1
|
Wang H, Sun Y, Zhou X, Zhu C, Wang X, Abbasi HN, Geng H, Zhu G, Wang X, Dai H. Simultaneous removal of nitrogen and phosphorus by aerobic denitrifying Paracoccus versutus JUST-3. BIORESOURCE TECHNOLOGY 2025; 428:132457. [PMID: 40164357 DOI: 10.1016/j.biortech.2025.132457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Strain JUST-3, exhibiting high-efficiency simultaneous nitrogen and phosphorus removal under aerobic conditions, was isolated and identified as Paracoccus versutus based on 16S rDNA gene sequencing and comprehensive physiological and biochemical analysis. The strain demonstrated optimal performance when cultured with sodium acetate as carbon source under the following conditions: C/N ratio of 10, P/N ratio of 0.2, 35 °C, and pH of 8.0. The variations in intermediate metabolites, the activity of functional enzymes, and the nitrogen/phosphorus balance experiments elucidated the pathways in nitrogen and phosphorus removal under aerobic conditions. Exogenous signal molecules (<50 nmol/L) could promote growth, enhance aerobic denitrification, and improve simultaneous nitrogen and phosphorus performance. The identification of signaling molecules represents a significant breakthrough, revealing novel regulatory mechanisms in microbial quorum-sensing systems and enabling precise control of microbial community behaviors. This study expands the application of aerobic denitrification and phosphorus removal technology, laying the foundation for wastewater treatment.
Collapse
Affiliation(s)
- Haoyun Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xingkun Zhou
- Suzhou Drainage Co., Ltd, Suzhou 215000 Jiangsu Province, China.
| | - Chengyuan Zhu
- Suzhou Drainage Co., Ltd, Suzhou 215000 Jiangsu Province, China.
| | - Xiujie Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Haq Nawaz Abbasi
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Xu M, Chen L, Xin Y, Wang X, Wang Z, Meng X, Zhang W, Sun H, Li Y, Zhang W, Wan P, Geng B, Li L. Characteristics and Mechanism of Ammonia Nitrogen Removal by Heterotrophic Nitrification Bacterium Klebsiella pneumoniae LCU1 and Its Application in Wastewater Treatment. Microorganisms 2025; 13:297. [PMID: 40005663 PMCID: PMC11857964 DOI: 10.3390/microorganisms13020297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, a novel strain exhibiting heterotrophic nitrification was screened; subsequently, the strain was identified as Klebsiella pneumoniae LCU1 using 16S rRNA gene sequencing. The aim of the study was to investigate the effects of external factors on the NH4+-N removal efficiency of strain LCU1 in order to elucidate the optimal conditions for NH4+-N removal by the strain and improve the removal efficiency. The findings indicated that the NH4+-N removal efficiency of the strain exceeded 80% under optimal conditions (sodium succinate carbon source, C/N ratio of 10, initial pH of 8.0, temperature of 30 °C, and speed of 180 rpm). The genome analysis of strain LCU1 showed that key genes involved in nitrogen metabolism, including narGHI, nirB, nxrAB, and nasAB, were successfully annotated; hao and amo were absent, but the nitrogen properties analysis determined that the strain had a heterotrophic nitrification ability. After 120 h, the NH4+-N removal efficiency of strain LCU1 was 34.5% at a high NH4+-N concentration of 2000 mg/L. More importantly, the NH4+-N removal efficiency of this strain was above 34.13% at higher Cu2+, Mn2+, and Zn2+ ion concentrations. Furthermore, strain LCU1 had the highest NH4+-N removal efficiency of 34.51% for unsterilised (LCU1-OC) aquaculture wastewater. This suggests that with intensive colonisation treatment, the strain has promising application potential in real wastewater treatment.
Collapse
Affiliation(s)
- Meng Xu
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
- Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China
| | - Lifei Chen
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
- Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China
| | - Yizhen Xin
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
- Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China
| | - Xiangyu Wang
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Zhuoya Wang
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Xueqiang Meng
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Wenyu Zhang
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Haoyang Sun
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Yifan Li
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Wenzhe Zhang
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Peng Wan
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Bingshuai Geng
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Lusheng Li
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
- Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
3
|
Wu T, Li J, Cao R, Chen X, Wang B, Huang T, Wen G. Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176614. [PMID: 39357767 DOI: 10.1016/j.scitotenv.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Reducing nitrate contamination in drinking water has become a critical issue in urban water resource management. Here a novel oligotrophic aerobic denitrifying bacterium, Pelomonas puraquae WJ1, was isolated and purified from artificial lake sediments. For the first time, excellent aerobic denitrification capabilities were demonstrated. At a carbon-to‑nitrogen ratio of 5.0, strain WJ1 achieved 100.0 % nitrate removal and 84.92 % total nitrogen removal within 24 h, with no nitrite accumulation. PCR amplification and sequencing confirmed the presence of the denitrification genes napA, nirS, and nosZ in the strain. The nitrogen balance demonstrated that approximately 74.95 % of the initial nitrogen was eliminated as gaseous products under aerobic conditions. Furthermore, carbon balance analysis showed that most electron donors from strain WJ1 were directed towards oxygen, with limited availability for nitrate reduction. A combination of bio-ECO analysis and network modeling indicated that strain WJ1 has robust metabolic capabilities for diverse carbon sources and exhibits high adaptability to complex carbon environments. Overall, Pelomonas puraquae WJ1 removed approximately 45.89 % of the nitrates in raw water, demonstrating significant potential for practical applications in oligotrophic denitrification.
