1
|
Tang D, Li X, Zhang L, Xiao P, Nie Y, Qiu F, Cheng Z, Li W, Zhao Y. Reactive oxygen species-mediated signal transduction and utilization strategies in microalgae. BIORESOURCE TECHNOLOGY 2025; 418:132004. [PMID: 39710205 DOI: 10.1016/j.biortech.2024.132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Reactive oxygen species (ROS) are crucial in stress perception, the integration of environmental signals, and the activation of downstream response networks. This review emphasizes ROS-mediated signaling pathways in microalgae and presents an overview of strategies for leveraging ROS. Eight distinct signaling pathways mediated by ROS in microalgae have been summarized, including the calcium signaling pathway, the target of rapamycin signaling pathway, the mitogen-activated protein kinase signaling pathway, the cyclic adenosine monophosphate/protein kinase A signaling pathway, the ubiquitin/protease pathway, the ROS-regulated transcription factors and enzymes, the endoplasmic reticulum stress, and the retrograde ROS signaling. Moreover, this review outlines three strategies for utilizing ROS: two-stage cultivation, combined stress with phytohormones, and strain engineering. The physicochemical properties of various ROS, together with their redox reactions with downstream targets, have been elucidated to reveal the role of ROS in signal transduction processes while delineating the ROS-mediated signal transduction network within microalgae.
Collapse
Affiliation(s)
- Dexin Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xu Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Pengying Xiao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yudong Nie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Facheng Qiu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhiliang Cheng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Wensheng Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agriculture and Life Science, Kunming University, Kunming 650214, PR China.
| |
Collapse
|
2
|
Banerjee M, Kalwani P, Chakravarty D, Pathak P, Agarwal R, Ballal A. Modulation of oxidative stress machinery determines the contrasting ability of cyanobacteria to adapt to Se(VI) or Se(IV). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108673. [PMID: 38733937 DOI: 10.1016/j.plaphy.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Excess of selenium (Se) in aquatic ecosystems has necessitated thorough investigations into the effects/consequences of this metalloid on the autochthonous organisms exposed to it. The molecular details of Se-mediated adaptive response remain unknown in cyanobacteria. This study aims to uncover the molecular mechanisms driving the divergent physiological responses of cyanobacteria on exposure to selenate [Se(VI)] or selenite [Se(IV)], the two major water-soluble oxyanions of Se. The cyanobacterium, Anabaena PCC 7120, withstood 0.4 mM of Se(VI), whereas even 0.1 mM of Se(IV) was detrimental, affecting photosynthesis and enhancing endogenous ROS. Surprisingly, Anabaena pre-treated with Se(VI), but not Se(IV), showed increased tolerance to oxidative stress mediated by H2O2/methyl viologen. RNA-Seq analysis showed Se(VI) to elevate transcription of genes encoding anti-oxidant proteins and Fe-S cluster biogenesis, whereas the photosynthesis-associated genes, which were mainly downregulated by Se(IV), remained unaffected. Specifically, the content of typical 2-Cys-Prx (Alr4641), a redox-maintaining protein in Anabaena, was elevated with Se(VI). In comparison to the wild-type, the Anabaena strain over-expressing the Alr4641 protein (An4641+) showed enhanced tolerance to Se(VI) stress, whereas the corresponding knockdown-strain (KD4641) was sensitive to this stressor. Incidentally, among these strains, only An4641+ was better protected from the ROS-mediated damage caused by high dose of Se(VI). These results suggest that altering the content of the antioxidant protein 2-Cys-Prx, could be a potential strategy for modulating resistance to selenate. Thus, involvement of oxidative stress machinery appears to be the major determinant, responsible for the contrasting physiological differences observed in response to selenate/selenite in cyanobacteria.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India; Homi Bhabha National Institute, Mumbai-400094, India.
