1
|
Tian Y, Chen W, Liu H, Su L, Yang S, Tian W, Zhang H, Zhang T, Niu J. Are adding carbon sources and activated sludge helpful to the full-scale packing-reinforced multistage biological contact oxidation process? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124461. [PMID: 39914207 DOI: 10.1016/j.jenvman.2025.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The performance of wastewater treatment plants (WWTPs) is closely related to the structure and function of microbial communities which are frequently regulated by inoculating carbon source or new microbes. However, the status of microbial communities may be determined by the homeostasis of the bioreactors or properties of the influent especially in full-scale wastewater treatment plants. In this study, a full-scale packing-reinforced multistage biological contact oxidation process (PMBCOP) was used for investigating the durative impacts of carbon source addition and new sludge inoculation on the structure, stability and metabolic pathways of microbial communities. The results showed that inoculation of carbon sources or new sludge significantly increased the diversity (Chao1 and Shannon index) and reciprocal cooperations among microorganisms which further improved the stability of microbial communities and the COD (by 15%) and NH3-N (by 3%) removal efficiencies. Proteobacteria and Bacteroidota were two dominant phyla in the system and were responsible for the main metabolic pathway, i.e. amino acid metabolism. Nevertheless, the modifications of key genera, stability, up-regulated metabolites and enriched metabolic pathways as well as the improved removal efficiencies were not able to persist. The resistant ability of microbial community declined after stopping adding carbon source and new sludge which resulted in the instability and low removal efficiencies of the PMBCOP and aroused the requirements on exploring deep homeostatic mechanism of microbial communities and new promoting strategies. This study provided new insights on the durative effects on the succession and metabolism of microbial communities combing with the performances of the full-scale wastewater treatment plant which is helpful for the management of full-scale WWTPs.
Collapse
Affiliation(s)
- Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Wenjing Chen
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei, 050011, China
| | - Liangfeng Su
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Shaoxia Yang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Tian Zhang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Junfeng Niu
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
2
|
Dong H, Tian Y, Lu J, Zhao J, Tong Y, Niu J. Bioaugmented biological contact oxidation reactor for treating simulated textile dyeing wastewater. BIORESOURCE TECHNOLOGY 2024; 404:130916. [PMID: 38823560 DOI: 10.1016/j.biortech.2024.130916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
In this study, modified polyamide fibers were used as biocarriers to enrich dense biofilms in a multi-stage biological contact oxidation reactor (MBCOR) in which partitioned wastewater treatment zone (WTZ) and bioaugmentation zone (BAZ) were established to enhance the removal of methyl orange (MO) and its metabolites while minimizing sludge yields. WTZ exhibited high biomass loading capacity (5.75 ± 0.31 g/g filler), achieving MO removal rate ranging from 68 % to 86 % under different aeration condition within 8 h in which the most dominant genus Chlorobium played an important role. In the BAZ, Pseudoxanthomonas was the dominant genus while carbon starvation stimulated the enrichment of chemoheterotrophy and aerobic_chemoheterotrophy genes thereby enhanced the microbial utilization of cell-released substrates, MO as well as its metabolic intermediates. These results revealed the mechanism bioaugmentation on MBCOR in effectively eliminating both MO and its metabolites.
Collapse
Affiliation(s)
- Hongyu Dong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China.