Collapse
Affiliation(s)
- Tianhua Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxin Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaojie Chen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
4
|
Cun D, Wang H, Jiang M, Lin R, Deng S, Chang J, Zhao Y, Duan C. Effective remediation of agricultural drainage at three influent strengths by bioaugmented constructed wetlands filled with mixture of iron‑carbon and organic solid substrates: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174615. [PMID: 38997019 DOI: 10.1016/j.scitotenv.2024.174615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Agricultural drainage containing a large quantity of nutrients can cause quality deterioration and algal blooming of receiving water bodies, thus needs to be effectively remediated. In this study, iron‑carbon (FeC) composite-filled constructed wetlands (Fe-C-CWs) were employed to treat farmland drainage at three pollution levels, and organic solid substrates (walnut shells) and phosphate-accumulating denitrifying bacteria (Pseudomonas sp. DWP1) were supplemented to enhance the treatment performance. The results showed that the Fe-C-CWs exhibited notably superior removal efficiency for total nitrogen (TN, 52.0-58.2 %), total phosphorus (TP, 67.8-70.2 %) and chemical oxygen demand (COD, 56.7-70.4 %) than the control systems filled solely with gravel (28.5-32.5 % for TN, 33.2-40.5 % for TP and 30.2-55.0 % for COD) at all influent strengths, through driving autotrophic denitrification, Fe-based dephosphorization, and organic degradation processes. The addition of organic substrates and functional bacteria markedly enhanced pollutant removal in the Fe-C-CWs. Furthermore, use of FeC and organic substrates and denitrifier inoculation decreased CO2 and CH4 emissions from the CWs, and reduced global warming potential of the CWs at low influent strength. Pollutant removal efficiencies in the CWs were only marginally impacted by the increasing influent loads except for NO3--N, and pollutant removal mass was largely increased with the increase of influent strengths. The microbial community in the FeC composite-filled CWs exhibited distinct distribution patterns compared to the gravel-filled CWs regardless of the influent strengths, with obviously higher proportions of dominant genera Trichococcus, Geobacter and Ferritrophicum. Keystone taxa associated with pollutant removal in the Fe-C-filled CWs were identified to be Pseudomonas, Geobacter, Ferritrophicum, Denitratisoma and Sediminibacterium. The developed augmented Fe-C-filled CWs show great promises for remediating agricultural drainage with varied pollutant loads.
Collapse
Affiliation(s)
- Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China
| | - Haoyu Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Ming Jiang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Nanjing Academy of Water Sciences Ruidi Technology Group Co., Ltd, Nanjing 210009, China
| | - Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shengjiong Deng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China.
| | - Yonggui Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming 650091, China.
| |
Collapse
|
5
|
Zhang X, Huang C, Sui W, Wu X, Zhang X. Irons differently modulate bacterial guilds for leading to varied efficiencies in simultaneous nitrification and denitrification (SND) within four aerobic bioreactors. CHEMOSPHERE 2024; 358:142216. [PMID: 38705403 DOI: 10.1016/j.chemosphere.2024.142216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
As a novel biological wastewater nitrogen removal technology, simultaneous nitrification and denitrification (SND) has gained increasing attention. Iron, serving as a viable material, has been shown to influence nitrogen removal. However, the precise impact of iron on the SND process and microbiome remains unclear. In this study, bioreactors amended with iron of varying valences were evaluated for total nitrogen (TN) removal efficiencies under aerobic conditions. The acclimated control reactor without iron addition (NCR) exhibited high ammonia nitrogen (AN) removal efficiency (98.9%), but relatively low TN removal (78.6%) due to limited denitrification. The reactor containing zero-valent iron (Fe0R) demonstrated the highest SND rate of 92.3% with enhanced aerobic denitrification, albeit with lower AN removal (84.1%). Significantly lower SND efficiencies were observed in reactors with ferrous (Fe2R, 66.3%) and ferric (Fe3R, 58.2%) iron. Distinct bacterial communities involved in nitrogen metabolisms were detected in these bioreactors. The presence of complete ammonium oxidation (comammox) genus Nitrospira and anammox bacteria Candidatus Brocadia characterized efficient AN removal in NCR. The relatively low abundance of aerobic denitrifiers in NCR hindered denitrification. Fe0R exhibited highly abundant but low-efficiency methanotrophic ammonium oxidizers, Methylomonas and Methyloparacoccus, along with diverse aerobic denitrifiers, resulting in lower AN removal but an efficient SND process. Conversely, the presence of Fe2+/Fe3+ constrained the denitrifying community, contributing to lower TN removal efficiency via inefficient denitrification. Therefore, different valent irons modulated the strength of nitrification and denitrification through the assembly of key microbial communities, providing insight for microbiome modulation in nitrogen-rich wastewater treatment.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengli Huang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weikang Sui
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaogang Wu
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Ni Q, Chen Y, Lu L, Liu M. C4-HSL-mediated quorum sensing regulates nitrogen removal in activated sludge process at Low temperatures. ENVIRONMENTAL RESEARCH 2024; 244:117928. [PMID: 38128597 DOI: 10.1016/j.envres.2023.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The activated sludge process faces challenges in achieving adequate nitrification ability under low-temperature conditions. Therefore, we investigated the effects of different concentrations of exogenous N-butyryl-homoserine lactone (C4-HSL) on nitrogen removal in lab-scale sequencing batch reactors (SBRs) at 10 °C. The results revealed that both 10 and 100 μg/L of C4-HSL could improve NH4+-N removal efficiency by 26% and reduce the effluent TN concentration to below 15 mg/L. Analysis of extracellular polymeric substances (EPS) revealed that adding C4-HSL (especially 100 μg/L) reduced the protein-like substance content while increasing the humic and fulvic acid-like substance content in EPS. Protein-like substances could serve as carbon sources for denitrifiers, thus promoting denitrification. Moreover, exogenous C4-HSL increased the abundance of bacteria and genes associated with nitrification and denitrification. Further analysis of quorum sensing (QS) of microorganisms indicated that exogenous C4-HSL (especially 100 μg/L) promoted regulation, transportation, and decomposition functions in the QS process. Furthermore, CS, sdh, fum, and mdh gene expressions involved in the tricarboxylic acid (TCA) cycle were enhanced by 100 μg/L C4-HSL. Exogenous C4-HSL promoted microbial communication, microbial energy metabolism, and nitrogen metabolism, thereby improving the nitrogen removal efficiency of activated sludge systems at low temperatures. This study provides a feasible strategy for enhancing denitrogenation performance at low temperatures through exogenous C4-HSL.