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Priyanka Pathak
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India; Homi Bhabha National Institute, Mumbai-400094, India
| | - Rachna Agarwal
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India; Homi Bhabha National Institute, Mumbai-400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400085, India; Homi Bhabha National Institute, Mumbai-400094, India.
| |
Collapse
|
3
|
Kalwani P, Rath D, Ballal A. Loss of 2-Cys-Prx affects cellular ultrastructure, disturbs redox poise and impairs photosynthesis in cyanobacteria. PLANT, CELL & ENVIRONMENT 2022; 45:2972-2986. [PMID: 35909079 DOI: 10.1111/pce.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
In a striking similarity to plant chloroplasts, the cyanobacterium Anabaena displays very low catalase activity, but expresses several peroxiredoxins (Prxs), including the typical 2-Cys-Prx (annotated as Alr4641), that detoxify H2 O2 . Due to the presence of multiple Prxs, the precise contribution of Alr4641 to the oxidative stress response of Anabaena is not well-defined. To unambiguously assess its in vivo function, the Alr4641 protein was knocked down using the CRISPRi approach in Anabaena PCC 7120. The knockdown strain (An-KD4641), which showed over 85% decrease in the content of Alr4641, was viable, but grew slower than the control strain (An-dCas9). An-KD4641 showed elevated levels of reactive oxygen species and the expression of several redox-responsive genes was analogous to that of An-dCas9 subjected to oxidative stress. The knockdown strain displayed reduced filament size, altered thylakoid ultrastructure, a marked drop in the ratio of phycocyanin to chlorophyll a and decreased photosynthetic parameters compared to An-dCas9. In comparison to the control strain, exposure to H2 O2 had a more severe effect on the photosynthetic parameters or survival of An-KD4641. Thus, in the absence of adequate catalase activity, 2-Cys-Prx appears to be the principal Prx responsible for maintaining redox homoeostasis in diverse photosynthetic systems ranging from chloroplasts to cyanobacteria.
Collapse
Affiliation(s)
- Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Devashish Rath
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
4
|
Sun Y, Hu D, Xue P, Wan X. Identification of the DcHsp20 gene family in carnation (Dianthus caryophyllus) and functional characterization of DcHsp17.8 in heat tolerance. PLANTA 2022; 256:2. [PMID: 35624182 DOI: 10.1007/s00425-022-03915-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 05/09/2023]
Abstract
33 heat shock protein 20 (Hsp20) genes were identified from the carnation genome whose expression were altered by abiotic stresses. DcHsp17.8 may function to improve the heat resistance of Arabidopsis. Heat shock proteins 20 (Hsp20s) mainly function as molecular chaperones that play crucial roles in relieving abiotic stresses such as heat stress. In this study, we identified and characterized 33 DcHsp20 genes from the carnation genome that were classified into 9 subfamilies. Gene structure analysis showed that 25 DcHsp20 genes contained 1 intron whilst the remaining 8 DcHsp20 genes did not contain introns. Motif analysis found that DcHsp20 proteins were relatively conserved. Cis-regulatory elements analysis of the Hsp20 promoters revealed a number of cis-regulatory elements that regulate growth and development, hormone and stress responses. Gene expression analysis revealed that DcHsp20 genes had multiple response patterns to heat stress. The largest range of induction occurred in DcHsp17.8 after 1 h of heat stress. Under cold stress, or treatment with saline or abscisic acid, the expression of most DcHsp20 genes was inhibited. To further understand the function of DcHsp20 genes in response to heat stress, we overexpressed DcHsp17.8 in Arabidopis and the plants showed improved heat tolerance, O2- and H2O2 activities and photosynthetic capacity with reduced relative electrolyte leakage and malondialdehyde content. Gene expression analysis revealed that DcHsp17.8 modulated the expression of genes involved in antioxidant enzyme synthesis. Our data provided a solid foundation for the further detailed study of DcHsp20 genes.
