density of 37.6 ± 4.5 mA/m3 was reached in the S-BES, which was higher than that in the D-BES (i.e., 22.2 ± 2.6 mA/m3). The SO42- removal was much higher in the S-BES than in the D-BES (99.5% vs. 57.2%). In the effluent and the electrodes of S-BES, S0 was identified with Raman and X- Ray diffraction analyses. The S0 recovery on the anode was 13.7 times of that on the cathode of S-BES, indicating that S0 was mainly produced on the anode. The measured total S0 recovery reached 67.5% in the S-BES. High relative abundance of Desulfurella (47.1%) and Geobacter (26.1%) dominated the community in the anode biofilm of S-BES. The excellent performance of S-BES may be attributed to the neutral pH in the solution and the synergistic reaction between the anode and cathode. Results from this study should be useful to enhance the S-BES applications in treating wastewater containing sulfate.
Collapse
Affiliation(s)
- Jing Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Cuiping Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiamin Bai
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Zhang G, Pang Y, Zhou Y, Zhang Y, Zhu DZ. Effect of dissolved oxygen on N 2O release in the sewer system during controlling hydrogen sulfide by nitrate dosing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151581. [PMID: 34774952 DOI: 10.1016/j.scitotenv.2021.151581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Nitrate dosing is commonly used for controlling hydrogen sulfide in sewer systems. However, it may potentially facilitate N2O emission due to the denitrification process promoted by nitrate addition. In this study, lab-scale sewer reactors were operated to investigate the impact of nitrate addition on N2O production in sewer systems. Results showed that the N2O flux even increased by six times with the addition of nitrate when dissolved oxygen (DO) in the wastewater exceeded 0.4 mg/L. Principal component analysis showed that the N2O concentration was notably affected by DO and oxidation-reduction potential (ORP) in the wastewater. Furthermore, it was founded that N2O flux had a strong linear relationship with the DO concentration in the batch test. The microbial analysis found that the nosZ possessing organisms decreased significantly in the micro-aerobic condition and the copy numbers of nosZ gene declined consequently. It indicated that the inhibition of N2O reduced to N2 was responsible for significant accumulation and emission of N2O in the micro-aerobic condition. Given the gravity sewers are not completely anaerobic, the DO concentration is ranged from 0.1 to 2.4 mg/L in gravity sewers with the partially filled flow. Therefore, more attention should be paid to the N2O production when nitrate dosing for hydrogen sulfide controlling in gravity sewers.
Collapse
Affiliation(s)
- Guijiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Yao Pang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China.
| | - Yiping Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - David Z Zhu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| |
Collapse
|
17
|
Song K, Senbati Y, Li L, Zhao X, Xue Y, Deng M. Distinctive Microbial Processes and Controlling Factors Related to Indirect N 2O Emission from Agricultural and Urban Rivers in Taihu Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4642-4654. [PMID: 35266386 DOI: 10.1021/acs.est.1c07980] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inland rivers are hotspots of anthropogenic indirect nitrous oxide (N2O) emissions, but the underlying microbial processes remain poorly understood. This study measured N2O fluxes from agricultural and urban rivers in Taihu watershed and investigated the microbial processes driving N2O production and consumption. The N2O fluxes were significantly higher in agricultural rivers (140.1 ± 89.1 μmol m-2 d-1) than in urban rivers (25.1 ± 27.0 μmol m-2 d-1) (p < 0.001). All wind-based models significantly underestimated N2O flux in urban rivers (p < 0.05) when using the Intergovernmental Panel on Climate Change method because they underestimated the N2O emission factor (EF5r). Wind speed and nitrate were the key factors affecting N2O fluxes in agricultural and urban rivers, respectively. NirK-type denitrifiers produced N2O in urban river water, while nirS-type denitrifiers consumed N2O in the sediments of all rivers. Co-occurrence network analysis indicated organics from Microcystis served as electron donors for denitrifiers (dominated by Flavobacterium) in water, while direct interspecies electron transfer between Thiobacillus and methanogens and between Dechloromonas and sulfate-reducing bacteria enhanced N2O reduction in sediments. This study advances our knowledge on the distinctive microbial processes that determine N2O emissions in inland rivers and illustrates the need to revise EF5r for N2O estimation in urban rivers.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeerken Senbati