Collapse
Affiliation(s)
- Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lanxin Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Zhao X, Xie Y, Sun B, Liu Y, Zhu S, Li W, Zhao M, Liu D. Unraveling microbial characteristics of simultaneous nitrification, denitrification and phosphorus removal in a membrane-aerated biofilm reactor. ENVIRONMENTAL RESEARCH 2023; 239:117402. [PMID: 37838199 DOI: 10.1016/j.envres.2023.117402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
This study describes the simultaneous removal of carbon, ammonium, and phosphate from domestic wastewater by a membrane-aerated biofilm reactor (MABR) which was operated for 360 days. During the operation, the maximum removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) reached 93.1%, 83.98%, and 96.41%, respectively. Statistical analysis showed that the MABR could potentially treat wastewater with a high ammonium concentration and a relatively low C/N ratio. Dissolved oxygen and multiple pollutants, including ammonium, carbon, phosphate, and sulfate, shaped the structure of the microbial community in the MABR. High throughput sequencing uncovered the crucial microbiome in ammonium transformation in MABR. Phylogenetic analysis of the ammonia monooxygenase (amoA) genes revealed an important role for comammox Nitrospira in the nitrification process. Diverse novel phosphate-accumulating organisms (Thauera, Bacillus, and Pseudomonas) and sulfur-oxidizing bacteria (Thiobacillus, Thiothrix and Sulfurimonas) were potentially involved in denitrification in MABR. The results from this study suggested that MABR could be a feasible system for the simultaneous removal of nitrogen, carbon, phosphorus, and sulfur from sewage water.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China; National & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinglong Xie
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China; College of Environment, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Bo Sun
- National & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Ying Liu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Songming Zhu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Min Zhao
- National & Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Dezhao Liu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture from Ministry of Agriculture and Rural Affairs of China, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Institute of Agri-biological Environment Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Peng H, Wu H, Gu W, Lu Y, Qin H, You Y, Zhou D, Wang D, Sun L, Zhou C, Zheng Y. Exploring the Application Potential of Aquaculture Sewage Treatment of Pseudomonas chengduensis Strain WD211 Based on Its Complete Genome. Genes (Basel) 2023; 14:2107. [PMID: 38136929 PMCID: PMC10743257 DOI: 10.3390/genes14122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Pseudomonas chengduensis is a new species of Pseudomonas discovered in 2014, and currently, there is a scarcity of research on this bacterium. The P. chengduensis strain WD211 was isolated from a fish pond. This study investigated the purification capability and environmental adaptability of strain WD211 in wastewater and described the basic features and functional genes of its complete genome. According to the results, the sewage treated with strain WD211 showed a decrease in concentration of 18.12% in total nitrogen, 89.39% in NH4+, 62.16% in NO3-, 79.97% in total phosphorus, and 71.41% in COD after 24 h. Strain WD211 is able to survive in a pH range of 6-11. It shows resistance to 7% sodium chloride and different types of antibiotics. Genomic analysis showed that strain WD211 may remove nitrogen and phosphorus through the metabolic pathway of nitrogen assimilation and phosphorus accumulation, and that it can promote organic decomposition through oxygenase. Strain WD211 possesses genes for producing betaine, trehalose, and sodium ion transport, which provide it with salt tolerance. It also has genes for antibiotic efflux and multiple oxidases, which give it antibiotic resistance. This study contributes to the understanding of the sewage treatment ability and potential applications of P. chengduensis.
Collapse
Affiliation(s)
- Huanlong Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Hangtao Wu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yi You
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Donglai Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Lili Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Changmin Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Yanling Zheng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
9
|
Yan B, Jiang L, Zhou H, Okokon Atakpa E, Bo K, Li P, Xie Q, Li Y, Zhang C. Performance and microbial community analysis of combined bioreactors in treating high-salinity hydraulic fracturing flowback and produced water. BIORESOURCE TECHNOLOGY 2023; 386:129469. [PMID: 37451509 DOI: 10.1016/j.biortech.2023.129469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The anoxic/oxic systems are a widely used biological strategy for wastewater treatment. However, little is known about the performance and microbial community correlation of different combined bioreactors in the treatment of high-COD and high-salinity hydraulic fracturing flowback and produced water (HF-FPW). In this study, the performance of Up-flow anaerobic sludge bed-bio-contact oxidation reactor (UASB-BCOR) and Fixed-bed baffled reactor (FBR-BCOR) in treating HF-FPW was investigated and compared. The results suggested the FBR-BCOR could efficiently remove COD, SS, NH4+-N, and oil pollutants, and it exhibited better resistance to the negative interference of hydraulic shock load on it. Besides, the correlation analysis first disclosed the key functional genera during the degradation process, including Ignavibacterium, Ellin6067, and Zixibacteria. Moreover, network analysis revealed that the difference of microbial co-occurrence network structure is the main driving factor for the difference of bioreactor processing capacity. This work demonstrates the feasibility and potential of FBR-BCOR in treating HF-FPW.
Collapse
Affiliation(s)
- Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Lijia Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Edidiong Okokon Atakpa
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Kuiyong Bo
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Pingyuan Li
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Qinglin Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
10
|
Guo P, Wang Q, Ni L, Xu S, Zheng D, Wang Y, Cai F, Cui M, Zheng Z, Gao X, Zhang D. Improved simultaneous nitrification-denitrification in fixed-bed baffled bioreactors treating mariculture wastewater: Performance and microbial community behaviors. BIORESOURCE TECHNOLOGY 2023:129468. [PMID: 37429548 DOI: 10.1016/j.biortech.2023.129468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
As mariculture develops, wastewater treatment becomes crucial. In this study, fixed-bed baffled reactors (FBRs) packed with carbon fiber (CFBR) or polyurethane (PFBR) as biofilm carriers were used for mariculture wastewater treatment. Under salinity shocks between 0.10 and 30.00 g/L, the reactors showed efficient and stable nitrogen removal capacities, and the maximum NH4+-N removal rates were 107.31 and 105.42 mg/(L·d) for CFBR and PFBR, respectively, with an initial NH4+-N concentration of 120.00 mg/L. Further, in the independent aerobic chambers of the FBRs for nitrogen removal, taxa enrichment varied depending on the biofilm carrier, and the assembly process was more deterministic in CFBR than in PFBR. Two distinct clusters representing the spatial distribution of the adhering and deposited sludge in CFBR and the front and rear compartments in PFBR were noted. Furthermore, microbial interactions were more numerous and stable in CFBR. These findings improve the application prospects of FBRs in mariculture wastewater treatment.
