1
|
Abdolahpur Monikh F, Nguyen NHA, Bandekar M, Riha J, Bogialli S, Pastore P, Grossart HP, Sevcu A. Analytical methods for quantifying PS and PVC Nanoplastic attachment to activated sludge Bacteria and their impact on community structure. NANOIMPACT 2024; 35:100514. [PMID: 38821169 DOI: 10.1016/j.impact.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Nanoplastics are anticipated to be ubiquitous in various environmental compartments. However, challenges in analytical methods hinder our understanding of risks related to specific nanplastics characteristics such as size and chemical compositions, and interactions between nanoplastics and microorganisms. In this study, we applied fit-for-purpose analytical methods and techniques to understand how nanoplastic chemical composition influences their interaction with bacteria collected from activated sludge. When exposed to polystyrene (PS) and polyvinyl chloride (PVC) nanoplastics for 5 days, the nanoplastics attached to the bacteria. Specifically, on day 1, there was a significant predominance of PS nanoplastics over PVC ones of similar size and shape, possibly due to differences in their chemical composition. After 5 days, there is a substantial decrease in nanoplastics attached to bacteria, suggesting bacterial defence mechanisms may reduce particles attachment over time. The overall bacterial community structure demonstrated a high degree of resilience. This resilience highlights the ability of microbial communities to maintain their structure despite nanoplastic stressors, as evidenced by consistent alpha diversity, PCoA, and PERMANOVA results. Understanding these mechanisms is crucial for assessing nanoplastic fate and thus environmental impacts.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, 460 01 Liberec, Czech Republic; Department of Chemical Sciences, University of Padua, via Marzolo 1 - 35131, Padova, Italy; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhuette 2, 16775 Stechlin, Germany.
| | - Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, 460 01 Liberec, Czech Republic
| | - Mandar Bandekar
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu/Kuopio, Finland
| | - Jakub Riha
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, 460 01 Liberec, Czech Republic
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padua, via Marzolo 1 - 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padua, via Marzolo 1 - 35131, Padova, Italy
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhuette 2, 16775 Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, 460 01 Liberec, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic
| |
Collapse
|
2
|
Huang S, Kong Y, Chen Y, Huang X, Ma P, Liu X. Microbial denitrification characteristics of typical decentralized wastewater treatment processes based on 16S rRNA sequencing. Front Microbiol 2023; 14:1242506. [PMID: 37779708 PMCID: PMC10537219 DOI: 10.3389/fmicb.2023.1242506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Despite the widespread application of decentralized wastewater treatment (WWT) facilities in China, relatively few research has used the multi-media biological filter (MMBF) facilities to investigate the microorganism characteristics. This study utilizes 16S rRNA high-throughput sequencing (HTS) technology to examine the microbial biodiversity of a representative wastewater treatment (WWT) system in an expressway service area. The pathways of nitrogen removal along the treatment route were analyzed in conjunction with water quality monitoring. The distribution and composition of microbial flora in the samples were examined, and the dominant flora were identified using LEfSe analysis. The FAPROTAX methodology was employed to investigate the relative abundance of genes associated with the nitrogen cycle and to discern the presence of functional genes involved in nitrogen metabolism. On average, the method has a high level of efficiency in removing COD, TN, NH3-N, and TP from the effluent. The analysis of the microbial community identified a total of 40 phyla, 111 classes, 143 orders, 263 families, and 419 genera. The phyla that were predominantly observed include Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Nitrospirae, Bacteroidetes. The results show that the system has achieved high performance in nitrogen removal, the abundance of nitrification genes is significantly higher than that of other nitrogen cycle genes such as denitrification, and there are six nitrogen metabolism pathways, primarily nitrification, among which Nitrospirae and Nitrospira are the core differentiated flora that can adapt to low temperature conditions and participate in nitrification, and are the dominant nitrogen removal flora in cold regions. This work aims to comprehensively investigate the diversity and functional properties of the bacterial community in decentralized WWT processes.