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
3
|
Tong T, Tong J, Xue K, Li Y, Yu J, Wei Y. Microbial community structure and functional prediction in five full-scale industrial park wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166529. [PMID: 37625722 DOI: 10.1016/j.scitotenv.2023.166529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The development of industrial parks has become an important global trend contributing significantly to economic and industrial growth. However, this growth comes at a cost, as the treatment of multisource industrial wastewater generated in these parks can be difficult owing to its complex composition. Microorganisms play a critical role in pollutant removal during industrial park wastewater treatment. Therefore, our study focused on the microbial communities in five full-scale industrial park wastewater treatment plants (WWTPs) with similar treatment processes and capacities. The results showed that denitrifying bacteria were dominant in almost every process section of all the plants, with heterotrophic denitrification being the main pathway. Moreover, autotrophic sulfur denitrification and methane oxidation denitrification may contribute to total nitrogen (TN) removal. In plants where the influent had low levels of COD and TN, dominant bacteria included oligotrophic microorganisms like Prosthecobacter (2.88 % ~ 10.02 %) and hgcI_clade (2.05 % ~ 9.49 %). Heavy metal metabolizing microorganisms, such as Norank_f__PHOS-HE36 (3.96 % ~ 5.36 %) and Sediminibacterium (1.86 % ~ 5.34 %), were prevalent in oxidation ditch and secondary settling tanks in certain plants. Functional Annotation of Prokaryotic Taxa (FAPROTAX) revealed that microbial communities in the regulation and hydrolysis tanks exhibited higher potential activity in the nitrogen (N) and sulfur (S) cycles than those in the oxidation ditch. Sulfate/sulfite reduction was common in most plants, whereas the potential occurrence of sulfide compounds and thiosulfate oxidation tended to be higher in plants with a relatively high sulfate concentration and low COD content in their influent. Our study provides a new understanding of the microbial community in full-scale industrial park WWTPs and highlights the critical role of microorganisms in the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Tujun Tong
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; China Energy Conservation and Environmental Protection Group, Beijing 100082, China
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Keni Xue
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanan Li
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiangze Yu
- University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Li P, Liang X, Shi R, Wang Y, Han S, Zhang Y. Unraveling the functional instability of bacterial consortia in crude oil degradation via integrated co-occurrence networks. Front Microbiol 2023; 14:1270916. [PMID: 37901814 PMCID: PMC10602786 DOI: 10.3389/fmicb.2023.1270916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Soil ecosystems are threatened by crude oil contamination, requiring effective microbial remediation. However, our understanding of the key microbial taxa within the community, their interactions impacting crude oil degradation, and the stability of microbial functionality in oil degradation remain limited. Methods To better understand these key points, we enriched a crude oil-degrading bacterial consortium generation 1 (G1) from contaminated soil and conducted three successive transfer passages (G2, G3, and G4). Integrated Co-occurrence Networks method was used to analyze microbial species correlation with crude oil components across G1-G4. Results and discussion In this study, G1 achieved a total petroleum hydrocarbon (TPH) degradation rate of 32.29% within 10 days. Through three successive transfer passages, G2-G4 consortia were established, resulting in a gradual decrease in TPH degradation to 23.14% at the same time. Specifically, saturated hydrocarbon degradation rates ranged from 18.32% to 14.17% among G1-G4, and only G1 exhibited significant aromatic hydrocarbon degradation (15.59%). Functional annotation based on PICRUSt2 and FAPROTAX showed that functional potential of hydrocarbons degradation diminished across generations. These results demonstrated the functional instability of the bacterial consortium in crude oil degradation. The relative abundance of the Dietzia genus showed the highest positive correlation with the degradation efficiency of TPH and saturated hydrocarbons (19.48, 18.38, p < 0.05, respectively), Bacillus genus demonstrated the highest positive correlation (21.94, p < 0.05) with the efficiency of aromatic hydrocarbon degradation. The key scores of Dietzia genus decreased in successive generations. A significant positive correlation (16.56, p < 0.05) was observed between the Bacillus and Mycetocola genera exclusively in the G1 generation. The decline in crude oil degradation function during transfers was closely related to changes in the relative abundance of key genera such as Dietzia and Bacillus as well as their interactions with other genera including Mycetocola genus. Our study identified key bacterial genera involved in crude oil remediation microbiome construction, providing a theoretical basis for the next step in the construction of the oil pollution remediation microbiome.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Rongjiu Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yongfeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Siqin Han