Collapse
Affiliation(s)
- Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qiong Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lingfang Ni
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Silong Xu
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daoqiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Cai
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mingyu Cui
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Biology and Pharmacy, Three Gorges University, Yichang 443002, China
| | - Zhiwei Zheng
- Shanghai Yuming Technology Co., Ltd., Shanghai 201802, China
| | - Xiuqing Gao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Biology and Pharmacy, Three Gorges University, Yichang 443002, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
11
|
Wang Y, Deng M, Li B, Li L, Oon YS, Zhao X, Song K. High nitrous oxide (N 2O) greenhouse gas reduction potential of Pseudomonas sp. YR02 under aerobic condition. BIORESOURCE TECHNOLOGY 2023; 378:128994. [PMID: 37004889 DOI: 10.1016/j.biortech.2023.128994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Aerobic environments exist widely in wastewater treatment plants (WWTP) and are unfavorable for greenhouse gas nitrous oxide (N2O) reduction. Here, a novel strain Pseudomonas sp. YR02, which can perform N2O reduction under aerobic conditions, was isolated. The successful amplification of four denitrifying genes proved its complete denitrifying ability. The inorganic nitrogen (IN) removal efficiencies (NRE) were >98.0% and intracellular nitrogen and gaseous nitrogen account for 52.6-58.4% and 41.6-47.4% of input nitrogen, respectively. The priority of IN utilization was TAN > NO3--N > NO2--N. The optimal conditions for IN and N2O removal were consistent, except for the C/N ratio, which is 15 and 5 for IN and N2O removal, respectively. The biokinetic constants analysis indicated strain YR02 had high potential to treat high ammonia and dissolved N2O wastewater. Strain YR02 bioaugmentation mitigated 98.7% of N2O emission and improved 32% NRE in WWTP, proving its application potential for N2O mitigation.
Collapse
Affiliation(s)
- Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Biqing Li
- Guangzhou Sewage Purification Co. Ltd, Guangzhou 510655, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Thakur K, Kuthiala T, Singh G, Arya SK, Iwai CB, Ravindran B, Khoo KS, Chang SW, Awasthi MK. An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. CHEMOSPHERE 2023; 316:137849. [PMID: 36642133 DOI: 10.1016/j.chemosphere.2023.137849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Aquaponics combines the advantages of aquaculture and hydroponics as it suits the urban environment where a lack of agricultural land and water resources is observed. It is an ecologically sound system that completely reuses its system waste as plant fertilizer. It offers sustainable water savings, making it a supreme technology for food production. The two major processes that hold the system together are nitrification and denitrification. The remains of fish in form of ammonia reach the bio filters where it is converted into nitrite and further into nitrate in presence of nitrifying and denitrifying bacteria. Nitrate eventually is taken up by the plants. However, even after the uptake from the flow stream, the effluent contains remaining ammonium and nitrates, which cannot be directly released into the environment. In this review it is suggested how integrating the biofilm-based bioreactors in addition to aquaculture and hydroponics eliminates the possibility of remains of total ammonia nitrogen [TAN] contents, leading to bioremediation of effluent water from the system. Effluent water after releasing from a bioreactor can be reused in an aquaculture system, conditions provided in these bioreactors promote the growth of required bacteria and encourages the mutual development of plants and fishes and eventually leading to bioremediation of wastewater from aquaponics.
Collapse
Affiliation(s)
- Kritika Thakur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Tanya Kuthiala
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Chuleemas Boonthai Iwai
- Integrated Land and Water Resource Management Research and Development Center in Northeast Thailand, Khon Kaen University, Thailand; Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Kuan Shiong Khoo
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling, 712100, China.
| |
Collapse
|
13
|
Lan M, Yin Q, Wang J, Li M, Li Y, Li B. Heterotrophic nitrification-aerobic denitrification performance of a novel strain, Pseudomonas sp. B-1, isolated from membrane aerated biofilm reactor. ENVIRONMENTAL RESEARCH 2023; 220:115199. [PMID: 36592808 DOI: 10.1016/j.envres.2022.115199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
A heterotrophic nitrification-aerobic denitrification (HN-AD) strain isolated from membrane aerated biofilm reactor (MABR) was identified as Pseudomonas sp. B-1, which could effectively utilize multiple nitrogen sources and preferentially consume NH4-N. The maximum degradation efficiencies of NO3-N, NO2-N and NH4-N were 98.04%, 94.84% and 95.74%, respectively. The optimal incubation time, shaking speed, carbon source, pH, temperature and C/N ratio were 60 h, 180 rpm, sodium succinate, 8, 30 °C and 25, respectively. The strain preferred salinity of 1.5% and resisted heavy metals in the order of Mn2+ > Co2+ > Zn2+ > Cu2+. It can be preliminarily speculated from the results of enzyme assay that the strain removed nitrogen via full nitrification-denitrification pathway. The addition of strain into the conventional MABR significantly intensified the HN-AD performance of the reactor. The relative abundance of the functional bacteria including Flavobacterium, Pseudomonas, Paracoccus, Azoarcus and Thauera was obviously increased after the bioaugmentation. Besides, the expression of the HN-AD related genes in the biofilm was also strengthened. Thus, strain B-1 had great application potential in nitrogen removal process.
Collapse
Affiliation(s)
- Meichao Lan
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, China.
| | - Qingdian Yin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
14
|
Su J, Zhang Q, Huang W, Song J, Peng H, Feng J, He J, Zhang Y, Wei H. Transfer of functional microorganism: Regulation of N-acyl-homoserine lactones on the microbial community in aniline-degrading sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2022; 351:127052. [PMID: 35337993 DOI: 10.1016/j.biortech.2022.127052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Due to the inhibition of nitrification from aniline toxicity, exogenous N-acyl-homoserine lactones (AHLs) addition was attempted to enhance nitrogen removal in this work. Two sequencing batch biofilm reactors (SBBRs): S1 (the control) and S2 (C6-HSL and 3-oxo-C8-HSL dosing) were used to treat aniline wastewater. The NH4+-N and TN removal rates of S2 were 42.50% and 26.99% higher than S1 in the aerobic phase, respectively. It revealed the nitrogen removal performance of S2 much better than S1. High-throughput sequencing results indicated that many nitrifiers and denitrifiers of S2, such as Nitrosomonas and Thauera, transferred from sludge to biofilm significantly and built closer relationships each other. Overall, main nitrogen removal was contributed by biofilm rather than sludge with the regulation of AHLs. A mild and collaborative environment of biofilms for microorganisms enhanced nitrogen removal. The work provided a new idea for reconciling the contradiction between nitrification and denitrification in aniline wastewater treatment.