Collapse
Affiliation(s)
- Shanqian Huang
- Center of Environment Protection, China Academy of Transportation Sciences, Beijing, China
| | - Yaping Kong
- Center of Environment Protection, China Academy of Transportation Sciences, Beijing, China
| | - Yao Chen
- Center of Environment Protection, China Academy of Transportation Sciences, Beijing, China
| | - Xuewen Huang
- Anhui Transportation Holding Group CO., LTD., Hefei, China
| | - Pengfei Ma
- Qinghai Expressway Maintenance Service CO., LTD., Xining, China
| | - Xuexin Liu
- Center of Environment Protection, China Academy of Transportation Sciences, Beijing, China
| |
Collapse
|
3
|
De Carluccio M, Sabatino R, Eckert EM, Di Cesare A, Corno G, Rizzo L. Co-treatment of landfill leachate with urban wastewater by chemical, physical and biological processes: Fenton oxidation preserves autochthonous bacterial community in the activated sludge process. CHEMOSPHERE 2023; 313:137578. [PMID: 36529163 DOI: 10.1016/j.chemosphere.2022.137578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The impact of Fenton oxidation (FO) and Air stripping (AS) pre-treatments on the bacterial community of a biological activated sludge (B-AS) process for the co-treatment of mature landfill leachate (MLL) and urban wastewater (UWW) was assessed. In this work high-throughput sequencing was used to identify changes in the composition of the bacterial communities when exposed to different landfill leachate's pre-treatments. The combination of FO and AS to increase biodegradability (BOD5/COD) and reduce ammonia concentration (NH3) respectively, allowed to successfully operate the B-AS and effectively treat MLL. In particular, BOD5/COD resulted to be the key factor for bacterial community shifting. The microbiological community of the B-AS, mainly composed by the phylum Bacteroidota (Saprospiraceae, PHOS-HE51, Chitinophagaceae) after FO pre-treatment, shifted to Pseudomonadota (Caulobacteraceae and Hyphomicrobiaceae) when FO was not used. At the same time a drastic reduction in BOD5 removal was observed (90%-58%). On the other hand, high NH3 concentration affected the abundance of the family Saprospiraceae, known to play a key role in the degradation of complex organic compounds in B-AS. The results obtained suggest that a suitable combination of pre-treatments can reduce the negative effect of MLL on the B-AS process, reducing the pressure on autochthonous bacteria and therefore the acclimatization time of the biological process.
Collapse
Affiliation(s)
- Marco De Carluccio
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano SA, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Ester M Eckert
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano SA, Italy.
| |
Collapse
|
4
|
Li Y, Cao P, Wang S, Xu X. Research on the treatment mechanism of anthraquinone dye wastewater by algal-bacterial symbiotic system. BIORESOURCE TECHNOLOGY 2022; 347:126691. [PMID: 35017090 DOI: 10.1016/j.biortech.2022.126691] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
This study analyzed the role of algae and bacteria in algal-bacterial symbiotic systems for the treatment of dyeing wastewater. The mechanism was investigated by constructing an algae-bacteria tandem system (A system) and a bacteria-algae tandem system (B system). The results showed that the chemical oxygen demand (COD) removal and decolorization rates of A system reached 91% and 90%, respectively, under optimal conditions, which were higher than that of B system. The degradation pathways of A and B systems differed according the degradation product analysis. High-throughput sequencing analysis revealed that Proteobacteria were the dominant bacteria in A and B systems. Armatimonadetes increased considerably in A system. These results show that algae mainly contributed to the preliminary degradation of anthraquinone dye, and resulting products were easily degraded by bacteria. This study provides guidance on the optimization of the system. It can be better adapted to the actual needs of wastewater treatment plants.