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
18
|
Zhang G, Yang Z, Zhou Y, Zhu DZ, Zhang Y, Yu T, Shypanski A. Combination of nitrate and sodium nitroprusside dosing for sulfide control with low carbon source loss in sewer biofilm reactors. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127527. [PMID: 34879520 DOI: 10.1016/j.jhazmat.2021.127527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Nitrate has been widely used in sewer systems for sulfide control. However, significant chemical consumption and the loss of carbon source were observed in previous studies. To find a feasible and cost-effective control strategy of the sulfide control, the effect of nitrate combined with sodium nitroprusside (SNP) dosage strategy was tested in lab-scale sewer biofilm reactors. Results showed that nitrate and SNP were strongly synergistic, with 30 mg N/L nitrate and 20 mg/L SNP being sufficient for sulfide control in this study. While large amount of nitrate alone (100 mg N/L) is required to achieve the same sulfide control effectiveness. Meanwhile, the nitrate combined with SNP could reduce the organic carbon source loss by 80%. Additionally, the high-throughput sequencing results showed that the relative abundance of autotrophic, nitrate reducing-sulfide oxidizing bacteria genera (a-NR-SOB) such as Arcobacter and Sulfurimonas was increased by around 18%, while the heterotrophic, nitrate-reducing bacteria (hNRB) such as Thauera was substantially reduced. It demonstrated that the sulfide control was mainly due to the a-NR-SOB activity under the nitrate and SNP dosing strategy. The microbial functional prediction further revealed that nitrate and SNP promoted the dissimilatory nitrate reduction process which utilizes sulfide as an effective electron donor. Moreover, economic assessment indicated that using the combination of nitrate and SNP for sulfide control in sewers would lower the chemical costs by approximately 35% compared with only nitrate addition.
Collapse
Affiliation(s)
- Guijiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zhi Yang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Yongchao Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - David Z Zhu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Yiping Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Adam Shypanski
- Drainage Planning, EPCOR Drainage Services, Edmonton, AB T5J 3A3, Canada
| |
Collapse
|
19
|
Wang L, Li H, Wang X, Liu X, Ma W, Zhou G, Liang Q, Lan H. GO/iron series systems enhancing the pH shock resistance of anaerobic systems for sulfate-containing organic wastewater treatment. RSC Adv 2022; 12:20983-20990. [PMID: 35919155 PMCID: PMC9301633 DOI: 10.1039/d2ra01616h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, the effect of pH shock during the treatment of sulfate-containing organic wastewater was investigated using an anaerobic fermentation system reinforced with graphene oxide (GO)/iron series systems. The results show that the anaerobic system with the GO/iron series systems exhibited enhanced resistance to pH shock. Among them, the GO/Fe0 system had the strongest resistance to pH shock, the systems of GO/Fe3O4 and GO/Fe2O3 followed close behind, while the blank system performed the worst. After pH shock, the CODCr removal rate, SO42− removal rate, and gas production of the GO/Fe0 group were significantly improved compared with those of the control group by 51.0%, 65.3%, and 34.6%, respectively, while the accumulation of propionic acid was the lowest. Further, detailed microbial characterization revealed that the introduction of the GO/iron series systems was beneficial to the formation of more stable anaerobic co-metabolic flora in the system, and the relative abundance of Geobacter, Clostridium, Desulfobulbus and Desulfovibrio increased after acidic and alkaline shock. In this paper, we studied the pH shock resistance mechanism of GO/iron series from the perspectives of the treatment effect, changes in effluent pH and VFA, and microbial co-metabolic stability, providing a reference for the practical application.![]()