Collapse
Affiliation(s)
- Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Wansong Huang
- Hubei Jianke International Construction Ltd.co, Wuhan 430223, PR China
| | - Jianyang Song
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, PR China
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hua Wei
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
15
|
Baek S, Kim KS, Bae J. Behavior of nitrogen and sulfur compounds in the rice husk pellet bioscrubber and its circulation water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114435. [PMID: 35033895 DOI: 10.1016/j.jenvman.2022.114435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
In this study, pellet-type biofilter media was developed with rice husk and applied in a wet scrubber system for odor removal. The lab-scale bioscrubber system was operated for 200 days to evaluate odorous gas removal (i.e., NH3, H2S, methyl mercaptan, and dimethyl sulfide), and the removal mechanism of odor gases was studied by analyzing the behavior of nitrogen and sulfur compounds in circulation water of bioscrubber system. The rice husk pellets supplied the organic carbon source and phosphoric acid necessary for microbial growth, allowing the system to continue successfully for 200 days without any maintenance technology. By analyzing the behavior of the nitrogen and sulfur compounds in the circulation water, we confirmed that the odor gas removal resulted from various mechanisms, including adsorption and biodegradation. Ammonia gas was absorbed by the rice husk pellets and accumulated in the circulation water as nitrite under conditions of sufficient alkalinity and above pH 7. Conversely, when the alkalinity and pH decreased, nitrite was rapidly converted to nitrate. However, H2S gas was oxidized to sulfate and continuously accumulated in the circulation water regardless of the pH and alkalinity. In addition, it was confirmed that the decrease in nitrate in the bioscrubber system was due to heterotrophic denitrification by the organic carbon source supply and autotrophic denitrification by sulfur gas. During the operation of the rice husk pellet bioscrubber for 8 months, under low solubility condition, more than 99% of NH3 and H2S were removed and about 85% of methyl mercaptan (MM) and dimethyl sulfide (DMS) were removed.
Collapse
Affiliation(s)
- Soyoung Baek
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Republic of Korea
| | - Kwang Soo Kim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Republic of Korea; University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jiyeol Bae
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Republic of Korea; University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Zhang N, Zhang Y, Bohu T, Wu S, Bai Z, Zhuang X. Nitrogen Removal Characteristics and Constraints of an Alphaproteobacteria with Potential for High Nitrogen Content Heterotrophic Nitrification-Aerobic Denitrification. Microorganisms 2022; 10:microorganisms10020235. [PMID: 35208689 PMCID: PMC8879992 DOI: 10.3390/microorganisms10020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 01/09/2023] Open
Abstract
The discovery of heterotrophic nitrification-aerobic denitrification (HN-AD) microorganisms has opened a new window for wastewater treatment. The underlying mechanism of HN-AD, however, is not fully understood because of the phylogenetic diversity of HN-AD microbes. The isolation and characterization of new HN-AD microorganisms are encouraging for furthering the understanding of this process. In this study, we found an Alphaproteobacteria isolate W30 from a historically polluted river in China through an HN-AD microbes screening process, which we identified as Pannonibacter sp. A potential HN-AD pathway for W30 was proposed based on N conversion analyses and the successful amplification of the entire denitrification gene series. The isolate exhibited high efficiency of aerobic inorganic nitrogen transformation, which accounted for 97.11% of NH4+-N, 100% of NO3−-N, and 99.98% of NO2−-N removal with a maximum linear rate of 10.21 mg/L/h, 10.46 mg/L/h, and 10.77 mg/L/h, respectively. Assimilation rather than denitrification was the main mechanism for the environmental nitrogen depletion mediated by W30. The effect of environmental constraints on aerobic NO3−-N removal were characterized, following a membrane bioreactor effluent test under an oxic condition. Compared to known Alphaproteobacterial HN-AD microbes, we showed that Pannonibacter sp. W30 could deplete nitrogen with no NO2−-N or NO3−-N accumulation in the HN-AD process. Therefore, the application of Pannonibacter sp. W30 has the potential for developing a felicitous HN-AD technology to treat N-laden wastewater at the full-scale level.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (N.Z.); (Y.Z.); (S.W.); (Z.B.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiting Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (N.Z.); (Y.Z.); (S.W.); (Z.B.)
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Tsing Bohu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macao
- CNSA Macau Center for Space Exploration and Science, Taipa, Macao
- CSIRO Mineral Resources, Australian Resources and Research Centre, Kensington, WA 6151, Australia
- Correspondence: (T.B.); (X.Z.)
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (N.Z.); (Y.Z.); (S.W.); (Z.B.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (N.Z.); (Y.Z.); (S.W.); (Z.B.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiongan Institute of Innovation, Xiongan New Area, Baoding 071000, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (N.Z.); (Y.Z.); (S.W.); (Z.B.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (T.B.); (X.Z.)
| |
Collapse
|
17
|
Xi H, Zhou X, Arslan M, Luo Z, Wei J, Wu Z, Gamal El-Din M. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150212. [PMID: 34536867 DOI: 10.1016/j.scitotenv.2021.150212] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 05/27/2023]
Abstract
The traditional biological nitrogen removal (BNR) follows the conventional scheme of sequential nitrification and denitrification. In recent years, novel processes such as anaerobic ammonia oxidation (anammox), complete oxidation of ammonia to nitrate in one organism (comammox), heterotrophic nitrification and aerobic denitrification (HN-AD), and dissimilatory nitrate reduction to ammonium (DNRA) are gaining tremendous attention after the discovery of metabolically versatile bacteria. Among them, HN-AD offers several advantages because individual bacteria could achieve one-stage nitrogen removal under aerobic conditions in the presence of organic carbon. In this review, besides classical BNR processes, we summarized the existing literature on HN-AD bacteria which have been isolated from diverse habitats. A particular focus was given on the diversity and physiology of HN-AD bacteria, influences of physiological and biochemical factors on their growth, nitrogen removal performances, as well as limitations and strategies in unraveling HN-AD metabolic pathways. We also presented case studies of HN-AD application in wastewater treatment facilities, pointed out forthcoming challenges of HN-AD in these systems, and presented modulation strategies for HN-AD application in engineering. This review may help improve the existing design of wastewater treatment plants by harnessing HN-AD bacteria for effective nitrogen removal.