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
5
|
Yan B, Jiang L, Zhou H, Okokon Atakpa E, Bo K, Li P, Xie Q, Li Y, Zhang C. Performance and microbial community analysis of combined bioreactors in treating high-salinity hydraulic fracturing flowback and produced water. BIORESOURCE TECHNOLOGY 2023; 386:129469. [PMID: 37451509 DOI: 10.1016/j.biortech.2023.129469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The anoxic/oxic systems are a widely used biological strategy for wastewater treatment. However, little is known about the performance and microbial community correlation of different combined bioreactors in the treatment of high-COD and high-salinity hydraulic fracturing flowback and produced water (HF-FPW). In this study, the performance of Up-flow anaerobic sludge bed-bio-contact oxidation reactor (UASB-BCOR) and Fixed-bed baffled reactor (FBR-BCOR) in treating HF-FPW was investigated and compared. The results suggested the FBR-BCOR could efficiently remove COD, SS, NH4+-N, and oil pollutants, and it exhibited better resistance to the negative interference of hydraulic shock load on it. Besides, the correlation analysis first disclosed the key functional genera during the degradation process, including Ignavibacterium, Ellin6067, and Zixibacteria. Moreover, network analysis revealed that the difference of microbial co-occurrence network structure is the main driving factor for the difference of bioreactor processing capacity. This work demonstrates the feasibility and potential of FBR-BCOR in treating HF-FPW.
Collapse
Affiliation(s)
- Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Lijia Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Edidiong Okokon Atakpa
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Kuiyong Bo
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Pingyuan Li
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Qinglin Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
6
|
Yin S, Zhang W, Tong T, Yu C, Chang X, Chen K, Xing Y, Yang Y. Feedstock-dependent abundance of functional genes related to nitrogen transformation controlled nitrogen loss in composting. BIORESOURCE TECHNOLOGY 2022; 361:127678. [PMID: 35872270 DOI: 10.1016/j.biortech.2022.127678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The objective of this work was to explore how selection of feedstock affects nitrogen cycle genes during composting, which eventually determines the nitrogen loss. Four composting mixes (CM: chicken manure; SM: sheep manure; MM1/3: mixed manure with CM: SM = 1:3 w/w, MM3/1: CM: SM = 3:1 w/w) were investigated. Results showed that adding 25 % and 75 % SM to CM reduced 26.5 % and 57.9 % nitrogen loss, respectively. CM contained more ammonification genes and nrfA gene, while SM had more denitrification genes. Nitrogen fixation genes in CM were slightly higher than that in SM at the initial stage, but they sharply dropped off as the composting entered the high temperature stage. MM1/3 showed significantly reduced ammonification genes than CM, and increased nitrogen fixation and NH4+ assimilation genes. Therefore, adding SM to CM could change the abundance of genes and enzymes related to nitrogen cycle to reduce nitrogen loss.
Collapse
Affiliation(s)
- Siqian Yin
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wenming Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Tianjian Tong
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames 50010, USA
| | - Chenxu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames 50010, USA
| | - Xinyi Chang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Kaishan Chen
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yanhong Xing
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yingxiang Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
7
|
Qian G, Liu P, Wei L, Mackey H, Hao T. Can a compact biological system be used for real hydraulic fracturing wastewater treatment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151524. [PMID: 34752873 DOI: 10.1016/j.scitotenv.2021.151524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Hydraulic fracturing wastewater (HFW), a byproduct of hydraulic fracturing oil extraction, contains a complex mixture of oil, aldehydes, and benzene compounds. Efficient and eco-friendly HFW treatment means are critical for the oil extraction industry, particularly in developing countries. In this study, two biological processes namely an anaerobic/anoxic/moving bed biofilm reactor (A2-MBBR) and an A2-MBBR with a microfiltration membrane (A2-MFMBBR) were established, and assessed for the real HFW treatment. Removal efficiencies of chemical oxygen demand (COD) and NH4+-N were over 92% and 95%, respectively, in both processes with a hydraulic retention time of 72 h. The majority of organic compounds in both systems identified by GC-MS were degraded in the anaerobic units. In comparison, A2-MFMBBR demonstrated higher removal efficiencies for oil, total suspended solids, and complex compounds. The average relative abundances of refractory compound degrading bacteria were 43.4% and 51.6% in the A2-MBBR and A2-MFMBBR, respectively, which was consistent with the COD and oil removal, and suggested that the MBR could maintain a high diversity of microorganisms and contribute to deep recalcitrant organics degradation. This study sheds light on the potential of using a compact biological process for the real HFW treatment.