Collapse
Affiliation(s)
- Longyu Wang
- College of Environment and Safe Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haoyang Li
- College of Environment and Safe Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiao Wang
- College of Environment and Safe Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiaofeng Liu
- Shandong Linglong Tire Co., Ltd, Yantai 265406, China
| | - Weiqing Ma
- College of Environment and Safe Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Guangji Zhou
- College of Environment and Safe Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Qiaochu Liang
- College of Environment and Safe Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Chaofeng Steel Structure Group Co., Ltd, Xiaoshan Economic and Technological Development Zone, No. 38, Beitang Road, Hangzhou, Zhejiang, China
| | - Huixia Lan
- College of Environment and Safe Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
20
|
Cai MH, Luo G, Li J, Li WT, Li Y, Li AM. Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. CHEMOSPHERE 2021; 280:130937. [PMID: 34162109 DOI: 10.1016/j.chemosphere.2021.130937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Nitrate and sulfate often coexist in organic wastewater. In this study, an internal circulation anaerobic reactor was conducted to investigate the impact of nitrate on sulfate reduction. The results showed that sulfate reduction rate dropped from 78.4% to 41.4% at NO3- /SO42- ratios ranging from 0 to 1.03, largely attributed to the inactivity of acetate-utilizing sulfate-reducing bacteria (SRB) and preferential usage of nitrate of propionate-utilizing SRB. Meanwhile, high nitrate removal efficiency was maintained and COD removal efficiency increased with nitrate addition. Enhancement of propionate and butyrate degradation based on Modified Gompertz model and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis. Moreover, nitrate triggered the shift of microbial community and function. Twelve genera affiliated to Firmicutes, Bacteroidetes and Proteobacteria were identified as keystone genera via network analysis, which kept functional stability of the bacterial community responding to nitrate stress. Increased nitrate inhibited Desulfovibrio, but promoted the growth of Desulforhabdus. Both the predicted functional genes associated with assimilatory sulfate reduction pathway (cysC and cysNC) and dissimilatory sulfate reduction pathway (aprA, aprB, dsrA and dsrB) exhibited negative relationship with nitrate addition.
Collapse
Affiliation(s)
- Min-Hui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Gan Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Liu Y, Li X, Wu S, Tan Z, Yang C. Enhancing anaerobic digestion process with addition of conductive materials. CHEMOSPHERE 2021; 278:130449. [PMID: 34126684 DOI: 10.1016/j.chemosphere.2021.130449] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is widely used for the treatment of wastewater for its low costs and bioenergy production, but the performances of anaerobic digestion often need improving in practical applications. The addition of conductive materials could lead to direct interspecies electron transfer (DIET) among the anaerobic microorganisms, and consequently enhance the efficiencies of anaerobic digestion. In this paper, the effects of DIET via conductive materials on chemical organic demand (COD) removal, volatile fatty acid (VFA) consumption and methane production were reviewed. The reports on the increase of conductive microorganisms due to the addition of conductive materials were discussed. Results regarding activities of microorganisms and morphology and properties of sludge were described and commented, and future research needs were also proposed which included better understanding of the roles of DIET in each step of anaerobic digestion, mechanisms of metabolism of pollutants in DIET-established systems and inhibition of excessive dosage of conductive materials.
Collapse
Affiliation(s)
- Yiwei Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Zhao Tan
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China.
