1
|
Abdeldayem OM, Al Noman MA, Dupont C, Ferras D, Grand Ndiaye L, Kennedy M. Hydrothermal carbonization of Typha australis: Influence of stirring rate. ENVIRONMENTAL RESEARCH 2023; 236:116777. [PMID: 37517487 DOI: 10.1016/j.envres.2023.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
According to existing literature, there are no conclusive results on the impact of stirring on hydrothermal carbonization (HTC); some studies report a significant impact on the product's properties, while others indicate no influence. This study investigates the influence of stirring rate on several responses and properties of HTC products, including solid mass yield, solid carbon fraction, surface area, surface functional groups, morphology, and the fate of inorganic elements during HTC. Waste biomass was introduced as a feedstock to a 2 L HTC reactor, where the effects of temperature (180-250 °C), residence time (4-12 h), biomass to water (B/W) ratio (1-10%), and stirring rate (0-130 rpm) were investigated. The findings of this study conclusively indicated that the stirring rate does not influence any of the studied responses or properties of hydrochar under the selected experimental conditions used in this study. Nevertheless, the results indicated that a low-stirring rate (5 RPM) is enough to slightly enhanced the heating-up phase of the HTC reactor. For future research, it is recommended to examine the impact of stirring rate on the HTC of other types of biomass using the methodology developed in this study.
Collapse
Affiliation(s)
- Omar M Abdeldayem
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Capucine Dupont
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - David Ferras
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Lat Grand Ndiaye
- Department of Physics, University Assane Seck of Ziguinchor, BP.523, Ziguinchor, Senegal
| | - Maria Kennedy
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| |
Collapse
|
2
|
Chanpee S, Kaewtrakulchai N, Khemasiri N, Eiad-ua A, Assawasaengrat P. Nanoporous Carbon from Oil Palm Leaves via Hydrothermal Carbonization-Combined KOH Activation for Paraquat Removal. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165309. [PMID: 36014545 PMCID: PMC9416012 DOI: 10.3390/molecules27165309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
In this study, nano-porous carbon was completely obtained from oil palm leaves (OPL) by hydrothermal pretreatment with chemical activation, using potassium hydroxide (KOH) as an activating agent. Potassium hydroxide was varied, with different ratios of 1:0.25, 1:1, and 1:4 (C: KOH; w/w) during activation. The physical morphology of nano-porous carbon has a spongy, sponge-like structure indicating an increase in specific surface area and porosity with the increasing amount of KOH activating agent. The highest specific surface area of OPL nano-porous carbon is approximately 1685 m2·g-1, with a total pore volume of 0.907 cm3·g-1. Moreover, the OPL nano-porous carbon significantly showed a mesoporous structure designed specifically to remove water pollutants. The adsorptive behavior of OPL nano-porous carbon was quantified by using paraquat as the target pollutant. The equilibrium analyzes were explained by the Langmuir model isotherm and pseudo-second-order kinetics. The maximum efficiency of paraquat removal in wastewater was 79%, at a paraquat concentration of 400 mg·L-1, for 10 min in the adsorption experiment. The results of this work demonstrated the practical application of nano-porous carbon derived from oil palm leaves as an alternative adsorbent for removing paraquat and other organic matter in wastewater.