Collapse
Affiliation(s)
- Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Pu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China.
| | - Hamish Mackey
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 999043, Qatar
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
8
|
Singh S, Rinta-Kanto JM, Lens PNL, Kokko M, Rintala J, O'Flaherty V, Ijaz UZ, Collins G. Microbial community assembly and dynamics in Granular, Fixed-Biofilm and planktonic microbiomes valorizing Long-Chain fatty acids at 20 °C. BIORESOURCE TECHNOLOGY 2022; 343:126098. [PMID: 34626764 DOI: 10.1016/j.biortech.2021.126098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Distinct microbial assemblages evolve in anaerobic digestion (AD) reactors to drive sequential conversions of organics to methane. The spatio-temporal development of three such assemblages (granules, biofilms, planktonic) derived from the same inoculum was studied in replicated bioreactors treating long-chain fatty acids (LCFA)-rich wastewater at 20 °C at hydraulic retention times (HRTs) of 12-72 h. We found granular, biofilm and planktonic assemblages differentiated by diversity, structure, and assembly mechanisms; demonstrating a spatial compartmentalisation of the microbiomes from the initial community reservoir. Our analysis linked abundant Methanosaeta and Syntrophaceae-affiliated taxa (Syntrophus and uncultured) to their putative, active roles in syntrophic LCFA bioconversion. LCFA loading rates (stearate, palmitate), and HRT, were significant drivers shaping microbial community dynamics and assembly. This study of the archaea and syntrophic bacteria actively valorising LCFAs at short HRTs and 20 °C will help uncover the microbiology underpinning anaerobic bioconversions of fats, oil and grease.
Collapse
Affiliation(s)
- Suniti Singh
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33104 Tampere University, Finland; UNESCO-IHE, Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands; School of Chemical and Biological Sciences, and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Johanna M Rinta-Kanto
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Piet N L Lens
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33104 Tampere University, Finland; UNESCO-IHE, Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Jukka Rintala
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Vincent O'Flaherty
- School of Chemical and Biological Sciences, and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Umer Zeeshan Ijaz
- Water and Environment Group, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom.
| | - Gavin Collins
- School of Chemical and Biological Sciences, and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; Water and Environment Group, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| |
Collapse
|
9
|
Vico P, Iriarte A, Bonilla S, Piccini C. Metagenomic analysis of Raphidiopsisraciborskii microbiome: beyond the individual. Biodivers Data J 2021; 9:e72514. [PMID: 34754266 PMCID: PMC8553701 DOI: 10.3897/bdj.9.e72514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Raphidiopsisraciborskii is a toxic, invasive bacteria with a defined biogeographic pattern attributed to the generation of ecotypes subjected to local environmental filters and to phenotypic plasticity. The interactions taking place between the cyanobacterium and the other bacteria inhabiting the external polysaccharide-rich matrix surrounding the cells, or phycosphere, may be ecotype-specific and would have different influence on the carbon and nutrient cycling in the ecosystem. Here, we describe the bacterial community or microbiome (assessed by 16S rRNA metagenomics) associated to two R.raciborskii strains that have been described as different ecotypes: the saxitoxin-producer MVCC19 and the non-toxic LB2897. Our results showed that both ecotypes share 50% of their microbiomes and differ in their dominant taxa. The taxon having the highest abundance in the microbiome of MVCC19 was Neorhizobium (22.5% relative abundance), while the dominant taxon in LB2897 was the PlanctomycetesSM1A02 (26.2% relative abundance). These groups exhibit different metabolic capabilities regarding nitrogen acquisition (symbiotic nitrogen-fixing in Neorhizobium vs. anammox in SM1A02), suggesting the existence of ecotype-specific microbiomes that play a relevant role in cyanobacterial niche-adaptation. In addition, as saxitoxin and analogues are nitrogen-rich (7 atoms per molecule), we hypothesise that saxitoxin-producing R.raciborskii benefits from external sources of nitrogen provided by the microbiome bacteria. Based on these findings, we propose that the mechanisms involved in the assembly of the cyanobacterial microbiome community are ecotype-dependent.