| |
Collapse
|
22
|
Nogueira EW, Gouvêa de Godoi LA, Marques Yabuki LN, Brucha G, Zamariolli Damianovic MHR. Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor. BIORESOURCE TECHNOLOGY 2021; 330:124968. [PMID: 33744733 DOI: 10.1016/j.biortech.2021.124968] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The down flow structured bed bioreactor (DFSBR) was applied to treat synthetic acid mine drainage (AMD) to reduce sulfate, increase the pH and precipitate metals in solutions (Co, Cu, Fe, Mn, Ni and Zn) using vinasse as an electron donor for sulfate-reducing bacteria (SRB). DFSBR achieved sulfate removal efficiencies between 55 and 91%, removal of Co and Ni were obtained with efficiencies greater than 80%, while Fe, Zn, Cu and Mn were removed with average efficiencies of 70, 80, 73 and 60%, respectively. Sulfate reduction increased pH from moderately acidic to 6.7-7.5. Modelling data confirmed the experimental results and metal sulfide precipitation was the mainly responsible for metal removal. The main genera responsible for sulfate and metal reduction were Geobacter and Desulfovibrio while fermenters were Parabacteroides and Sulfurovum. Moreover, in syntrophism with SRB, they played an important role in the efficiency of metal and sulfate removal.
Collapse
Affiliation(s)
- Elis Watanabe Nogueira
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil.
| | - Leandro Augusto Gouvêa de Godoi
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil
| | - Lauren Nozomi Marques Yabuki
- Institute of Geosciences and Exact Sciences (IGCE), São Paulo State University (UNESP), Av. 24 A, 1515 - Bela Vista, 13506-900 Rio Claro, São Paulo, Brazil
| | - Gunther Brucha
- Environmental Microbiology Laboratory, Institute of Science and Technology, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999 (BR 267 Km 533) Cidade Universitária, Poços de Caldas, Minas Gerais, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil
| |
Collapse
|
23
|
Du Q, Mu Q, Wu G. Metagenomic and bioanalytical insights into quorum sensing of methanogens in anaerobic digestion systems with or without the addition of conductive filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144509. [PMID: 33373788 DOI: 10.1016/j.scitotenv.2020.144509] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Understanding microbial interactions in the methanogenesis system through quorum sensing (QS) is very important for system optimization. Known QS genes were collected and classified into seven groups based on the signal molecules, which were used for constructing a hierarchical quorum sensing database (QSDB). QSDB containing 39,981 QS genes of seven QS groups was constructed and QS genes were analyzed with QSDB. Methanogen genomes were aligned with QSDB and acyl-homoserine lactones (AHLs) system was predicted as the most probable QS system. This database was further applied to analyze QS in methanogens from two upflow anaerobic sludge blanket-anaerobic filter hybrid reactors with conductive filter (CFB) and nonconductive filter (SEP), and a control without filter (CON). The maximum COD degradation rates in CFB (722.2 ± 10.1 mg/L·h) was elevated by 42.9% compared to CON (505.4 ± 5.98 mg/L·h). Metagenomic sequencing revealed Methanosaeta, Methanobacterium, and Methanosarcina were dominant, and the abundances was 4.3 times higher in the sludge of CFB compared to CON. The overall abundance of QS genes was CFB > SEP > CON, and AHLs were the most abundant group of QS genes. The filI/filR system, a luxI/luxR homolog, was firstly detected in methanogens, showing a high abundance in the CFB (0.085%) compared to in the CON (0.058%). The concentration of AHL molecules in CFB biofilms (0.04%) was about four times that in the CON (0.01%). Syntrophobacter and Smithella were the two major syntrophic bacteria of methanogens, and their abundances were positively correlated with methanogens. In addition, Syntrophobacter and Smithella harbored QS RpfB (component of the diffusible signal factor system) and PDE (component of cyclic di-GMP system). This study provides useful guidance for deeply understanding of QS in anaerobic digestion systems.