Collapse
Affiliation(s)
- Sirayu Chanpee
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Napat Kaewtrakulchai
- KUbiomass Laboratory, Kasetsart Agricultural and Agro-Industrail Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Narathon Khemasiri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand
| | - Apiluck Eiad-ua
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Pornsawan Assawasaengrat
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
- Correspondence: ; Tel.: +66-81-257-0484
| |
Collapse
|
3
|
Conversion of Waste Corn Straw to Value-Added Fuel via Hydrothermal Carbonization after Acid Washing. ENERGIES 2022. [DOI: 10.3390/en15051828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To enhance the hydrothermal carbonization (HTC) process on biomass waste and improve the quality of biomass solid fuel. Corn straw was pretreated with acid washing and subsequently hydrothermally carbonized at 180–270 °C. The solid product obtained (hydrochars) was compared with the solid product produced from untreated hydrothermally carbonized straw. The results show that the acid pretreatment removed 7.9% of the ash from the straw. ICP and XRD analysis show that most of the alkali and alkaline earth metals have been removed. This addresses the defect of high ash content as the HTC temperature increases. The HHV of hydrochars produced by HTC after acid washing can reach 27.7 MJ/kg, which is nearly 10% higher than that of hydrochars prepared without acid washing pretreatment, and nearly 70% higher than that of straw raw materials. Elemental analysis and FTIR analysis show that the acid washing pretreatment changed the content and structure of the biomass components in the straw, resulting in a more complete HTC reaction and higher carbon sequestration. The decrease of H/C and O/C deepened the degree of coal-like transformation of hydrochars, with the lowest approaching the bituminous coal zone. The combustion characteristics of the hydrochars prepared after acid washing were significantly upgraded, the comprehensive combustion index and thermal stability of hydrochars both increased. Therefore, HTC after acid washing pretreatment is beneficial to further improve the high heating value and combustion characteristics of hydrochar.
Collapse
|
4
|
Cheng C, He Q, Ismail TM, Mosqueda A, Ding L, Yu J, Yu G. Hydrothermal carbonization of rape straw: Effect of reaction parameters on hydrochar and migration of AAEMs. CHEMOSPHERE 2022; 291:132785. [PMID: 34742758 DOI: 10.1016/j.chemosphere.2021.132785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal carbonization (HTC) can improve biomass quality in both physical and chemical aspects for energy application. This study aims to investigate the characteristics and reactivities of rape straw (RS) hydrochars. Hydrochars were prepared at 160-240 °C with residence time of 15-120 min. Mass yield, energy yield, microstructure, functional group and migration of alkali and alkaline earth metals (AAEMs) were studied to evaluate the influence of different conditions on properties of hydrochar. The results showed that O/C and H/C ratio decreased, while the higher heating value (HHV) increased with increasing temperature and residence time. The effect of increasing temperature on hydrochar properties was more significant than residence time. The structure was changed, and hydrochar possessed a more stable form after the aromatization reaction. For the gasification reactivity of hydrochar, decomposition rate curves showed that the peak of pyrolysis and gasification moved to a higher temperature region with the increasing of HTC temperature because of the developed aromatic structures in hydrochar. The pyrolysis activation energy decreased from raw RS 71.68 to 41.03 kJ/mol in 240 °C, while gasification activation energy increased from 80.42 to 251.30 kJ/mol. Moreover, it was found that HTC can reduce the content of AAEMs efficiently and the best removal condition is 200 °C. Ca content dropped to a minimum value at 200 °C and then increased at higher temperature which may be caused by well-developed pore structure in hydrochars. This study provides basic data for comprehensive utilization of rape straw and migration mechanism of AAEMs in HTC process.
Collapse
Affiliation(s)
- Chen Cheng
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, China
| | - Qing He
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, China
| | - Tamer M Ismail
- Department of Mechanical Engineering, Suez Canal University, Ismailia, Egypt
| | - Alexander Mosqueda
- Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Lu Ding
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, China.
| | - Junqin Yu
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, China
| | - Guangsuo Yu
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, China; State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, Ningxia, China.
| |
Collapse
|
5
|
Abstract
Recently, due to the escalating usage of non-renewable fossil fuels such as coal, natural gas and petroleum coke in electricity and power generation, and associated issues with pollution and global warming, more attention is being paid to finding alternative renewable fuel sources. Thermochemical and hydrothermal conversion processes have been used to produce biochar and hydrochar, respectively, from waste renewable biomass. Char produced from the thermochemical and hydrothermal decomposition of biomass is considered an environmentally friendly replacement for solid hydrocarbon materials such as coal and petroleum coke. Unlike thermochemically derived biochar, hydrochar has received little attention due to the lack of literature on its production technologies, physicochemical characterization, and applications. This review paper aims to fulfill these objectives and fill the knowledge gaps in the literature relating to hydrochar. Therefore, this review discusses the most recent studies on hydrochar characteristics, reaction mechanisms for char production technology such as hydrothermal carbonization, as well as hydrochar activation and functionalization. In addition, the applications of hydrochar, mainly in the fields of agriculture, pollutant adsorption, catalyst support, bioenergy, carbon sequestration, and electrochemistry are reviewed. With advancements in hydrothermal technologies and other environmentally friendly conversion technologies, hydrochar appears to be an appealing bioresource for a wide variety of energy, environmental, industrial, and commercial applications.
