1
|
Zhao Y, Yuan X, Du Z, Niu J, Song J, Zhai S, Liu Y, Nuramkhaan M. New insights into N 2O emission and electron competition under different chemical oxygen demand to nitrogen ratios in a biofilm system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175265. [PMID: 39102953 DOI: 10.1016/j.scitotenv.2024.175265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Nitrous oxide (N2O) is a greenhouse gas that could accumulate during the heterotrophic denitrification process. In this study, the effects of different chemical oxygen demand to nitrogen ratio (COD/N) on N2O production and electron competition was investigated. The electron competition was intensified with the decrease of electron supply, and Nos had the best electron competition ability. The model simulation results indicated that the degradation of NOx-Ns was a combination of diffusion and biological degradation. As reaction proceeding, N2O could accumulate inside biofilm. A thinner biofilm and a longer hydraulic retention time (HRT) might be an effective way to control N2O emission. The application of mathematical model is an opportunity to gain deep understanding of substrate degradation and electron competition inside biofilm.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Yuan
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Zihan Du
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China; Hebei Construction & Investment Group Rong Carbon Asset Management CO., LTD, 18F, Building 3, Hongrui Building, No. 6 Yuguang Street, Qiaoxi District, Shijiazhuang City, Hebei 050000, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Marjangul Nuramkhaan
- Laboratory of Microbiology, Institute of Biology, Mongolian Academy of Sciences, Peace avenue-54b, Ulaanbaatar, Mongolia
| |
Collapse
|
2
|
Lancioni N, Szelag B, Sgroi M, Barbusiński K, Fatone F, Eusebi AL. Novel extended hybrid tool for real time control and practically support decisions to reduce GHG emissions in full scale wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121502. [PMID: 38936025 DOI: 10.1016/j.jenvman.2024.121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
In this paper, a novel methodology and extended hybrid model for the real time control, prediction and reduction of direct emissions of greenhouse gases (GHGs) from wastewater treatment plants (WWTPs) is proposed to overcome the lack of long-term data availability in several full-scale case studies. A mechanistic model (MCM) and a machine learning (ML) model are combined to real time control, predict the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) as well as effluent quality (COD - chemical oxygen demand, NH4-N - ammonia, NO3-N - nitrate) in activated sludge method. For methane (CH4), using the MCM model, predictions are performed on the input data (VFA, CODs for aerobic and anaerobic compartments) to the MLM model. Additionally, scenarios were analyzed to assess and reduce the GHGs emissions related to the biological processes. A real WWTP, with a population equivalent (PE) of 125,000, was studied for the validation of the hybrid model. A global sensitivity analysis (GSA) of the MCM and a ML model were implemented to assess GHGs emission mechanisms the biological reactor. Finally, an early warning tool for the prediction of GHGs errors was implemented to assess the accuracy and the reliability of the proposed algorithm. The results could support the wastewater treatment plant operators to evaluate possible mitigation scenarios (MS) that can reduce direct GHG emissions from WWTPs by up to 21%, while maintaining the final quality standard of the treated effluent.
Collapse
Affiliation(s)
- Nicola Lancioni
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Bartosz Szelag
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; Department of Geotechnics and Water Engineering, Kielce University of Technology, Al. Tysiąclecia Pa' nstwa Polskiego 7, 25-314, Kielce, Poland.
