1
|
Farouk SM, Tayeb AM, Abdel-Hamid SMS, Osman RM. Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12722-12747. [PMID: 38253825 PMCID: PMC10881653 DOI: 10.1007/s11356-024-32027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Biodiesel, a renewable and sustainable alternative to fossil fuels, has garnered significant attention as a potential solution to the growing energy crisis and environmental concerns. The review commences with a thorough examination of feedstock selection and preparation, emphasizing the critical role of feedstock quality in ensuring optimal biodiesel production efficiency and quality. Next, it delves into the advancements in biodiesel applications, highlighting its versatility and potential to reduce greenhouse gas emissions and dependence on fossil fuels. The heart of the review focuses on transesterification, the key process in biodiesel production. It provides an in-depth analysis of various catalysts, including homogeneous, heterogeneous, enzyme-based, and nanomaterial catalysts, exploring their distinct characteristics and behavior during transesterification. The review also sheds light on the transesterification reaction mechanism and kinetics, emphasizing the importance of kinetic modeling in process optimization. Recent developments in biodiesel production, including feedstock selection, process optimization, and sustainability, are discussed, along with the challenges related to engine performance, emissions, and compatibility that hinder wider biodiesel adoption. The review concludes by emphasizing the need for ongoing research, development, and collaboration among academia, industry, and policymakers to address the challenges and pursue further research in biodiesel production. It outlines specific recommendations for future research, paving the way for the widespread adoption of biodiesel as a renewable energy source and fostering a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Sabah Mohamed Farouk
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EA&EAT), affiliated to the Ministry of Military Production, Km. 3 Cairo Belbeis Desert Rd., Cairo Governorate, 3066, Egypt.
| | - Aghareed M Tayeb
- Faculty of Engineering, Minia University, Misr Aswan Agricultural Rd., EL MAHATTA, Menia Governorate, 2431384, Egypt
| | - Shereen M S Abdel-Hamid
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EA&EAT), affiliated to the Ministry of Military Production, Km. 3 Cairo Belbeis Desert Rd., Cairo Governorate, 3066, Egypt
| | - Randa M Osman
- Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), 33 El Bohouth St., Dokki, 12622, Giza Governorate, Egypt
| |
Collapse
|
2
|
Gengiah K, Rajendran N, Al-Ghanim KA, Govindarajan M, Gurunathan B. Process and technoeconomic analysis of bioethanol production from residual biomass of marine macroalgae Ulva lactuca. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161661. [PMID: 36669660 DOI: 10.1016/j.scitotenv.2023.161661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
In the present work, the residual biomass of the green seaweed Ulva lactuca was chosen as feedstock to undergo separate hydrolysis and fermentation process to produce bioethanol. The hydrolysis process was optimized for cellulase, biomass, temperature, and time conditions. The maximum yield of fermentable sugars was 13.48 mg/mL. The recovered hydrolysate was subjected to fermentation using Saccharomyces cerevisiae. The bioethanol produced was subjected to gas chromatography coupled mass spectrometry analysis to determine the presence of ethanol. The technical performance and economic feasibility of the bioethanol production from U. lactuca were evaluated using the lab-scale data obtained for optimized conditions. The plant capacity was 10 MT/day of bioethanol production. The plant's capital investment and annual operating cost were 3.18 M$ and 0.86 M$ respectively. The total annual revenue of the plant was 1.41 M$. The minimum selling price of bioethanol was 0.47 $/kg. The ROI, payback period, IRR and NPV of the plant were 16.99 %, 5.89 years, 11.57 % and 291,000 $ respectively. The utilization of residual biomass for biofuels helps to develop an economic and environmentally sustainable plant.
Collapse
Affiliation(s)
- Kalavathy Gengiah
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India
| | - Naveenkumar Rajendran
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India.