Collapse
Affiliation(s)
- Paula Vico
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Andrés Iriarte
- Instituto de Higiene, Facultad de Medicina, UDELAR, Montevideo, Uruguay Instituto de Higiene, Facultad de Medicina, UDELAR Montevideo Uruguay
| | - Sylvia Bonilla
- Sección Limnología. Facultad de Ciencias, UDELAR, Montevideo, Uruguay Sección Limnología. Facultad de Ciencias, UDELAR Montevideo Uruguay
| | - Claudia Piccini
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| |
Collapse
|
10
|
Sun C, Zhang B, Ning D, Zhang Y, Dai T, Wu L, Li T, Liu W, Zhou J, Wen X. Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants: Diversity, composition, phylogenetic group based assembly and co-occurrence pattern. WATER RESEARCH 2021; 200:117295. [PMID: 34091223 DOI: 10.1016/j.watres.2021.117295] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The optimal operation and functional stability of a wastewater treatment plant (WWTP) strongly depend on the properties of its microbial community. However, a knowledge gap remains regarding the seasonal dynamics of microbial community properties, especially phylogenetic group based assembly and co-occurrence patterns. Accordingly, in this study, influent and activated sludge (AS) samples were weekly collected from 2 full-scale WWTPs for one year (89 influent and 103 AS samples in total) and examined by high-throughput Illumina-MiSeq sequencing. The results suggested that the microbial community diversity and composition in the influent fluctuated substantially with season, while those in the AS had a relatively more stable pattern throughout the year. The phylogenetic group based assembly mechanisms of AS community were identified by using "Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model (iCAMP)". The results showed that drift accounted for the largest proportion (52.8%), while homogeneous selection (18.2%) was the most important deterministic process. Deterministic processes dominated in 47 microbial groups (bins), which were also found (~40%) in the AS core taxa dataset. Moreover, the results suggested that Nitrospira were more susceptible to stochastic processes in winter, which may provide a possible explanation for nitrification failure in winter. Network analysis results suggested that the network structure of the AS community could be more stable in summer and autumn. In addition, there were no identical keystone taxa found in different networks (constructed from different plants, sources, and seasons), which supported the context dependency theory. The results of this study deepened our understanding of the microbial ecology in AS systems and provided a foundation for further studies on the community regulation strategy of WWTPs.