| | - Massimiliano Sgroi
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Krzysztof Barbusiński
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18 St., 44-100, Gliwice, Poland
| | - Francesco Fatone
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Anna Laura Eusebi
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
3
|
Ayotte SH, Allen CR, Parker A, Stein OR, Lauchnor EG. Greenhouse gas production from an intermittently dosed cold-climate wastewater treatment wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171484. [PMID: 38462002 DOI: 10.1016/j.scitotenv.2024.171484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
This study explores the greenhouse gas (GHG) fluxes of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) from a two-stage, cold-climate vertical-flow treatment wetland (TW) treating ski area wastewater at 3 °C average water temperature. The system is designed like a modified Ludzack-Ettinger process with the first stage a partially saturated, denitrifying TW followed by an unsaturated nitrifying TW and recycle of nitrified effluent. An intermittent wastewater dosing scheme was established for both stages, with alternating carbon-rich wastewater and nitrate-rich recycle to the first stage. The system has demonstrated effective chemical oxygen demand (COD) and total inorganic nitrogen (TIN) removal in high-strength wastewater over seven years of winter operation. Following two closed-loop, intensive GHG winter sampling campaigns at the TW, the magnitude of N2O flux was 2.2 times higher for denitrification than nitrification. CH4 and N2O emissions were strongly correlated with hydraulic loading, whereas CO2 was correlated with surface temperature. GHG fluxes from each stage were related to both microbial activity and off-gassing of dissolved species during wastewater dosing, thus the time of sampling relative to dosing strongly influenced observed fluxes. These results suggest that estimates of GHG fluxes from TWs may be biased if mass transfer and mechanisms of wastewater application are not considered. Emission factors for N2O and CH4 were 0.27 % as kg-N2O-N/kg-TINremoved and 0.04 % kg-CH4-C/kg-CODremoved, respectively. The system had observed seasonal emissions of 600.5 kg CO2 equivalent of GHGs estimated over 130-days of operation. These results indicate a need for wastewater treatment processes to mitigate GHGs.
Collapse
Affiliation(s)
- S H Ayotte
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA; Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - C R Allen
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA
| | - A Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA
| | - O R Stein
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA
| | - E G Lauchnor
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA; Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
4
|
Zhang A, Zhu M, Zheng Y, Tian Z, Mu G, Zheng M. The significant contribution of comammox bacteria to nitrification in a constructed wetland revealed by DNA-based stable isotope probing. BIORESOURCE TECHNOLOGY 2024; 399:130637. [PMID: 38548031 DOI: 10.1016/j.biortech.2024.130637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The discovery of Comammox bacteria (CMX) has changed our traditional concept towards nitrification, yet its role in constructed wetlands (CWs) remains unclear. This study investigated the contributions of CMX and two canonical ammonia-oxidizing microorganisms, ammonia-oxidizing bacteria (AOB) and archaea to nitrification in four regions (sediment, shoreside, adjacent soil, and water) of a typical CW using DNA-based stable isotope probing. The results revealed that CMX not only widely occurred in sediment and shoreside zones with high abundance (5.08 × 104 and 6.57 × 104 copies g-1 soil, respectively), but also actively participated in ammonia oxidation, achieving ammonia oxidation rates of 1.43 and 2.00 times that of AOB in sediment and shoreside, respectively. Phylogenetic analysis indicated that N. nitrosa was the dominant and active CMX species. These findings uncovered the crucial role of CMX in nitrification of sediment and shoreside, providing a new insight into nitrogen cycle of constructed wetlands.
Collapse
Affiliation(s)
- Anqi Zhang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mingyang Zhu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yize Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Guangli Mu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
5
|