Collapse
|
6
|
Photoluminescence with an unusual open-loop and rigid delocalized conjugated structure in quantum dots. J Colloid Interface Sci 2021; 601:385-396. [PMID: 34087599 DOI: 10.1016/j.jcis.2021.05.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022]
Abstract
It is well known that almost all photoluminescent molecules are aromatic or heterocyclic ring compounds for bioimaging analysis. A question remains as to whether a breakthrough can be achieved regarding a novel photoluminescent molecule without a ring structure, and in a what manner. In this study, we explored the photoelectric conversion and structure of photoluminescent compounds, and constructed an intra-molecular coupling positive-negative-junction (PNJ) with an open-loop and rigid Π56 delocalized conjugated structure of the coupling p-π conjugate system. This was performed to enable strong absorption of the R/tail-end band for the high probability of an n → π*/n → σ* electron transition for photoluminescence production. Subsequently, the Π56 structure was formed in a short-chain aliphatic molecule as a hydrolytic product of citric acid and urea, and computational methodology was employed to estimate the feasibility of the molecule photoluminescence. Finally, a quantum dot material was fabricated from the aliphatic molecule, the optical properties of the quantum dots were investigated, and the biocompatibility and bioimaging ability of quantum dots were assessed. This work presents not only a theoretical exploration but also practical application of a new strategy to obtain molecules, compounds, and materials with bioimaging.
Collapse
|
7
|
Huang Z, Shi L, Muhammad Y, Li L. Effect of ionic liquid assisted hydrothermal carbonization on the properties and gasification reactivity of hydrochar derived from eucalyptus. J Colloid Interface Sci 2021; 586:423-432. [DOI: 10.1016/j.jcis.2020.10.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
|
8
|
Su H, Zhou X, Zheng R, Zhou Z, Zhang Y, Zhu G, Yu C, Hantoko D, Yan M. Hydrothermal carbonization of food waste after oil extraction pre-treatment: Study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142192. [PMID: 32920412 DOI: 10.1016/j.scitotenv.2020.142192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
This study aims to convert oil extracted food waste (OEFW) into hydrochar as potential solid fuel via hydrothermal carbonization (HTC) process. The effect of HTC temperature and residence time on the physicochemical characteristic, combustion behavior, and the removal behavior of sodium and potassium were evaluated. The raw OEFW material was successfully converted into energy densified hydrochar with higher high heating value (HHV) (21.13-24.07 MJ/kg) and higher fuel ratio (0.112-0.146). In addition, carbon content in hydrochar increased to 46.92-51.82% after HTC at various operating conditions. Compared with OEFW, the hydrochar had more stable and longer combustion process with the higher ignition temperature and burnout temperature. Besides, the HTC process showed high removal rates of sodium and potassium. It was found that the HTC temperature resulted in a significant reduction of sodium and potassium in hydrochar as compared to the residence time. The highest removal rate of sodium (70.98%) and potassium (84.05%) was obtained. Overall, the results show that the HTC is a promising alternative for conventional technologies (e.g., incineration and landfill) for treatment and energy conversion of OEFW.