Collapse
Affiliation(s)
- Chenxiang Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Bing Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Ya Zhang
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Tianjiao Dai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Linwei Wu
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Tianle Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jizhong Zhou
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Zhao ZQ, Wei XM, Shen XL, Abbas G, Fan R, Jin Y. Aerobic degradation of 4-fluoroaniline and 2,4-difluoroaniline: performance and microbial community in response to the inocula. Biodegradation 2021; 32:53-71. [PMID: 33428058 DOI: 10.1007/s10532-021-09925-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022]
Abstract
In this study, a distinct inoculum was investigated as an isolated variable within sequencing batch reactors via a comparison of the 4-fluoroaniline (4-FA) or 2,4-difluoroaniline (2,4-DFA) removal amounts. The inocula were derived from a treatment plant for treating pharmaceutical wastewater plus a small amount of municipal sewage (PMS), a treatment plant for treating fluoridated hydrocarbon wastewater (FHS), and a treatment plant for treating the comprehensive wastewater in an industrial park (CIS). There were slight differences among the degradation patterns of the 4-FA for the three inocula, whether during the enrichment period or the high concentration shock period. In contrast, it was observed that the degradation efficiency of 2,4-DFA initially varied with the inocula. The FHS-derived inoculum was determined to be optimal, exhibiting the earliest degradation reaction only after an acclimation of 7 days had the highest degradation rate constant of 0.519 h-1, and had the fastest recovery time of three weeks after high concentration shock. Additionally, compared with the PMS-derived inoculum, the CIS-derived inoculum exhibited an earlier degradation reaction within three weeks, and a higher microbial diversity, but a lower shock resistance and degradation rate constant of 0.257 h-1. High-throughput sequencing demonstrated that each final consortium was different in composition, and the microbial consortia developed well on the inoculum and substrate. In comparison of the similarity among the three 2,4-DFA enrichment cultures, the higher similarity (63.9-70.0%) among three final consortia enriching with 4-FA was observed. The results indicated that the inoculum played an important role in the degradation of FAs and the microbial bacterial communities of final consortia, and the effect extent might well depend on the fluorinated level of FAs.
Collapse
Affiliation(s)
- Zhi-Qing Zhao
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China. .,College of Environment & Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Xiao-Meng Wei
- Key Laboratory of Agro-Ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Xiao-Li Shen
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujrat, Gujrat, 50700, Pakistan
| | - Rui Fan
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Yi Jin
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| |
Collapse
|
12
|
Li Y, He C, Li Z, Zhang Y, Wu B, Shi Q. Molecular transformation of dissolved organic matter in refinery wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:107-119. [PMID: 32910796 DOI: 10.2166/wst.2020.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) has an important impact on the water treatment and reuse of petroleum refinery wastewater. In order to improve the treatment efficiency, it is necessary to understand the chemical composition of the DOM in the treatment processes. In this paper, the molecular composition of DOM in wastewater samples from a representative refinery were characterized. The transformation of various compounds along the wastewater treatment processes was investigated. A total of 61 heteroatomic class species were detected from the DOM extracts, in which CHO (molecules composed of carbon, hydrogen, and oxygen atoms) and CHOS (CHO molecules that also contained sulfur) class species were the most abundant and account for 78.43% in relative mass peak abundance. The solid phase extraction DOM from the dichloromethane unextractable fraction exhibited a more complex molecular composition and contained more oxygen atoms than in the dichloromethane extract. During wastewater treatment processes, the chemical oxygen demand (COD) and ammonia-nitrogen were reduced by more than 90%. Volatile organic compounds (VOCs) accounted for about 30% of the total COD, in which benzene and toluene were dominant. After biochemical treatment, the VOCs were effectively removed but the molecular diversity of the DOM was increased and new compounds were generated. Sulfur-containing class species were more recalcitrant to biodegradation, so the origin and transformation of these compounds should be the subject of further research.
Collapse
Affiliation(s)
- Yuguo Li
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| | - Ze Li
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Yuxi Zhang
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; Daqing Oilfield Water Company, Daqing, Heilongjiang 163454, China
| | - Baichun Wu
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| |
Collapse
|
13
|
Gao Y, Kong X, Zhou A, Yue X, Luo Y, Defemur Z. Enhanced degradation of quinoline by coupling microbial electrolysis cell with anaerobic digestion simultaneous. BIORESOURCE TECHNOLOGY 2020; 306:123077. [PMID: 32155565 DOI: 10.1016/j.biortech.2020.123077] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, the feasibility of quinoline-wastewater treatment was investigated in a coupled microbial electrolysis cell and anaerobic digestion system (MEC-AD). Improved degradation and enhanced mineralization of quinoline were obtained, and the optimal voltage was determined to be 1.0 V. Effective removal of quinoline at relative high concentration, and a 1.5-fold increase in methane production were achieved. The results indicated that the MEC-AD could simultaneously remove carbon and nitrogen from quinoline. Gas chromatography-mass spectrometry analysis identified 2-hydroxyquinoline and 8-hydroxycoumarin as the intermediates of quinoline. The formation and degradation of metabolites were rapid, and they did not accumulate in the MEC-AD. The results of microbial community structure analysis demonstrated that the functional species were enriched and coexisted, and that the dominant bacterial genera were SM1A02, Comamonas, Desulfovibrio, Geobacter, and Actinomarinales_norank; the dominant archaeal genera were Methanocorpusculum and Nitrosoarchaeum. Furthermore, the applied current played a selective role in the enrichment of microorganisms.