Wu T, Yang SS, Zhong L, Pang JW, Zhang L, Xia XF, Yang F, Xie GJ, Liu BF, Ren NQ, Ding J. Simultaneous nitrification, denitrification and phosphorus removal: What have we done so far and how do we need to do in the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158977. [PMID: 36155040 DOI: 10.1016/j.scitotenv.2022.158977] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen and phosphorus contamination in wastewater is a serious environmental concern and poses a global threat to sustainable development. In this paper, a comprehensive review of the studies on simultaneous nitrogen and phosphorus removal (SNPR) during 1986-2022 (538 publications) was conducted using bibliometrics, which showed that simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) is the most promising process. To better understand SNDPR, the dissolved oxygen, carbon to nitrogen ratio, carbon source type, sludge retention time, Cu2+ and Fe3+, pH, salinity, electron acceptor type of denitrifying phosphorus-accumulating organisms (DPAOs), temperature, and other influencing factors were analyzed. Currently, SNDPR has been successfully implemented in activated sludge systems, aerobic granular sludge systems, biofilm systems, and constructed wetlands; sequential batch mode of operation is a common means to achieve this process. SNDPR exhibits a significant potential for phosphorus recovery. Future research needs to focus on: (1) balancing the competitiveness between denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs, and countermeasures to deal with the effects of adverse conditions on SNDPR performance; (2) achieving SNDPR in continuous flow operation; and (3) maximizing the recovery of P during SNDPR to achieve resource sustainability. Overall, this study provides systematic and valuable information for deeper insights into SNDPR, which can help in further research.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, China
| | - Luyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xue-Fen Xia
- Institute of New Rural Development, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150008, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Zhu H, Li W, Chen X, Mu H, Hu K, Ren S, Peng Y, Zhao R, Wang Y. Effects of sponge iron dosage on nitrogen removal performance and microbial community structure in sequencing batch reactors. BIORESOURCE TECHNOLOGY 2023; 368:128307. [PMID: 36370944 DOI: 10.1016/j.biortech.2022.128307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The application of sponge iron (SI) carriers can improve the biochemical treatment performance of sequencing batch reactors (SBR) during wastewater treatment. This study used SBR reactors to explore the effects of SI dosage on the nitrogen removal performance and reactor stability and microbial community structure under low temperature and ultra-low load. In contrast to conventional SBR, the average removal rate of total nitrogen (TN) in the biological sponge iron system (BSIS) was increased by 5.38 % for 45 g/L, 18.93 % for 90 g/L, and 13.52 % for 135 g/L, respectively. The nitrogen removal performance and reactor stability showed the best performance under the SI dosage of 90 g/L. The addition of SI formed the anaerobic-anoxic-aerobic microenvironments, which facilitate the propagation of denitrifying bacteria (Saccharimonadales, Hydrogenophaga) and iron bacteria (Rhodoferax and Acinetobacter) in the BSIS. This study provides a new insight on the application of SI in the wastewater treatment.
Collapse
Affiliation(s)
- Hongjuan Zhu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xinjuan Chen
- Department of Architecture and Materials Technology, Xinjiang Industry Technical College, Urumqi 830021, China
| | - Hao Mu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kaiyao Hu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shuang Ren
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuzhuo Peng
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruifeng Zhao
- Jiuquan Iron & Steel (Group) Co., Ltd, Jiayuguan 735100, China
| | - Yae Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
7
|
Yao H, Gao X, Guo J, Wang H, Zhang L, Fan L, Jia F, Guo J, Peng Y. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies- a critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120295. [PMID: 36181929 DOI: 10.1016/j.envpol.2022.120295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, significantly contributes to the carbon footprint of wastewater treatment plants (WWTPs) and contributes significantly to global climate change and to the deterioration of the natural environment. Our understanding of N2O generation mechanisms has significantly improved in the last decade, but the development of effective N2O emission mitigation strategies has lagged owing to the complexity of parameter regulation, substandard monitoring activities, and inadequate policy criteria. Based on critically screened published studies on N2O control in full-scale WWTPs, this review elucidates N2O generation pathway identifications and emission mechanisms and summarizes the impact of N2O on the total carbon footprint of WWTPs. In particular, a linear relationship was established between N2O emission factors and total nitrogen removal efficiencies in WWTPs located in China. Promising N2O mitigation options were proposed, which focus on optimizing operating conditions and implementation of innovative treatment processes. Furthermore, the sustainable operation of WWTPs has been anticipated to convert WWTPs into absolute greenhouse gas reducers as a result of the refinement and improvement of on-site monitoring activities, mitigation mechanisms, regulation of operational parameters, modeling, and policies.