Collapse
Affiliation(s)
- Qing Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guangxue Wu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
24
|
Lin X, Su C, Deng X, Wu S, Tang L, Li X, Liu J, Huang X. Influence of polyether sulfone microplastics and bisphenol A on anaerobic granular sludge: Performance evaluation and microbial community characterization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111318. [PMID: 32979806 DOI: 10.1016/j.ecoenv.2020.111318] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The retention of polyether sulfone (PES) and bisphenol A (BPA) in wastewater has received extensive attention. The effects of PES and BPA on the removal of organic matter by anaerobic granular sludge were investigated. We also analyzed the changes in the electron transport system and the effects on the composition of extracellular polymeric substances (EPS), as well as alternations of the microbial community in the anaerobic granular sludge. In the experimental groups which received BPA, the removal of the chemical oxygen demand (COD) were significantly suppressed, which an average removal efficiency of less than 65%, 30% lower than that of the control group. In the loosely-bound EPS (LB-EPS) excitation-emission matrix (EEM) spectra, the absorption peak of tryptophan disappeared when the BPA pollutants was added, which it was present in the control group without added pollutants. The addition of PES and BPA also affected protease, acetate kinase, and coenzyme F420 activities in the anaerobic granular sludge. Especially, the coenzyme F420 reduced from 0.0045 to 0.0017 μmol/L in the presence of PES and BPA. The relative abundance of Spirochaetes decreased in the presence of PES and BPA, while the relative abundance of Bacteroidetes increased from 12.98% to 22.87%. At the genus level, in the presence of PES and BPA, the relative abundance of Acinetobacter increased from 2.20% to 9.64% and Hydrogenophaga decreased sharply from 15.58% to 0.12%.
Collapse
Affiliation(s)
- Xumeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Shumin Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Jie Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
25
|
Li J, Liang Y, Miao Y, Wang D, Jia S, Liu CH. Metagenomic insights into aniline effects on microbial community and biological sulfate reduction pathways during anaerobic treatment of high-sulfate wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140537. [PMID: 32623173 DOI: 10.1016/j.scitotenv.2020.140537] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
For comprehensive insights into the change of sulfate reduction pathway responding to the toxic stress and the shift of microbial community and performance of sulfate reduction, we built a laboratory-scale expanded granular sludge bed reactor (EGSB) treating high-sulfate wastewater with elevated aniline concentrations from 0 to 480 mg/L. High-throughput sequencing and metagenomic approaches were applied to decipher the molecular mechanisms of sulfate reduction under aniline stress through taxonomic and functional profiles. The increasing aniline in the anaerobic system induced the accumulation of volatile fatty acids (VFA), further turned the bioreactor into acidification, which was the principal reason for the deterioration of system performance and finally resulted in the accumulation of toxic free sulfide. Moreover, aniline triggered the change of bacterial community and genes relating to sulfate reduction pathways. The increase of aniline from 0 to 320 mg/L enriched total sulfate-reducing bacteria (SRB), and the most abundant genus was Desulfomicrobium, accounting for 66.85-91.25% of total SRB. The assimilatory sulfate reduction pathway was obviously inhibited when aniline was over 160 mg/L, while genes associated with dissimilatory sulfate reduction pathways all exhibited an upward tendency with the increasing aniline content. The enrichment of aniline-resistant SRB (e.g. Desulfomicrobium) carrying genes associated with the dissimilatory sulfate reduction pathway also confirmed the underlying mechanism that sulfate reduction turned into dissimilation under high aniline condition. Taken together, these results comprehensively provided solid evidence for the effects of aniline on the biological sulfate reduction processes treating high-sulfate wastewater and the underlying molecular mechanisms which may highlight the important roles of SRB and related sulfate reduction genes during treatment.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Liang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Yin Q, Gu M, Hermanowicz SW, Hu H, Wu G. Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems. ENVIRONMENT INTERNATIONAL 2020; 138:105650. [PMID: 32182450 DOI: 10.1016/j.envint.2020.105650] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Interspecies electron transfer plays an important role in syntrophic methanogenesis. Direct interspecies electron transfer (DIET) between syntrophic oxidizers and methanogens via conductive pili has been only confirmed in some specific co-cultures. This study examined potential syntrophic cooperation via type IV pili and quorum sensing between widespread syntrophic bacteria and methanogens through a metagenomic analysis of 12 anaerobic sludge samples. We found that Methanosaeta and Methanosarcina, which are reported to have DIET ability, were dominant in most methanogenic samples. Putative conductive pili genes were found in some typical syntrophic bacteria, which has rarely been reported previously. The existence of diverse quorum-sensing genes suggested that various quorum-sensing systems might participate in the communication of anaerobic microorganisms. Specifically, the diffusible signal factor and 3'-5' cyclic diguanosine monophosphate related genes were mainly assigned to syntrophic bacteria. These results suggest that the combined regulation of these signals might be responsible for the biosynthesis of type IV pili and affect syntrophic interaction during methanogenesis. These novel results provide fresh evidence to support the widespread existence of DIET in anaerobic methanogenic systems; therefore, regulating the quorum-sensing system may promote syntrophic interaction.