| |
Collapse
|
3
|
Mahdi HI, Ramlee NN, da Silva Duarte JL, Cheng YS, Selvasembian R, Amir F, de Oliveira LH, Wan Azelee NI, Meili L, Rangasamy G. A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. CHEMOSPHERE 2023; 319:138003. [PMID: 36731678 DOI: 10.1016/j.chemosphere.2023.138003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/24/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biodiesel is an alternative to fossil-derived diesel with similar properties and several environmental benefits. Biodiesel production using conventional catalysts such as homogeneous, heterogeneous, or enzymatic catalysts faces a problem regarding catalysts deactivation after repeated reaction cycles. Heterogeneous nanocatalysts and nanobiocatalysts (enzymes) have shown better advantages due to higher activity, recyclability, larger surface area, and improved active sites. Despite a large number of studies on this subject, there are still challenges regarding its stability, recyclability, and scale-up processes for biodiesel production. Therefore, the purpose of this study is to review current modifications and role of nanocatalysts and nanobiocatalysts and also to observe effect of various parameters on biodiesel production. Nanocatalysts and nanobiocatalysts demonstrate long-term stability due to strong Brønsted-Lewis acidity, larger active spots and better accessibility leading to enhancethe biodiesel production. Incorporation of metal supporting positively contributes to shorten the reaction time and enhance the longer reusability. Furthermore, proper operating parameters play a vital role to optimize the biodiesel productivity in the commercial scale process due to higher conversion, yield and selectivity with the lower process cost. This article also analyses the relationship between different types of feedstocks towards the quality and quantity of biodiesel production. Crude palm oil is convinced as the most prospective and promising feedstock due to massive production, low cost, and easily available. It also evaluates key factors and technologies for biodiesel production in Indonesia, Malaysia, Brazil, and the USA as the biggest biodiesel production supply.
Collapse
Affiliation(s)
- Hilman Ibnu Mahdi
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan.
| | - Nurfadhila Nasya Ramlee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - José Leandro da Silva Duarte
- Laboratory of Applied Electrochemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, 57072-900, Brazil
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; College of Future, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India.
| | - Faisal Amir
- Department of Mechanical Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan; Department of Mechanical Engineering, Universitas Mercu Buana (UMB), Jl. Raya, RT.4/RW.1, Meruya Sel., Kec. Kembangan, Jakarta, Daerah Khusus Ibukota Jakarta, 11650, Indonesia
| | - Leonardo Hadlich de Oliveira
- Laboratory of Adsorption and Ion Exchange (LATI), Chemical Engineering Department (DEQ), State University of Maringá, Maringá (UEM), 5790 Colombo Avenue, Zone 7, 87020-900, Maringá, PR, Brazil
| | - Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), UTM Skudai, 81310, Skudai Johor Bahru, Johor, Malaysia.
| | - Lucas Meili
- Laboratory of Processes (LAPRO), Center of Technology, Federal University of Alagoas, Campus A. C. Simões, Lourival Melo Mota Avenue, Tabuleiro Dos Martins, 57072-970, Maceió, AL, Brazil.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
4
|
Pandit C, Banerjee S, Pandit S, Lahiri D, Kumar V, Chaubey KK, Al-Balushi R, Al-Bahry S, Joshi SJ. Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon 2023; 9:e15475. [PMID: 37128301 PMCID: PMC10147985 DOI: 10.1016/j.heliyon.2023.e15475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
Due to diminishing fossil fuel supplies and rising energy needs, there has been an ever-increasing demand for renewable energy sources. The available renewable energy resources, such as solar, wind, hydropower, and biofuels, provide a new way of supplying the world's energy needs. Biofuels stand out among them because they are sustainable and have the potential to bring the idea of a global bioeconomy to life. As a result of their production of biofuels like biomethane, biohydrogen, and biodiesel, atmospheric CO2 is being fixed, eventually lowering the world's carbon footprint. Current developments in the production of bioenergy have concentrated on producing biodiesel among other biofuels. Biodiesel is being produced from a variety of feedstocks using a number of processes, including transesterification, micro-emulsion, direct mixing, and pyrolysis. The most popular method among these is transesterification, which makes use of a variety of catalysts. As a result of the development of nanotechnology, nanocatalysts with desirable properties, such as increased catalytic activity, increased surface area, and superior thermal stability, have been made and modified. In this review, various nanocatalyst types and manufacturing processes are examined in relation to transesterification. It explores how crucial nanocatalysts are in boosting biodiesel production, highlights potential barriers, and makes recommendations for their widespread use in the future.