Collapse
Affiliation(s)
- Yuying Sun
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Diandian Hu
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Chakravarty D, Bihani SC, Banerjee M, Kalwani P, Ballal A. Unique functional insights into the antioxidant response of the cyanobacterial Mn-catalase (KatB). Free Radic Biol Med 2022; 179:266-276. [PMID: 34793931 DOI: 10.1016/j.freeradbiomed.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 01/06/2023]
Abstract
KatB, a hexameric Mn-catalase, plays a vital role in overcoming oxidative and salinity stress in the ecologically important, N2-fixing cyanobacterium, Anabaena. The 5 N-terminal residues of KatB, which show a high degree of conservation in cyanobacteria, form an antiparallel β-strand at the subunit interface of the KatB hexamer. In this study, the contribution of these N-terminal non-active site residues, towards the maintenance of the structure, biochemical properties, and redox balance was evaluated. Each N-terminal amino acid residue from the 2nd to the 7th position of KatB was individually mutated to Ala (to express KatBF2A/KatBF3A/KatBH4A/KatBK5E/KatBK6A/KatBE7A) or this entire 6 amino acid stretch was deleted (to yield KatBTrunc). All the above-mentioned KatB variants, along with the wild-type KatB protein (KatBWT), were overproduced in E. coli and purified. In comparison to KatBWT, the KatBF2A/KatBH4A/KatBTrunc proteins were less compact, more prone to chemical/thermal denaturation, and were unexpectedly inactive. KatBF3A/KatBK5E/KatBK6A showed biophysical/biochemical properties that were in between that of KatBWT and KatBF2A/KatBH4A/KatBTrunc. Surprisingly, KatBE7A was more thermostable with higher activity than KatBWT. On exposure to H2O2, E. coli expressing KatBWT/KatBE7A showed considerably reduced formation of ROS and increased survival than the other KatB variants. Utilizing the KatB structure, the molecular basis responsible for the altered stability/activity of the KatB mutants was delineated. This study demonstrates the physiological importance of the N-terminal β-strand of Mn-catalases in combating H2O2 stress and shows that the non-active site residues can be used for rational protein engineering to develop Mn-catalases with improved characteristics.
Collapse
Affiliation(s)
- Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology & Health Sciences Division, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
6
|
Banerjee M, Kalwani P, Chakravarty D, Singh B, Ballal A. Functional and mechanistic insights into the differential effect of the toxicant 'Se(IV)' in the cyanobacterium Anabaena PCC 7120. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105839. [PMID: 34015754 DOI: 10.1016/j.aquatox.2021.105839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Selenium, an essential trace element for animals, poses a threat to all forms of life above a threshold concentration. The ubiquitously present cyanobacteria, a major photosynthetic biotic component of aquatic and other ecosystems, are excellent systems to study the effects of environmental toxicants. The molecular changes that led to beneficial or detrimental effects in response to different doses of selenium oxyanion Se(IV) were analyzed in the filamentous cyanobacterium Anabaena PCC 7120. This organism showed no inhibition in growth up to 15 mg/L sodium selenite, but above this dose i.e. 20-100 mg/L of Se(IV), both growth and photosynthesis were substantially inhibited. Along with the increased accumulation of non-protein thiols, a consistent reduction in levels of ROS was observed at 10 mg/mL dose of Se(IV). High dose of Se(IV) (above 20 mg/L) enhanced endogenous reactive oxygen species (ROS)/lipid peroxidation, and decreased photosynthetic capability. Treatment with 100 mg/L Se(IV) downregulated transcription of several photosynthesis pathways-related genes such as those encoding photosystem I and II proteins, phycobilisome rod-core linker protein, phycocyanobilin, phycoerythrocyanin-associated proteins etc. Interestingly, at a dose range of 10-15 mg/L Se(IV), Anabaena showed an increase in PSII photosynthetic yield and electron transport rate (at PSII), suggesting improved photosynthesis. Se was incorporated into the Anabaena cells, and Se-enriched thylakoid membranes showed higher redox conductivity than the thylakoid membranes from untreated cells. Overall, the data supports that modulation of photosynthetic machinery is one of the crucial mechanisms responsible for the dose-dependent contrasting effect of Se(IV) observed in Anabaena.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Prakash Kalwani
- Molecular Biology Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Dhiman Chakravarty
- Molecular Biology Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Beena Singh
- Radiation and Photo Chemistry Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anand Ballal
- Molecular Biology Division; Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Pagolu R, Singh R, Shanmugam R, Kondaveeti S, Patel SKS, Kalia VC, Lee JK. Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. BIORESOURCE TECHNOLOGY 2021; 331:125063. [PMID: 33813167 DOI: 10.1016/j.biortech.2021.125063] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Enhanced covalent immobilization of xylanase from Chaetomium globosum (XylCg) onto SiO2 nanoparticles was achieved by the modification of surface residues. The mutation of surface residues to lysine by site-directed mutagenesis increased the immobilization efficiency (IE) and immobilization yield (IY). The immobilized mutant XylCg (N172K-H173K-S176K-K133A-K148A) exhibited an IY of 99.5% and IE of 135%, which were 1.8- and 4.3-fold higher than immobilized wildtype (WT). Regarding the catalytic properties, the kcat and kcat/Km values were 1850 s-1 and 2030 mL mg-1 s-1 for the immobilized mutant, and 331 s-1 and 404 mL mg-1 s-1 for the immobilized WT, respectively. Additionally, the immobilized mutant exhibited four times higher thermal stability than the immobilized WT at 60 °C. These results suggest that surface-mutated lysine residues confer good stability and orientation on the support matrix, thus improving the overall performance of xylanase.