Collapse
Affiliation(s)
- Haipeng Xi
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhijun Luo
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
18
|
Chen J, Zhang S, Liu F, Luo P, Xiao R, Zhang M, Wu J. The immobilized Alcaligenes faecalis strain WT14 for removing high strength nitrate and reducing nitrite accumulation. ENVIRONMENTAL TECHNOLOGY 2022; 43:131-138. [PMID: 32508276 DOI: 10.1080/09593330.2020.1780476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Microbial immobilization is considered as one of the effective denitrification techniques in the treatment of high load wastewater. In this study, the immobilized cells consisting of polyvinyl alcohol (PVA), sodium alginate (SA), and calcium chloride (CaCl2) were inoculated with Alcaligenes faecalis strain WT14 to treat wastewater with high nitrate-nitrogen (NO3--N) concentrations. After 48 h of wastewater treatment, 26.2-89.4% of total nitrogen (TN) was removed by the immobilized Alcaligenes faecalis strain WT14. The response surface methodology revealed the highest TN removal efficiency by Alcaligenes faecalis strain WT14 occurred at the immobilized ratio of 9.3% of PVA, 2.2% of SA and 1.9% of CaCl2. Under the optimal ratio of PVA, SA, and CaCl2, the conditions for the maximum denitrification efficiency and TN removal were pH of 7, temperature of 40°C, and shaking speed of 60 rpm·min-1. Compared to the free cells, the immobilization cells had no obvious negative effect on denitrification efficiency, additionally reduced the nitrite accumulation, and thus improved the TN removal. Furthermore, the immobilized cells still maintained 95.4% of NO3--N removal after the eighth cycle reuse. These results demonstrated the immobilized Alcaligenes faecalis strain WT14 can remove TN effectively and additionally reduce nitrite accumulation in treating high strength NO3--N wastewater.
Collapse
Affiliation(s)
- Junli Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shunan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, People's Republic of China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, People's Republic of China
| | - Pei Luo
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, People's Republic of China
| | - Runlin Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, People's Republic of China
| | - Miaomiao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, People's Republic of China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
19
|
Qu J, Zhao R, Chen Y, Li Y, Jin P, Zheng Z. Enhanced nitrogen removal from low-temperature wastewater by an iterative screening of cold-tolerant denitrifying bacteria. Bioprocess Biosyst Eng 2021; 45:381-390. [PMID: 34859268 DOI: 10.1007/s00449-021-02668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
The biological process to remove nitrogen in winter effluent is often seriously compromised due to the effect of low temperatures (< 13 °C) on the metabolic activity of microorganisms. In this study, a novel heterotrophic nitrifying-aerobic denitrifying bacterium with cold tolerance was isolated by iterative domestication and named Moraxella sp. LT-01. The LT-01 maintained almost 60% of its maximal growth activity at 10 °C. Under initial concentrations of 100 mg/L, the removal efficiencies of ammonium, nitrate, nitrite by LT-01 were 70.3%, 65.4%, 61.7% respectively for 72 h incubation at 10 °C. Nitrogen balance analysis showed that about 46% of TN was released as gases and 16% of TN was assimilated for cell growth. The biomarker genes involved in nitrification and denitrification pathways were identified by gene-specific PCR and revealed that the LT-01 has nitrite reductase (NirS) but not hydroxylamine reductase (HAO), which implies the involvement of other genes in the process. The study indicates that LT-01 has the potential for use in low-temperature regions for efficient sewage treatment.
Collapse
Affiliation(s)
- Jin Qu
- School of Environmental and Resource, Zhejiang A and F University, Hangzhou, 311300, China
| | - Ruojin Zhao
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Yinyan Chen
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Yiyi Li
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Peng Jin
- College of Agricultural and Food Sciences, Zhejiang A and F University, Hangzhou, 311300, China
| | - Zhanwang Zheng
- School of Environmental and Resource, Zhejiang A and F University, Hangzhou, 311300, China. .,Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China.
| |
Collapse
|
20
|
Hou P, Sun X, Fang Z, Feng Y, Guo Y, Wang Q, Chen C. Simultaneous removal of phosphorous and nitrogen by ammonium assimilation and aerobic denitrification of novel phosphate-accumulating organism Pseudomonas chloritidismutans K14. BIORESOURCE TECHNOLOGY 2021; 340:125621. [PMID: 34325396 DOI: 10.1016/j.biortech.2021.125621] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas chloritidismutans K14, a novel phosphate-accumulating organism with the capacity to perform ammonium assimilation, aerobic denitrification, and phosphorus removal, was isolated from aquaculture sediments. It produced no hemolysin, and showed susceptibility to most antibiotics. Optimum conditions were achieved with sodium pyruvate as a carbon source, a C/N ratio of 10, pH of 7.5, temperature of 27 °C, P/N ratio of 0.26, and shaking at 140 rpm. Under optimum conditions, the highest removal efficiencies of ammonium, nitrite, and nitrate were 99.82%, 99.11%, and 99.78%, respectively; the corresponding removal rates were 6.27, 4.51, and 4.99 mg/L/h. The strain removed over 98% of phosphorus, and over 87% of chemical oxygen demand. The highest biomass nitrogen during ammonium assimilation was 99.18 mg/L; no gaseous nitrogen was produced. The genes involved in nitrogen and phosphorus removal were amplified by PCR. This study demonstrated the potential application prospects of strain K14 for nitrogen and phosphorus removal.
Collapse
Affiliation(s)
- Pengfei Hou
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Xueliang Sun
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; College of Environmental Science and Engineering, Tianjin University, Tianjin 300073, China
| | - Zhanming Fang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongyi Feng
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Yingying Guo
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Qingkui Wang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Chengxun Chen
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
21
|
Wang H, Gao Q, Liu S, Chen Q. Simultaneous nitrogen and carbon removal in a single biological aerated filter by the bioaugmentation with heterotrophic-aerobic nitrogen removal bacteria. ENVIRONMENTAL TECHNOLOGY 2021; 42:3716-3724. [PMID: 32149576 DOI: 10.1080/09593330.2020.1739147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
ABSTRACTAgrobacterium sp. LAD9 capable of heterotrophic-aerobic nitrogen removal was applied into a single biological aerated filter (BAF) for bioaugmented treatment of municipal wastewater. The achievement of simultaneous nitrogen and carbon removal in the bioaugmented system was systematically evaluated by ratios of COD to nitrogen (COD/N), ranging from 1 to 20. The results showed that at an appropriate COD/N ratio of 10, the BAF exhibited excellent carbon and nutrients removal, the averaged removal efficiencies for COD, NH4+-N and TN were 92.3%, 100% and 80.0%, respectively. Long-term operation of the bioaugmented system also confirmed the stability of the treatment efficiency. Further comparisons of SOUR and PCR-DGGE profiles between the bioaugmented and the control system revealed that the introduction of strain LAD9 greatly changed the structure of original microbial community and facilitated their capabilities of aerobic nutrients removal. The proposed bioaugmentation strategy is of particular importance to upgrading or retrofitting concurrent municipal wastewater treatment systems.