Collapse
Affiliation(s)
- Chetan Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Srijoni Banerjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No. III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, India
| | - Vinod Kumar
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | | | - Saif Al-Bahry
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Sanket J. Joshi
- Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
- Corresponding author.
| |
Collapse
|
5
|
Ravichandran P, Rajendran N, Al-Ghanim KA, Govindarajan M, Gurunathan B. Investigations on evaluation of marine macroalgae Dictyota bartayresiana oil for industrial scale production of biodiesel through technoeconomic analysis. BIORESOURCE TECHNOLOGY 2023; 374:128769. [PMID: 36841396 DOI: 10.1016/j.biortech.2023.128769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The investigation on utilizing macroalgae for industrial scale biodiesel production is an imperative action needed for commercialization. In the present research work, the biooil from marine macroalgae Dictyota bartayresiana was used for biodiesel production using calcium oxide nanocatalyst synthesized using waste collected from building demolition site. The optimization results obtained were the calcination temperature 573 °C, concentration of catalyst 5.62%, methanol to oil molar ratio 14.36:1, temperature 55.7 °C and time 67.57 min for the transesterification with the biodiesel yield of 89.6%. The techno-economic aspects of biodiesel production were investigated for 20 MT/batch. The return on investment and internal rate of return from the biodiesel production plant was found to be 25.39% and 31.13% respectively. The plant payback period was about 3.94 years with a positive NPV value of about 14,053,000 $/yr. Thus, Dictyota bartayresiana biomass can be efficiently used for the sustainable production of biodiesel.
Collapse
Affiliation(s)
- Pravin Ravichandran
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India
| | - Naveenkumar Rajendran
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, USA
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India.
| |
Collapse
|
6
|
Mittal V, Talapatra KN, Ghosh UK. A comprehensive review on biodiesel production from microalgae through nanocatalytic transesterification process: lifecycle assessment and methodologies. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Gengiah K, Gurunathan B, Rajendran N, Han J. Process evaluation and techno-economic analysis of biodiesel production from marine macroalgae Codium tomentosum. BIORESOURCE TECHNOLOGY 2022; 351:126969. [PMID: 35276378 DOI: 10.1016/j.biortech.2022.126969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
In the current study, a seaweed Codium tomentosum was used as a source for the production of biodiesel. The maximum oil from marine macroalgae was recovered using ultrasound-assisted pretreatment. The oil yield was found to be maximum at optimal conditions such as 5% biomass wetness, 0.18 mm biomass size, 6:1 extraction solvent: biomass ratio, extraction temperature, and time as 55 °C and 140 min respectively. The extracted oil was transesterified using solidsolid nanocatalyst produced from waste clay doped with Zn. The maximum biodiesel conversion was found to be 90.5% at optimum conditions. The marine macroalgae C. tomentosum was found to be one of the potential sources for biodiesel production. The techno-economic analysis of the overall biodiesel production (20 MT/batch) process was investigated. The plant payback period is 8.59 years with a positive NPV of 1381 M$/yr.
Collapse
Affiliation(s)
- Kalavathy Gengiah
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| | - Naveenkumar Rajendran
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; School of Semiconductor and Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| |
Collapse
|
8
|
Jayakumar M, Karmegam N, Gundupalli MP, Bizuneh Gebeyehu K, Tessema Asfaw B, Chang SW, Ravindran B, Kumar Awasthi M. Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review. BIORESOURCE TECHNOLOGY 2021; 331:125054. [PMID: 33832828 DOI: 10.1016/j.biortech.2021.125054] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
| | - Marttin Paulraj Gundupalli
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| | - Kaleab Bizuneh Gebeyehu
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Belete Tessema Asfaw
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
9
|
Lomartire S, Marques JC, Gonçalves AMM. An Overview to the Health Benefits of Seaweeds Consumption. Mar Drugs 2021; 19:341. [PMID: 34203804 PMCID: PMC8232781 DOI: 10.3390/md19060341] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Currently, seaweeds are gaining major attention due to the benefits they give to our health. Recent studies demonstrate the high nutritional value of seaweeds and the powerful properties that seaweeds' bioactive compounds provide. Species of class Phaeophyceae, phylum Rhodophyta and Chlorophyta possess unique compounds with several properties that are potential allies of our health, which make them valuable compounds to be involved in biotechnological applications. In this review, the health benefits given by consumption of seaweeds as whole food or by assumption of bioactive compounds trough natural drugs are highlighted. The use of seaweeds in agriculture is also highlighted, as they assure soils and crops free from chemicals; thus, it is advantageous for our health. The addition of seaweed extracts in food, nutraceutical, pharmaceutical and industrial companies will enhance the production and consumption/usage of seaweed-based products. Therefore, there is the need to implement the research on seaweeds, with the aim to identify more bioactive compounds, which may assure benefits to human and animal health.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
| | - João Carlos Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.M.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Manimaran R, Murugu Mohan Kumar K, Sathiya Narayanan N. Synthesis of bio-oil from waste Trichosanthes cucumerina seeds: a substitute for conventional fuel. Sci Rep 2020; 10:17815. [PMID: 33082402 PMCID: PMC7575580 DOI: 10.1038/s41598-020-74130-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022] Open
Abstract
The present study explores the methodology for the synthesis of bio-oil from waste trichosanthes cucumerina seeds by the solvent extraction method. It investigates the yield percentage, concentration of free fatty acids and acid contents in the extracted bio-oil. Effects of size of the crushed seeds, moisture content, extraction time, solvent to seed ratio and extraction temperatures were examined. The non-polar hexane solvent resulted in a higher percentage of oil yield (28.4 ± 0.4%) for the crushed seed size of 0.21 mm, 6% moisture content, 270 min extraction time, 68 °C temperature and 6:1(ml/g) of solvent to seed ratio. The synthesized bio-oil was characterized using Fourier Transform Infra-Red spectrum and Gas Chromatography–Mass Spectroscopy analysis. The properties of the bio-oil and biodiesel were assessed according to the American Society for Testing and Materials and the Association of Official Analytical Chemists standards. The obtained methyl-ester by trans-esterification process results in the fuel properties closer to the conventional fuel. Thus, Trichosanthes cucumerina bio-diesel can be used as a potential substitute.