Collapse
Affiliation(s)
- Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Xinyu Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jingbo Guo
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Liru Fan
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
8
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
9
|
Dang C, Wu Z, Zhang M, Li X, Sun Y, Wu R, Zheng Y, Xia Y. Microorganisms as bio-filters to mitigate greenhouse gas emissions from high-altitude permafrost revealed by nanopore-based metagenomics. IMETA 2022; 1:e24. [PMID: 38868568 PMCID: PMC10989947 DOI: 10.1002/imt2.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2024]
Abstract
The distinct climatic and geographical conditions make high-altitude permafrost on the Tibetan Plateau suffer more severe degradation than polar permafrost. However, the microbial responses associated with greenhouse gas production in thawing permafrost remain obscured. Here we applied nanopore-based long-read metagenomics and high-throughput RNA-seq to explore microbial functional activities within the freeze-thaw cycle in the active layers of permafrost at the Qilian Mountain. A bioinformatic framework was established to facilitate phylogenetic and functional annotation of the unassembled nanopore metagenome. By deploying this strategy, 42% more genera could be detected and 58% more genes were annotated to nitrogen and methane cycle. With the aid of such enlarged resolution, we observed vigorous aerobic methane oxidation by Methylomonas, which could serve as a bio-filter to mitigate CH4 emissions from permafrost. Such filtering effect could be further consolidated by both on-site gas phase measurement and incubation experiment that CO2 was the major form of carbon released from permafrost. Despite the increased transcriptional activities of aceticlastic methanogenesis pathways in the thawed permafrost active layer, CH4 generated during the thawing process could be effectively consumed by the microbiome. Additionally, the nitrogen metabolism in permafrost tends to be a closed cycle and active N2O consumption by the topsoil community was detected in the near-surface gas phase. Our findings reveal that although the increased thawed state facilitated the heterotrophic nitrogen and methane metabolism, effective microbial methane oxidation in the active layer could serve as a bio-filter to relieve the overall warming potentials of greenhouse gas emitted from thawed permafrost.
Collapse
Affiliation(s)
- Chenyuan Dang
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- Laboratory of High‐Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical PhysicsChinese Academy of Sciences (CAS)DalianChina
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Miao Zhang
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Xiang Li
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Marine Archaea Geo‐Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Yuqin Sun
- Shenzhen Key Laboratory of Marine Archaea Geo‐Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
- State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Ren'an Wu
- Laboratory of High‐Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical PhysicsChinese Academy of Sciences (CAS)DalianChina
| | - Yan Zheng
- Shenzhen Key Laboratory of Marine Archaea Geo‐Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
- State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control, School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Yu Xia
- School of Environmental Science and Engineering, College of EngineeringSouthern University of Science and TechnologyShenzhenChina
- Shenzhen Key Laboratory of Marine Archaea Geo‐Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
10
|
Asadi M, McPhedran KN. Greenhouse gas emission estimation from municipal wastewater using a hybrid approach of generative adversarial network and data-driven modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149508. [PMID: 34391143 DOI: 10.1016/j.scitotenv.2021.149508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Greenhouse gas (GHG) emissions including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) created via wastewater treatment processes are not easily modeled given the non-linearity and complexity of biological processes. These factors are also impacted by limited data availability making the development of artificial data generation algorithms, such as a generative adversarial network (GAN), useful for determination of GHG emission rate estimates (EREs). The main objective of this study was to develop a hybrid approach of using GAN and regression modelling to determine GHG EREs from a cold-region biological nutrient removal (BNR) municipal wastewater treatment plant (MWTP) in which the aerobic reactor has previously been established as the main GHG emission source. To our knowledge, this is the first application of GAN used for MWTP modelling purposes. The EREs were generated from laboratory-scale reactors used in conjunction with facility-monitored operating parameters to develop the GAN and regression models. Results showed that regression models provided reasonable EREs using parameters including hydraulic retention time (HRT), temperature, total organic carbon, and dissolved oxygen (DO) concentrations for CO2 EREs; HRT, temperature, DO and phosphate (PO43-) concentrations for CH4 EREs; and temperature, DO, and nitrogen (nitrite, nitrate, and ammonium) concentrations for N2O EREs. Additionally, the addition of 100 GAN-created virtual data points improved regression model metrics including increased correlation coefficient and index agreement values, and decreased root mean square error values. Clearly, virtual data augmentation using GAN is a valuable resource in supplementation of limited data for improved modelling outcomes. Genetic algorithm optimization was also used to determine operating parameter modifications resulting in potential for minimization (or maximization) of GHG emissions.