Collapse
Affiliation(s)
- Hongcai Su
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xuanyou Zhou
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rendong Zheng
- Hangzhou Linjiang Environmental Energy Co. Ltd., Hangzhou 311222, China
| | - Zhihao Zhou
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Zhang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gaojun Zhu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Caimeng Yu
- Zhejiang Zheneng Xingyuan Energy Saving Technology Co. Ltd, Hangzhou 310013, China
| | - Dwi Hantoko
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mi Yan
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Effect of Biochar Prepared from Food Waste through Different Thermal Treatment Processes on Crop Growth. Processes (Basel) 2021. [DOI: 10.3390/pr9020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biochar is generally accepted and increasingly valued in scientific circles as solid products in the thermochemical conversion of biomass, mainly because of its rich carbon content. The purpose of this research is to investigate the impact of biochar from different sources on wheat growth. In particular, this work focused on the effect of different preparation methods and raw material of biochar on the growth of wheat and aim to find a potential soil substitute that can be used for crop cultivation. Two synthetic methods were evaluated: hydrothermal conversion and pyrolysis. The characterization of biochar was determined to explore the impact of its microstructure on wheat growth. The results show that the yield of biochar produced from high-pressure reactor is significantly higher than that obtained by using microwave reactor. For example, the biochar yield obtained through the former is about six times that of the latter when using steamed bread cooked as biomass raw material. In addition, the growth trend of wheat indicates that biochar has different promoting effects on the growth of wheat in its weight and height. The pyrolyzed carbon is more suitable for wheat growth and is even more effective than soil, indicating that pyrolyzed biochar has more potential to be an alternative soil in the future. Moreover, this research tries to explore the reasons that affect crop growth by characterizing biochar (including scanning electron microscopy (SEM), biofilm electrostatic test (BET) and Fourier transform infrared (FT-IR)). The results indicate that the biochar containing more pits and less hydroxyl functional are more suitable for storing moisture, which is one of the significant factors in the growth of crops. This study provides evidence of the effects of biochar on crop growth, both in terms of microstructure and macroscopic growth trends, which provides significant benefits for biochar to grow crops or plants.
Collapse
|
10
|
Zhang C, Ma X, Huang T, Zhou Y, Tian Y. Co-hydrothermal carbonization of water hyacinth and polyvinyl chloride: Optimization of process parameters and characterization of hydrochar. BIORESOURCE TECHNOLOGY 2020; 314:123676. [PMID: 32599525 DOI: 10.1016/j.biortech.2020.123676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The co-hydrothermal carbonization (co-HTC) of water hyacinth (WH) and polyvinyl chloride (PVC) was investigated and the response surface methodology, which could deduce the interactions among process parameters and establish reliable mathematical models forecasting the behavior of output variables, was implemented to optimize process parameters, including reaction temperature (200-260 °C), residence time (30-90 min) and WH/PVC mixing ratios (0.5-2). Statistical analysis revealed that reaction temperature was the predominant parameter affecting hydrochar dechlorination efficiency, yield, calorific value, energetic recovery efficiency and electricity consumption. The predicted condition of 200-30-0.5 could simultaneously acquire the optimal energetic recovery efficiency and electricity consumption for producing unit HHV, corresponding to 94.96% and 13.81. The characterization results identified that hydrochar could harvest lower H/C and O/C ratios as well as superior inorganics removal ability. Overall, the co-HTC of WH and PVC could definitely be a promising alternative to bridge the gap from solid wastes to renewable fuels.
Collapse
Affiliation(s)
- Chaoyue Zhang
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China; School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoqian Ma
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China; School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China.
| | - Tao Huang
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China; School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yi Zhou
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China; School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yunlong Tian
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China; School of Electric Power, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
11
|
Li F, Zimmerman AR, Hu X, Yu Z, Huang J, Gao B. One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl 2. CHEMOSPHERE 2020; 254:126866. [PMID: 32348923 DOI: 10.1016/j.chemosphere.2020.126866] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Hydrochar, the product of hydrothermal carbonization of biomass, is a sustainable alternative to other carbonaceous environmental sorbents. However, its use has been limited due to its low surface area. A one-pot biomass/metal salt co-hydrothermal synthesis method might improve its sorptive properties while retaining its efficient production characteristic. Thus, bamboo sawdust and zinc chloride (ZnCl2) were combined in a hydrothermal reactor (200 °C, 7 h) for preparing modified hydrochar. Compared to the non-modified hydrochar, the hydrochar produced with the addition of ZnCl2 during hydrothermal treatment was more fully carbonized (C content increased from 54% to 64%), of higher surface area after acid washing (30 versus 1.7 m2 g-1), and enriched in O-containing functional groups and of greater aromaticity (according to FTIR and XRD analysis). Because of these improved properties, Methylene blue adsorption capacity of the modified hydrochar increased by nearly 90% and by 257% after it was rinsed with acid. This study highlights the potential of this one-pot co-hydrothermal treatment of biomass in presence of metal salt to provide a simple and effective hydrochar with properties suitable for environmental remediation and water treatment.