Collapse
Affiliation(s)
- Rajayokkiam Manimaran
- School of Mechanical Engineering, SASTRA Deemed University, Tanjavur, Tamil Nadu, 613 401, India.
| | | | | |
Collapse
|
11
|
A Short Review on the Valorization of Green Seaweeds and Ulvan: FEEDSTOCK for Chemicals and Biomaterials. Biomolecules 2020; 10:biom10070991. [PMID: 32630631 PMCID: PMC7407860 DOI: 10.3390/biom10070991] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
This short review analyzed the recent trend towards, progresses towards the preparation of chemicals of, and value-added biomaterials from marine macroalgae resources, especially green seaweeds and their derived ulvan polysaccharides for various applications. In recent years, ulvan both in pristine and modified forms has gained a large amount of attention for its effective utilization in various areas due to its unique physiochemical properties, lack of exploration, and higher green seaweed production. The pristine form of ulvan (sulfated polysaccharides) is used as a bio-component; food ingredient; or a raw material for the production of numerous chemicals such as fuels, cosmetics, and pharmaceuticals, whereas its modified form is used in the sector of composites, membranes, and scaffolds, among others, because of its physicochemical properties. This review highlights the utilization of green seaweed and its derived ulvan polysaccharides for the preparation of numerous chemicals (e.g., solvents, fuel, and gas) and also value-added biomaterials with various morphologies (e.g., gels, fibers, films, scaffolds, nanomaterials, and composites).
Collapse
|
12
|
Abstract
The development of solid acid catalysts, especially based on metal oxides and different magnetic nanoparticles, gained much awareness recently as a result of the development of different nano-based materials. Solid acid catalysts based on metal oxides are promising for the (trans)esterification reactions of different oils and waste materials for biodiesel production. This review gives a brief overview of recent developments in various solid acid catalysts based on different metal oxides, such as zirconia, zinc, titanium, iron, tungsten, and magnetic materials, where the catalysts are optimized for various reaction parameters, such as the amount of catalyst, molar ratio of oil to alcohol, reaction time, and temperature. Furthermore, yields and conversions for biodiesel production are compared. Such metal-oxide-based solid acid catalysts provide more sustainable, green, and easy-separation synthesis routes with high catalytic activity and reusability than traditionally used catalysts.
Collapse
|
13
|
Abstract
The excessive consumption of petroleum resources leads to global warming, fast depletion of petroleum reserves, as well as price instability of gasoline. Thus, there is a strong need for alternative renewable fuels to replace petroleum-derived fuels. The striking features of an alternative fuel include the low carbon footprints, renewability and affordability at manageable prices. Biodiesel, made from waste oils, animal fats, vegetal oils, is a totally renewable and non-toxic liquid fuel which has gained significant attraction in the world. Due to technological advancements in catalytic chemistry, biodiesel can be produced from a variety of feedstock employing a variety of catalysts and recovery technologies. Recently, several ground-breaking advancements have been made in nano-catalyst technology which showed the symmetrical correlation with cost competitive biodiesel production. Nanocatalysts have unique properties such as their selective reactivity, high activation energy and controlled rate of reaction, easy recovery and recyclability. Here, we present an overview of various feedstock used for biodiesel production, their composition and characteristics. The major focus of this review is to appraise the characterization of nanocatalysts, their effect on biodiesel production and methodologies of biodiesel production.
Collapse
|