Collapse
Affiliation(s)
- Yangyang Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Peng Cao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Corps Industrial Technology Research Institute, Shihezi, Xinjiang 832000, China.
| | - Shuai Wang
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Xiaolin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Corps Industrial Technology Research Institute, Shihezi, Xinjiang 832000, China
| |
Collapse
|
5
|
Water Resource Recovery Facilities (WRRFs): The Case Study of Palermo University (Italy). WATER 2021. [DOI: 10.3390/w13233413] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The wastewater sector paradigm is shifting from wastewater treatment to resource recovery. In addition, concerns regarding sustainability during the operation have increased. In this sense, there is a need to break barriers (i.e., social, economic, technological, legal, etc.) for moving forward towards water resource recovery facilities and demonstration case studies can be very effective and insightful. This paper presents a new water resource recovery case study which is part of the Horizon 2020 EU Project “Achieving wider uptake of water-smart solutions—Wider Uptake”. The final aim is to demonstrate the importance of a resource recovery system based on the circular economy concept. The recovery facilities at Palermo University (Italy) are first presented. Afterwards, the resource recovery pilot plants are described. Preliminary results have underlined the great potential of the wastewater treatment plant in terms of resources recovery and the central role of the University in fostering the transition towards circular economy. The fermentation batch test highlighted a volatile fatty acids (VFAs) accumulation suitable for polyhydroxyalkanoates (PHAs) production. The results of static adsorption and desorption tests showed that the highest amount of adsorbed NH4+ was recorded for untreated and HCl-Na treated clinoptilolite.
Collapse
|
6
|
Enhancing a Transition to a Circular Economy in the Water Sector: The EU Project WIDER UPTAKE. WATER 2021. [DOI: 10.3390/w13070946] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wastewater treatment plants (WWTPs) require an urgent transition from a linear to a circular economy operation/design concept with a consequent resource recovery and more sustainable waste management. Natural resources have to be preserved, and wastes have to become an opportunity for recovering resources and materials (water reuse, energy, sludge reuse). However, the transition toward a circular economy is a complex and long process due to the existence of technical, economic, social and regulatory barriers. These existing barriers are critical challenges for a modern and sustainable WWTP concept. The recovery of resources must be considered a strategic target from the earliest process-design phase. In this context, the European Union’s Horizon 2020 project “Achieving wider uptake of water-smart solutions—WIDER UPTAKE” aims to overcome the existing barriers (technological, regulatory, organizational, social and economic) toward the transition from a linear to a circular economy model for WWTPs. This study is aimed at increasing the awareness of the existing barriers to a circular economy and summarizes the key contributions of the WIDER UPTAKE project in terms of water reuse, sludge reuse and nutrient recovery.
Collapse
|
7
|
Shitu A, Zhu S, Qi W, Tadda MA, Liu D, Ye Z. Performance of novel sponge biocarrier in MBBR treating recirculating aquaculture systems wastewater: Microbial community and kinetic study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111264. [PMID: 32854050 DOI: 10.1016/j.jenvman.2020.111264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel sponge biocarriers (SB) in moving bed bioreactor (MBBR) treating recirculating aquaculture systems wastewater was evaluated for the first time. Two lab-scale MBBRs were operated simultaneously for 116 days under various hydraulic retention times (HRTs). The reactors R1 and R2 were filled with K5 plastic carriers and SB, respectively. From the results, at an optimum HRT of 6 h, ammonia removal efficiency and nitrification rate were 86.67 ± 2.4% and 1.43 mg/L.h for the R1 and, 91.65 ± 1.3% and 1.52 mg/L.h for the R2, respectively. The microbial community analysis showed that the predominant genera in the nitrifying community were Nitrosomonas (AOB) and Nitrospira (NOB) in co-existence with heterotrophic genera Hyphomicrobium, Mesorhizobium, Zhizhongheella, and Klebsiella spp. Modified Stover-Kincannon model examined the ammonia removal kinetics, and the values of kinetic parameters obtained were Umax: 0.909 and 1.111 g/L.d and KB: 0.929 and, 1.108 g/L.d for the R1 and R2, respectively. The correlation coefficients (R2) of the MBBRs were higher than 0.98, indicating that the model adequately described the experimental data. Overall, MBBR, filled with the proposed novel SB operated at 6 h HRT, can achieve the highest nitrification performance and increase the diversity of the functional microbial communities.
Collapse
Affiliation(s)
- Abubakar Shitu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Songming Zhu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Wanhe Qi
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Musa Abubakar Tadda
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Zhangying Ye
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| |
Collapse
|