Collapse
Affiliation(s)
- Mohsen Asadi
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerry Neil McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
11
|
Tian Z, Zhou N, You W, He D, Chang F, Zheng M. Mitigating NO and N 2O emissions from a pilot-scale oxidation ditch using bioaugmentation of immobilized aerobic denitrifying bacteria. BIORESOURCE TECHNOLOGY 2021; 340:125704. [PMID: 34375792 DOI: 10.1016/j.biortech.2021.125704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Nitrous oxide (N2O) emission from wastewater treatment plants (WWTPs) requires urgent mitigation because of its significant contribution to the greenhouse effect. In this study, bioaugmentation was applied in a pilot-scale oxidation ditch with the aerobic denitrifying bacteria strain PCN-1 immobilized on polyurethane biocarriers, which demonstrated effective N2O mitigation. Microbial community analysis suggested that the bioaugmentation facilitated a symbiotic relationship of the bacterial populations between the activated sludge and the biocarriers. The denitrifying bacteria with well-known N2O reducing capabilities predominated on the biocarriers. Correspondingly, the increases of denitrifying genes and NO and N2O reductase provided evidence for the enhanced genetic potential for NO and N2O reduction. Besides, the enriched comammox Nitrospira on the biocarriers is proposed as another significant driver for N2O mitigation by avoiding nitrite accumulation. In addition, the bioaugmentation enhanced the stability and recovery capability of the system in the ammonia overload and aeration failure shock tests.
Collapse
Affiliation(s)
- Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing 102206, China
| | - Nan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing 102206, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
12
|
Guo J, Cong Q, Zhang J, Zhang L, Meng L, Liu M, Ma F. Nitrous oxide emission in a laboratory anoxic-oxic process at different influent pHs: Generation pathways and the composition and function of bacterial community. BIORESOURCE TECHNOLOGY 2021; 328:124844. [PMID: 33609882 DOI: 10.1016/j.biortech.2021.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
This study focused on the nitrous oxide (N2O) generation from the biological nitrogen removal process under different pH levels. To explore a pH optimum, the online N2O emission and the bacterial composition and function in the anoxic-oxic process were investigated. The mean gaseous N2O emission accounted for 0.329%, 0.103%, 0.085%, and 0.793% of the influent total nitrogen at pH of 5, 6, 8, and 9, respectively. Incomplete oxidation in oxic tanks was the primary source of N2O, while N2O in the anoxic tank was mainly generated by nitrifier denitrification. No direct correlations were observed between N2O emission and potential nitrifiers and denitrifiers. The impacts of pH on N2O generation were more likely related to the response of bacterial enzymes and nitrogen compounds, rather than the feedback of bacterial community structure itself. Above all, an influent pH range of 6-8 is recommended for nitrogen removal and N2O mitigation in anoxic-oxic process.
Collapse
Affiliation(s)
- Jingbo Guo
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Qiwei Cong
- Weihai Water Group Co. LTD, Weihai 264200, China; School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jun Zhang
- Storage Center of Jilin Petrochemical Company, Jilin 132000, China
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Lingwei Meng
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Mingwei Liu
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Comparison of bacterial communities and antibiotic resistance genes in oxidation ditches and membrane bioreactors. Sci Rep 2021; 11:8955. [PMID: 33903636 PMCID: PMC8076264 DOI: 10.1038/s41598-021-88335-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Oxidation ditches (ODs) and membrane bioreactors (MBRs) are widely used in wastewater treatment plants (WWTPs) with bacteria and antibiotic resistance genes (ARGs) running through the whole system. In this study, metagenomic sequencing was used to compare the bacterial communities and ARGs in the OD and MBR systems, which received the same influent in a WWTP located in Xinjiang, China. The results showed that the removal efficiency of pollutants by the MBR process was better than that by the OD process. The composition and the relative abundance of bacteria in activated sludge were similar at the phylum and genus levels and were not affected by process type. Multidrug, fluoroquinolones and peptides were the main ARG types for the two processes, with macB being the main ARG subtype, and the relative abundance of ARG subtypes in MBR effluent was much higher than that in the OD effluent. The mobile genetic elements (MGEs) in the activated sludge were mainly transposons (tnpA) and insertion sequences (ISs; IS91). These results provide a theoretical basis for process selection and controlling the spread of ARGs.