Collapse
Affiliation(s)
- Qidong Yin
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, Guangdong, China
| | - Mengqi Gu
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Slawomir W Hermanowicz
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, Guangdong, China; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - Hongying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
27
|
Yuan Y, Cheng H, Chen F, Zhang Y, Xu X, Huang C, Chen C, Liu W, Ding C, Li Z, Chen T, Wang A. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor. ENVIRONMENT INTERNATIONAL 2020; 136:105503. [PMID: 32006760 DOI: 10.1016/j.envint.2020.105503] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) of organics is a challenging task under high-strength sulfate (SO42-) conditions. The generation of toxic sulfides by SO42--reducing bacteria (SRB) causes low methane (CH4) production. This study investigated the feasibility of alleviating sulfide inhibition and enhancing CH4 production by using an anaerobic reactor with built-in microbial electrolysis cell (MEC), namely ME-AD reactor. Compared to AD reactor, unionized H2S in the ME-AD reactor was sufficiently converted into ionized HS- due to the weak alkaline condition created via cathodic H2 production, which relieved the toxicity of unionized H2S to methanogenesis. Correspondingly, the CH4 production in the ME-AD system was 1.56 times higher than that in the AD reactor with alkaline-pH control and 3.03 times higher than that in the AD reactors (no external voltage and no electrodes) without alkaline-pH control. MEC increased the amount of substrates available for CH4-producing bacteria (MPB) to generate more CH4. Microbial community analysis indicated that hydrogentrophic MPB (e.g. Methanosphaera) and acetotrophic MPB (e.g. Methanosaeta) participated in the two major pathways of CH4 formation were successfully enriched in the cathode biofilm and suspended sludge of the ME-AD system. Economic revenue from increased CH4 production totally covered the cost of input electricity. Integration of MEC with AD could be an attractive technology to alleviate sulfide inhibition and enhance CH4 production from AD of organics under SO42--rich condition.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiqian Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
28
|
Li J, Cai MH, Miao Y, Luo G, Li WT, Li Y, Li AM. Bacterial community structure and predicted function in an acidogenic sulfate-reducing reactor: Effect of organic carbon to sulfate ratios. BIORESOURCE TECHNOLOGY 2019; 293:122020. [PMID: 31470231 DOI: 10.1016/j.biortech.2019.122020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
A lab-scale acidogenic sulfate-reducing reactor with N2 stripping was continuously operated to uncover its microbial mechanism treating highly sulfate-containing organic wastewaters. Results showed that sulfate reduction efficiency decreased with the influent COD/sulfate ratios. Microbial community analysis showed that VFA accumulation mainly caused by the predominance of fermentative bacteria including Streptococcus and Oceanotoga. Genus Desulfovibrio was the most predominant SRB and enriched at low influent COD/sulfate ratios. Although Bifidobacterium, Atopobium, Wohlfahrtiimonas, Dysgonomonas etc. had low average abundance, they were identified keystone genera by the co-occurrence network analysis. The functions of the microbial community were not insignificantly influenced by COD/sulfate ratios. All predicted functional genes involved in dissimilatory sulfate reduction reached their maximum abundances at influent COD/sulfate ratio of 1.5, while the assimilatory sulfate reduction was favored at the COD/sulfate ratio lower than 2.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min-Hui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Miao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Gan Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|