Collapse
Affiliation(s)
- Haizhen Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, People's Republic of China
| | - Qiang Gao
- State Key Lab Plateau Ecology and Agriculture, Qinghai University, Xining, People's Republic of China
| | - Shufeng Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, People's Republic of China
| | - Qian Chen
- State Key Lab Plateau Ecology and Agriculture, Qinghai University, Xining, People's Republic of China
| |
Collapse
|
22
|
Wang R, Xu Q, Chen C, Li X, Zhang C, Zhang D. Microbial nitrogen removal in synthetic aquaculture wastewater by fixed-bed baffled reactors packed with different biofilm carrier materials. BIORESOURCE TECHNOLOGY 2021; 331:125045. [PMID: 33798853 DOI: 10.1016/j.biortech.2021.125045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 05/12/2023]
Abstract
Fixed-bed baffled reactors packed with carbon fiber (CFBR), polyurethane, or non-woven fabrics were developed to support microbial nitrification-denitrification reactions for nitrogen removal from synthetic aquaculture wastewater. The CFBR showed the best performance, with a short hydraulic retention time and low C/N ratio. Microbial communities in the reactor's biofilms and deposited sludge were analyzed using high-throughput sequencing and quantitative polymerase chain reactions. The biofilms efficiently enriched the nitrifying and denitrifying bacteria in the CFBR. Moreover, bacteria capable of denitrification under aerobic conditions were detected in the aerobic chamber biofilm, showing positive correlations with the main nitrifiers and denitrifiers, which provides potential synergistic interactions for simultaneous nitrification-denitrification in the aerobic chamber. A network analysis revealed that the CFBR had more complex cooperative interactions than others. This study provides insights into the influence of different carrier materials on biofilm formation, proving that the CFBR has potential applications in aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, PR China
| | - Qiang Xu
- Ocean Academy, Zhejiang University, Zhoushan 316021, Zhejiang, PR China
| | - Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, PR China
| | - Xinkai Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, PR China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, PR China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, PR China.
| |
Collapse
|
23
|
Zheng Z, Ali A, Su J, Fan Y, Zhang S. Layered double hydroxide modified biochar combined with sodium alginate: A powerful biomaterial for enhancing bioreactor performance to remove nitrate. BIORESOURCE TECHNOLOGY 2021; 323:124630. [PMID: 33418348 DOI: 10.1016/j.biortech.2020.124630] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
A novel layered double hydroxide (LDH)-orange peel (OP) biochar/sodium alginate (SA) (LBSA) synthetic material was prepared as an immobilized carrier for Acinetobacter sp. FYF8 to improve the removal of nitrogen and phosphorus in the bioreactor. Results demonstrated that under optimum conditions, the nitrate and phosphate removal efficiency reached 95.32 and 86.11%, respectively. The response surface methodology was used to illustrate the adsorption properties of the material and obtained optimal conditions for the removal of nitrate. The adsorption kinetics and isotherm were well fitted with the pseudo-second-order and Langmuir isotherm model, respectively, indicating that the adsorption process was mainly controlled by chemical adsorption and was favorable. Moreover, the morphology and composition of LBSA immobilized bacteria were analyzed and the mechanism of removing nitrate and phosphate was the synergistic effect of biological metabolism and adsorption. Community structure analysis and microbial distribution showed that FYF8 might was the dominant strain in bioreactors.
Collapse
Affiliation(s)
- Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuanyuan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
24
|
Zhang M, Pan L, Su C, Liu L, Dou L. Simultaneous aerobic removal of phosphorus and nitrogen by a novel salt-tolerant phosphate-accumulating organism and the application potential in treatment of domestic sewage and aquaculture sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143580. [PMID: 33223174 DOI: 10.1016/j.scitotenv.2020.143580] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) and nitrogen (N) pollution are the worldwide challenging problem. In the present study, a new salt-tolerant phosphate-accumulating organism (PAO) was isolated and identified as Bacillus subtilis GHSP10. Strain GHSP10 did not produce hemolysin and showed high susceptibility to antibiotics. The favorable phosphorus removal C/N ratios, P/N ratios, temperature, salinities, pH values and shaking speeds of strain GHSP10 were 10-20, 0.1-0.2, 28 °C, 0-3%, 7.5-8.5 and 100-250 r/min. Besides, strain GHSP10 could conduct heterotrophic nitrification-aerobic denitrification and the maximal removal efficiencies of ammonium, nitrite and nitrate were 99.52%, 81.10% and 95.84% respectively. Moreover, the phosphorus removal process of strain GHSP10 was achieved under entirely aerobic conditions, and glycogen and poly-β-hydroxybutyrate could provide energy source for the phosphorus removal process of strain GHSP10. The amplification of ppk, hao, napA, narG, nirK genes as well as the expression of polyphosphate kinase helped to reveal the removal pathways of phosphorus and nitrogen, providing theoretical support for the phosphorus removal, nitrification and aerobic denitrification abilities of strain GHSP10. Furthermore, efficient removal of phosphorus and nitrogen from both domestic sewage and aquaculture sewage could be accomplished by strain GHSP10. This study may provide a hopeful candidate strain for simultaneous removal of phosphorus and nitrogen pollution from both freshwater sewage and saline sewage.
Collapse
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, China.
| | - Chen Su
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, China
| | - Liping Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, China
| | - Le Dou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, China
| |
Collapse
|
25
|
Zhao R, Cui Z, Pan B, Li Y, Chen Y, Qu J, Jin P, Zheng Z. Enhanced stability and nitrogen removal efficiency of Klebsiella sp. entrapped in chitosan beads applied in the domestic sewage system. RSC Adv 2020; 10:41078-41087. [PMID: 35519206 PMCID: PMC9057698 DOI: 10.1039/d0ra07732a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/02/2020] [Indexed: 01/19/2023] Open
Abstract
Although numerous denitrifying bacteria have been isolated and characterized, their capacity is seriously compromised by traditional inoculant addition and environmental stress in open bioreactors for wastewater treatment. In this study, a biocompatible material, chitosan, was used as a carrier to immobilize a simultaneously heterotrophic nitrifying-aerobic denitrifying bacterium Klebsiella sp., KSND, for continuous nitrogen removal from domestic wastewater in an open purification tank. The results showed that immobilization had no significant effect on cell viability and was beneficial for the reproduction and adhesion of cells. The entrapped KSND exhibited a slightly higher nitrogen removal efficiency of 90.09% than that of free KSND (87.69%). Subsequently, repeated batch cultivation experiments and analysis of the effects of organic contaminants and metal ions were performed using artificial wastewater and domestic wastewater. The findings revealed that the immobilized KSND beads presented desirable biophysical properties with good mechanical stability, cell viability, and enrichment, remarkable stability in organic contaminants and metal ions, and high efficiency nitrogen removal capacity. In conclusion, the developed immobilized denitrifying bacteria system has great potential for continuous wastewater treatment in open bioreactors.