Collapse
|
14
|
Zheng M, Zhou N, He S, Chang F, Zhong J, Xu S, Wang Z, Liu T. Nitrous oxide (N 2O) emissions from a pilot-scale oxidation ditch under different COD/N ratios, aeration rates and two shock-load conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111657. [PMID: 33229113 DOI: 10.1016/j.jenvman.2020.111657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Nitrous oxide (N2O) generated from wastewater treatment plants (WWTPs) has drawn attention due to its high emission load and significant greenhouse effect. In the present study, N2O emissions from a pilot-scale Carrousel oxidation ditch under various chemical oxygen demand (COD) to nitrogen ratio (COD/N) and aeration rates were systematically investigated. The highest N2O emission factor was 0.142 ± 0.013%, at COD/N of 5 and aeration rate of 1.8 m3 h-1, which was much lower than the majority of previous studies. The results could be attributed to the high internal recycle ratio of the oxidation ditch process which lightened the burden of influent load to the system. The profiles of N2O emissions and dissolved N2O concentration along the channels showed a distinct spatial variation that N2O emissions primarily occurred in the aeration zones due to the air stripping effect. However, both the aeration and anoxic zones contributed to N2O generation due to autotrophic nitrification (AN), which was considered to be the main N2O generation process. In addition, two simulated shock-load conditions, ammonia overload shock and aeration failure shock, were carried out to explore the response of the biological nitrogen removal (BNR) system. The results indicated that both shock-loads lead to excessive N2O emissions, especially at higher aeration rates, which could be explained by the improved N2O generation by AN process during the shock-load period. This study offered new insights into the role of operational parameters to N2O emission and the alternative approach for N2O mitigation during both the steady-state operation and shock-load conditions in the oxidation ditch process.
Collapse
Affiliation(s)
- Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, China
| | - Nan Zhou
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, China
| | - Shishi He
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin, 300456, China
| | - Jie Zhong
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, China
| | - Shuo Xu
- Beijing Municipal Environmental Monitoring Center, Beijing, 100048, China
| | - Zhe Wang
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, China
| | - Tang Liu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
15
|
Yan X, Zheng S, Yang J, Ma J, Han Y, Feng J, Su X, Sun J. Effects of hydrodynamic shear stress on sludge properties, N 2O generation, and microbial community structure during activated sludge process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111215. [PMID: 32814212 DOI: 10.1016/j.jenvman.2020.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Sludge properties are critical to the treatment performance and potentially correlate with nitrous oxide (N2O) generation during activated sludge processes. The hydrodynamic shear stress induced by aeration has a significant influence on sludge properties and is inevitable for wastewater treatment plants (WWTPs). In this study, the effects of aerobic induced hydrodynamic shear stress on sludge properties, N2O generation, and microbial community structure were investigated using three parallel sequencing batch reactors (SBRs) with identical dissolved oxygen (DO) concentrations. Results showed that with a shear stress increase from 1.5 × 10-2 N/m2 to 5.0 × 10-2 N/m2, the COD and NH4+-N removal rates were enhanced from 89.4% to 94.0% and from 93.9% to 98.0%, respectively, while the TN removal rate decreased from 66.0% to 56.5%. Settleability of the activated sludge flocs (ASFs) also increased with the enhancement of shear stress, due to variation in sludge properties including particle size, regularity, compactibility, and EPS (extracellular polymeric substances) composition. The increase in shear stress promoted oxygen diffusion within the ASFs and mitigated NO2--N accumulation, leading to a decrease in the N2O-N conversion rate from (4.8 ± 0.3)% to (2.2 ± 0.6)% (based on TN removal). Microbial analysis results showed that the functional bacteria involved in the biological nitrogen removal was closely related with shear stress. The increase in shear stress favored the enrichment of nitrite oxidizing bacteria (NOB) while suppressed the accumulation of ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (DNB).