Collapse
Affiliation(s)
- Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang, 233100, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Xin Hu
- Center of Material Analysis, Nanjing University, Nanjing, 210093, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jun Huang
- Hualan Design & Consulting Group Co. Ltd., Nanning, 530011, China; College of Civil Engineering and Architecture Guangxi University, Nanning, 530004, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Zhang X, Xiang W, Wang B, Fang J, Zou W, He F, Li Y, Tsang DCW, Ok YS, Gao B. Adsorption of acetone and cyclohexane onto CO 2 activated hydrochars. CHEMOSPHERE 2020; 245:125664. [PMID: 31877458 DOI: 10.1016/j.chemosphere.2019.125664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Most of the volatile organic compounds (VOCs) are toxic and harmful to human health and environment. In this study, hydrochars activated with CO2 were applied to remove VOCs. Two typical VOCs, acetone and cyclohexane, were used as the 'model' adsorbates to evaluate hydrochars' performance. Specific surface areas of pristine hydrochars were small (<8 m2/g), whereas activated hydrochars showed much higher values (up to 1308 m2/g). As a result, the adsorption of VOCs onto the pristine hydrochars (13.24-24.64 mg/g) was lower than that of the activated ones (39.42-121.74 mg/g). The adsorption of the two VOCs onto the hydrochars was exothermal. In addition, there were significant correlations (R2 > 0.91) between the VOC removal and hydrochars' specific surface area. These results suggest that the governing mechanism was mainly physical adsorption. Increasing experimental temperature (80-139 °C) desorbed the VOCs from the hydrochars. Due to its higher boiling point, cyclohexane desorption required a higher temperature than acetone desorption. The reusability of the activated hydrochars to the two VOCs was confirmed by five continuous adsorption-desorption cycles. The overall results indicated that hydrochars, particularly after CO2 activation, are sufficient for VOC abatement.
Collapse
Affiliation(s)
- Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, PR China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210093, PR China
| | - Wei Xiang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, PR China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bing Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - June Fang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Weixin Zou
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210093, PR China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuncong Li
- Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
13
|
Preparation of Solid Fuel Hydrochar over Hydrothermal Carbonization of Red Jujube Branch. ENERGIES 2020. [DOI: 10.3390/en13020480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomass energy is becoming increasingly important, owing to the decreasing supply of fossil fuels and growing environmental problems. Hydrothermal carbonization (HTC) is a promising technology for producing solid biofuels from agricultural and forestry residues because of its lower fossil-fuel consumption. In this study, HTC was used to upgrade red jujube branch (RJB) to prepare hydrochar at six temperatures (220, 240, 260, 280, 300, and 320 °C) for 120 min, and at 300 °C for 30, 60, 90, and 120 min. The results showed that the energy recovery efficiency (ERE) reached maximum values of 80.42% and 79.86% at a residence time of 90 min and a reaction temperature of 220 °C, respectively. X-ray diffraction results and Fourier transform infrared spectroscopy measurements show that the microcrystal features of RJB were destroyed, whereas the hydrochar contained an amorphous structure and mainly lignin fractions at increased temperatures. Thermogravimetric analysis shows that the hydrochar had better fuel qualities than RJB, making hydrochar easier to burn.
Collapse
|
14
|
A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s42250-019-00098-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|