Collapse
Affiliation(s)
- Ruojin Zhao
- School of Environmental & Resource, Zhejiang A & F University Hangzhou 311300 China
| | - Zhiwen Cui
- School of Environmental & Resource, Zhejiang A & F University Hangzhou 311300 China
| | - Biwen Pan
- Zhejiang Shuangliang Sunda Environment co, Ltd Hangzhou 310000 China
| | - Yiyi Li
- Zhejiang Shuangliang Sunda Environment co, Ltd Hangzhou 310000 China
| | - Yinyan Chen
- School of Environmental & Resource, Zhejiang A & F University Hangzhou 311300 China
| | - Jin Qu
- School of Environmental & Resource, Zhejiang A & F University Hangzhou 311300 China
| | - Peng Jin
- College of Agricultural and Food Sciences, Zhejiang A & F University Hangzhou 311300 China
| | - Zhanwang Zheng
- School of Environmental & Resource, Zhejiang A & F University Hangzhou 311300 China
- Zhejiang Shuangliang Sunda Environment co, Ltd Hangzhou 310000 China
| |
Collapse
|
26
|
Chen H, Zeng L, Wang D, Zhou Y, Yang X. Recent advances in nitrous oxide production and mitigation in wastewater treatment. WATER RESEARCH 2020; 184:116168. [PMID: 32683143 DOI: 10.1016/j.watres.2020.116168] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 05/21/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment plants has caused widespread concern. Over the past decade, people have made tremendous efforts to discover the microorganisms responsible for N2O production, elucidate metabolic pathways, establish production models and formulate mitigation strategies. The ultimate goal of all these efforts is to shed new light on how N2O is produced and how to reduce it, and one of the best ways is to find key opportunities by integrating the information obtained. This review article critically evaluates the knowledge gained in the field within a decade, especially in N2O production microbiology, biochemistry, models and mitigation strategies, with a focus on denitrification. Previous research has greatly deepened the understanding of the N2O generation mechanism, but further efforts are still needed due to the lack of standardized methodology for establishing N2O mitigation strategies in full-scale systems. One of the challenges seems to be to convert the denitrification process from a net N2O source into an effective sink, which is recommended as a key opportunity to reduce N2O production in this review.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Long Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao Yang
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
27
|
Yao Z, Yang L, Wang F, Tian L, Song N, Jiang H. Enhanced nitrate removal from surface water in a denitrifying woodchip bioreactor with a heterotrophic nitrifying and aerobic denitrifying fungus. BIORESOURCE TECHNOLOGY 2020; 303:122948. [PMID: 32058906 DOI: 10.1016/j.biortech.2020.122948] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
A heterotrophic nitrifying and aerobic denitrifying fungus was isolated from lake water and identified as Penicillium tropicum strain IS0293. The strain exhibited efficient heterotrophic nitrification-aerobic denitrification ability and could utilize ammonium, nitrite and nitrate as a sole nitrogen source. Batch tests demonstrated that strain IS0293 can remove nitrate using variety of organic carbon compounds as carbon sources. The effect of woodchip leachate collected at different degradation times on denitrification performance of the strain was also investigated. Furthermore, two denitrifying woodchip bioreactors were constructed to assess the bioaugmention of strain IS0293 for nitrate removal from surface water. Results demonstrated that the incubation of strain IS0293 enhanced the nitrate removal efficiency of the bioreactor. In addition, the average effluent TOC content of the bioaugmention bioreactor was 38.22% lower than the control bioreactor. This study would be valuable to develop an effective technology for nitrate-laden surface water under aerobic conditions.
Collapse
Affiliation(s)
- Zongbao Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liu Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
28
|
Xia L, Li X, Fan W, Wang J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. BIORESOURCE TECHNOLOGY 2020; 301:122749. [PMID: 31951959 DOI: 10.1016/j.biortech.2020.122749] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp. ND7 based on its phenotypic and phylogenetic characteristics, which had efficient capability for heterotrophic nitrification and aerobic denitrification. Strain ND7 could remove approximately 99.8% of ammonium-N (51.0 mg/L), 96.2% of nitrite-N (51.8 mg/L) and 97.18% of nitrate-N (52.1 mg/L), with the maximum specific removal rate of 5.74, 4.17 and 3.63 mg/(L h), respectively. Ammonium was manifested to be utilized preferentially during simultaneous nitrification and denitrification. The functional genes hao, napA and nirS were successfully amplified by PCR, further evidencing the heterotrophic nitrification and aerobic denitrification capability of Acinetobacter sp. ND7. The optimal conditions for nitrogen removal were temperature of 35 °C, C/N ratio of 8. Acinetobacter sp. ND7 displays superior performance for nitrogen removal, with no nitrite accumulation under aerobic condition, and thus has significant potential for practical application for nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Lin Xia
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xiaomin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, Haidian District, Beijing 100191, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
29
|
Huy Tran V, Lim S, Jun Park M, Suk Han D, Phuntsho S, Park H, Matsuyama H, Kyong Shon H. Fouling and performance of outer selective hollow fiber membrane in osmotic membrane bioreactor: Cross flow and air scouring effects. BIORESOURCE TECHNOLOGY 2020; 295:122303. [PMID: 31675518 DOI: 10.1016/j.biortech.2019.122303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
This study assessed impacts of cross-flow velocity (CFV) and air scouring on the performance and membrane fouling mitigation of a side-stream module containing outer-selective hollow fiber thin film composite forward osmosis membrane in osmosis membrane bioreactor (OMBR) system for urban wastewater treatment. CFV of draw solution was optimized, followed by the impact assessment of three CFVs on feed solution (FS) stream and periodic injection of air scouring into the side-stream module. Overall, the OMBR system exhibited high and stable performance with initial water flux of approximately 15 LMH, high removal efficiencies of bulk organic matter and nutrients. While FS's CFVs insignificantly affected the performance and membrane fouling, regular air scouring showed substantial impact with better performance and high efficiency in mitigating membrane fouling. These results indicated that periodic air scouring can be applied into the side-stream membrane module for efficient fouling mitigation without interruption the operation of the OMBR system.
Collapse
Affiliation(s)
- Van Huy Tran
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Sungil Lim
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Myoung Jun Park
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Dong Suk Han
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia.
| |
Collapse
|