Collapse
Affiliation(s)
- Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Shikan Zheng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jie Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jiahui Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinglan Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xianfa Su
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| |
Collapse
|
16
|
Koh SH, Shaw AR. Gaseous emissions from wastewater facilities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1412-1417. [PMID: 32574390 DOI: 10.1002/wer.1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics relating to gaseous emissions from wastewater facilities is presented. This review is divided into the following sections: odorant emissions from Water Resource Recovery Facilities (WRRFs); greenhouse gas (GHG) emissions; gaseous emissions from wastewater collection systems; physiochemical odor/emissions control methods; biological odor/emissions control methods; odor/GHG characterization and monitoring; and odor impacts/risk assessments. © 2020 Water Environment Federation PRACTITIONER POINTS: Provide a quick reference list for readers who do not have time to go through the 2019 published articles. This prescreening of relevant literatures will save them time and effort. Utilities, engineers, and researchers can identify knowledge gaps, which help them to plan for future testing and R&D needs. Designers can make use of the lit review findings to support their design.
Collapse
|
17
|
Chen H, Zeng L, Wang D, Zhou Y, Yang X. Recent advances in nitrous oxide production and mitigation in wastewater treatment. WATER RESEARCH 2020; 184:116168. [PMID: 32683143 DOI: 10.1016/j.watres.2020.116168] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 05/21/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment plants has caused widespread concern. Over the past decade, people have made tremendous efforts to discover the microorganisms responsible for N2O production, elucidate metabolic pathways, establish production models and formulate mitigation strategies. The ultimate goal of all these efforts is to shed new light on how N2O is produced and how to reduce it, and one of the best ways is to find key opportunities by integrating the information obtained. This review article critically evaluates the knowledge gained in the field within a decade, especially in N2O production microbiology, biochemistry, models and mitigation strategies, with a focus on denitrification. Previous research has greatly deepened the understanding of the N2O generation mechanism, but further efforts are still needed due to the lack of standardized methodology for establishing N2O mitigation strategies in full-scale systems. One of the challenges seems to be to convert the denitrification process from a net N2O source into an effective sink, which is recommended as a key opportunity to reduce N2O production in this review.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Long Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao Yang
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
18
|
Nanomaterials in the Environment: Research Hotspots and Trends. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245138. [PMID: 31888212 PMCID: PMC6950608 DOI: 10.3390/ijerph16245138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 01/29/2023]
Abstract
Research on the field of nanomaterials in environment has continued to be a major area of interest in recent years. To present the up-to-date progress in this field, a bibliometric study is conducted to analyze 7087 related publications in the Science Citation Index (SCI) core collection of Web of Science based on the expanded SCI. These publications are identified through using representative keywords in the research directions environment of the Web of Science. This study finds that China and the United States dominate the field; one difference between them is that China issued more independent publications and the United States issued more cooperative publications. In addition, the number of the related publications in Asian countries has exceeded that of European and American ones. A Chinese institution, the Chinese Academy of Sciences, has an absolute dominance in this field. Traditional high-impact environmental journals have ruled this field. The number of publications in the Energy and Environmental Science field has gradually decreased. In addition, a co-citation analysis shows that previous studies in this field can be divided into four major branches, and that graphene oxide and nano-inorganic particles are increasingly becoming research hotspots.
Collapse
|
19
|
Study on Propellers Distribution and Flow Field in the Oxidation Ditch Based on Two-Phase CFD Model. WATER 2019. [DOI: 10.3390/w11122506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The oxidation ditch (OD) plays an important role in wastewater treatment plants. With increasing demand and production costs, the energy consumption and sludge deposition occurring in the OD must be diminished to enhance its development. In this paper, a two-phase computational fluid dynamics (CFD) model of water and activated sludge examined the flow field characteristics of an OD, consisting of two side-by-side propellers. The system was studied under five configurations, where the spacing between the propellers was set equal to −0.2, −0.1, 0, 0.1, 0.2 times the length of the OD. The viscosity and settling rate of activated sludge was imported in the numerical simulation through a user defined function (UDF). The optimal scheme of the propeller’s power consumption, velocity distribution, and sludge concentration distribution was obtained. The result shows that sludge concentrations are linked with dead zone velocity but not necessarily with low velocities. Experiments confirmed the validity of the velocity flow field simulated by the two-phase CFD model. Overall, these findings form the basis for the propellers distribution optimization and allow a deeper insight into the flow field of OD systems.
Collapse
|