Collapse
Affiliation(s)
- Yanjuan Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yanhong Luo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zafiry Defemur
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
14
|
Jia JX, Gao JF, Dai HH, Zhang WZ, Zhang D, Wang ZQ. DNA-based stable isotope probing identifies triclosan degraders in nitrification systems under different surfactants. BIORESOURCE TECHNOLOGY 2020; 302:122815. [PMID: 32000131 DOI: 10.1016/j.biortech.2020.122815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Three widely-used surfactants, rhamnolipid (RL), sophorolipid (SL) and sodium dodecyl benzene sulfonate (SDBS), were chosen to investigate their effects on the nitrification systems treating step-wised triclosan (TCS). Surfactants had little effects on nitrification. Surfactants could promote the desorption of TCS and enhance the TCS biodegradation in nitrification systems. And TCS biodegradation efficiencies obtained with RL, SL and SDBS were 1.25, 1.23 and 1.14 times higher than the control with 9.0 mg/L TCS, respectively. Illumina MiSeq sequencing showed that Amaricoccus could be resistant to TCS. And Amaricoccus, detected with RL, SL and SDBS, were more abundant than the control. DNA-based stable isotope probing assays revealed Amaricoccus was the major TCS degrader. And the addition of surfactants could obviously increase the diversity of active TCS degraders, especially for biosurfactants. It seems that the addition of surfactants showed positive effects for the nitrification systems treating TCS wastewater.
Collapse
Affiliation(s)
- Jing-Xin Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Hui-Hui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wen-Zhi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhi-Qi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Song J, Zhang W, Gao J, Hu X, Zhang C, He Q, Yang F, Wang H, Wang X, Zhan X. A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: Performance and microbial community. BIORESOURCE TECHNOLOGY 2020; 296:122344. [PMID: 31708387 DOI: 10.1016/j.biortech.2019.122344] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 05/27/2023]
Abstract
In this work, a pilot-scale low dissolved oxygen (DO) composite biological system (LDOCBS) composed of an anoxic rotating biological contactor (RBC) and four aeration tanks with gradient aeration was used to treat landfill leachate for 88 d. The maximum removals of 85.65%, 99.92% and 84.06% for chemical oxygen demand (COD), ammonia (NH4+-N) and total nitrogen (TN) were achieved, respectively. The three-dimensional exaction and emission matrix (3D-EEM) fluorescence spectroscopy revealed that the biodegradability of leachate was significantly improved by the LDOCBS. Mass balance calculations showed that the COD removal and denitrification process mainly occurred in RBC while 1# contributed primarily to nitrification. High-throughput sequencing analysis indicated that denitrifying bacteria with highly relative abundances of 46.45%-53.81% played key roles in organic degradation and nitrogen removal. This work could add some guiding insights into the cost-efficient treatment of landfill leachate by the composite biological system.
Collapse
Affiliation(s)
- Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan 430072, China; School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Junfeng Gao
- Wuhan Environment Investment & Development Group Municipal Waste Management Co., Ltd, Wuhan 430014, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Chenlu Zhang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Fei Yang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Xueyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xiang Zhan
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|