Collapse
Affiliation(s)
- Raviteja Pagolu
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Raushan Singh
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Sanath Kondaveeti
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Ballal A, Chakravarty D, Bihani SC, Banerjee M. Gazing into the remarkable world of non-heme catalases through the window of the cyanobacterial Mn-catalase 'KatB'. Free Radic Biol Med 2020; 160:480-487. [PMID: 32858159 DOI: 10.1016/j.freeradbiomed.2020.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Catalases, enzymes that decompose H2O2, are broadly categorized as heme catalases or non-heme catalases. The non-heme catalases are also known as Mn-catalases as they have Mn atoms in their active sites. However, unlike the well characterized heme-catalases, the study of Mn-catalases has gained importance only in the last few years. The filamentous, heterocystous, N2-fixing cyanobacterium Anabaena PCC 7120, shows the presence of two Mn-catalases, KatA and KatB, but lacks heme catalases. Of the two Mn-catalases, KatB, which is induced by salt/desiccation, plays a major role in overcoming salinity/oxidative stress. In this mini review, we have summarized the recent advances made in the field of Mn-catalases, particularly KatB, and have interpreted these results in the larger context of stress physiology. These aspects bring to the fore the distinctive biochemical/structural properties of Mn-catalases and furthermore highlight the in vivo importance of these enzymes in adapting to oxidative stresses.
Collapse
Affiliation(s)
- Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
9
|
Peprah Addai F, Wang T, Kosiba AA, Lin F, Zhen R, Chen D, Gu J, Shi H, Zhou Y. Integration of elastin-like polypeptide fusion system into the expression and purification of Lactobacillus sp. B164 β-galactosidase for lactose hydrolysis. BIORESOURCE TECHNOLOGY 2020; 311:123513. [PMID: 32417661 DOI: 10.1016/j.biortech.2020.123513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
An elastin-like polypeptide (ELP) sequence fused with Lactobacillus sp. B164 β-galactosidase modified with 6x-Histidine (β-Gal-LH) to produce recombinant β-Gal-Linker-ELP-His (β-Gal-LEH) was expressed in E. coli and purified via inverse thermal cycling (ITC) and nickel-nitrilotriacetic acid (Ni-NTA) resin. The β-galactosidase integrated with ELP-system showed an improved purification at 1.75 M (NH4)2SO4 after 1 round ITC (95.66% recovery rate and 13.04 purification fold) with better enzyme activity parameters compared to Ni-NTA. The enzyme maintained an optimal temperature (40 °C) and pH (7.5) for both β-Gal-LEH and β-Gal-LH. The results further showed that the ELP-fusion system improved the enzyme's thermal and storage stability. Moreover, the enzyme secondary structure was not changed by ELP-tag. Enzyme activity was completely inactivated by Hg2+, Cd2+ and Cu2+, unaffected by Ca2+, EDTA and urea, but partially activated by Mn2+ at lower concentration. Compared to commercial β-galactosidases, β-Gal-LEH exhibited similar biocatalytic efficiency on lactose and could potentially catalyze transgalactosylation.
Collapse
Affiliation(s)
- Frank Peprah Addai
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Taotao Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Ren Zhen
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Dongfeng Chen
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|