1
|
Tian B, Li J, Zhao J, Shang H, Gao W, Liu X, Wen J. Humic acid-mediated mechanism for efficient biodissolution of used lithium batteries. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135400. [PMID: 39096634 DOI: 10.1016/j.jhazmat.2024.135400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Resource recovery of valuable metals from spent lithium batteries is an inevitable trend for sustainable development. In this study, external regulation was used to enhance the tolerance and stability of strains in the leaching of spent lithium batteries to radically improve the bioleaching efficiency. The leaching of Li, Ni, Co and Mn increased to 100 %, 85.06 %, 74.25 % and 69.44 % respectively after targeted cultivation with HA as compared to the undomesticated strain. In the process of microbial leaching of spent lithium batteries, the metabolites in the Ⅰ, Ⅳ, and Ⅴ regions of the metabolism of the undomesticated bacterial colony had a positive correlation to the dissolution of spent lithium batteries. The metabolites of Ⅰ, Ⅱ, and Ⅴ regions were directly affected by the HA domesticated flora on the dissolution of spent lithium batteries. The excess metabolism of protein substances can significantly promote the reduction of Ni, Co, Mn leaching, and at the same time in the role of a large number of humic substances complexed the toxic metal ions in the system, to ensure the activity of the bacterial colony. It can be seen that the bacteria were domesticated by humic acid, which promoted the bacteria's own metabolism, and the super-metabolised EPS promoted the solubilisation of spent lithium batteries.
Collapse
Affiliation(s)
- Bingyang Tian
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Jingze Li
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Juan Zhao
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - He Shang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Wencheng Gao
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Xue Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China
| | - Jiankang Wen
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China.
| |
Collapse
|
2
|
Liu Z, Liao X, Zhang Y, Li S, Ye M, Gan Q, Fang X, Mo Z, Huang Y, Liang Z, Dai W, Sun S. A highly efficient process to enhance the bioleaching of spent lithium-ion batteries by bifunctional pyrite combined with elemental sulfur. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119954. [PMID: 38169252 DOI: 10.1016/j.jenvman.2023.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Bioleaching technologies have been shown to be an environmentally friendly and economically beneficial tool for extracting metals from spent lithium-ion batteries (LIBs). However, conventional bioleaching methods have exhibited low efficiency in recovering metals from spent LIBs. Therefore, relied on the sustainability principle of using waste to treat waste, this study employed pyrite (FeS2) as an energy substance with reducing properties and investigated its effects in combination with elemental sulfur (S0) or FeSO4 on metals bioleaching from spent LIBs. Results demonstrated that the bioleaching efficiency was significantly higher in the leaching system constructed with FeS2 + S0, than in the FeS2 + FeSO4 or FeS2 system. When the pulp densities of FeS2, S0 and spent LIBs were 10 g L-1, 5 g L-1 and 10 g L-1, respectively, the leaching efficiency of Li, Ni, Co and Mn all reached 100%. Mechanistic analysis reveals that in the FeS2 + S0 system, the activity and acid-producing capabilities of iron-sulfur oxidizing bacteria were enhanced, promoting the generation of Fe (Ⅱ) and reducible sulfur compounds. Simultaneously, bio-acids were shown to disrupt the structure of the LIBs, thereby increasing the contact area between Fe (Ⅱ) and sulfur compounds containing high-valence metals. This effectively promoted the reduction of high-valence metals, thereby enhancing their leaching efficiency. Overall, the FeS2 + S0 bioleaching process constructed in this study, improved the leaching efficiency of LIBs while also effectively utilizing waste, providing technical support for the comprehensive and sustainable management of solid waste.
Collapse
Affiliation(s)
- Zihang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuman Zhang
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qiaowei Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenyun Liang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
3
|
Yan H, Jin S, Sun X, Han Z, Wang H, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Wei L, Zhao Y, Zhao H. Mn 2+ recycling in hypersaline wastewater: unnoticed intracellular biomineralization and pre-cultivation of immobilized bacteria. World J Microbiol Biotechnol 2024; 40:57. [PMID: 38165509 DOI: 10.1007/s11274-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microbially induced manganese carbonate precipitation has been utilized for the treatment of wastewater containing manganese. In this study, Virgibacillus dokdonensis was used to remove manganese ions from an environment containing 5% NaCl. The results showed a significant decrease in carbonic anhydrase activity and concentrations of carbonate and bicarbonate ions with increasing manganese ion concentrations. However, the levels of humic acid analogues, polysaccharides, proteins, and DNA in EPS were significantly elevated compared to those in a manganese-free environment. The rhodochrosite exhibited a preferred growth orientation, abundant morphological features, organic elements including nitrogen, phosphorus, and sulfur, diverse protein secondary structures, as well as stable carbon isotopes displaying a stronger negative bias. The presence of manganese ions was found to enhance the levels of chemical bonds O-C=O and N-C=O in rhodochrosite. Additionally, manganese in rhodochrosite exhibited both + 2 and + 3 valence states. Rhodochrosite forms not only on the cell surface but also intracellularly. After being treated with free bacteria for 20 days, the removal efficiency of manganese ions ranged from 88.4 to 93.2%, and reached a remarkable 100% on the 10th day when using bacteria immobilized on activated carbon fiber that had been pre-cultured for three days. The removal efficiency of manganese ions was significantly enhanced under the action of pre-cultured immobilized bacteria compared to non-pre-cultured immobilized bacteria. This study contributes to a comprehensive understanding of the mineralization mechanism of rhodochrosite, thereby providing an economically and environmentally sustainable biological approach for treating wastewater containing manganese.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaolei Sun
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1UJ, UK
| | - Lirong Wei
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao, 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
4
|
Acosta Hernández I, Muñoz Morales M, Fernández Morales FJ, Rodríguez Romero L, Villaseñor Camacho J. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics. ENVIRONMENTAL RESEARCH 2023; 238:117183. [PMID: 37769830 DOI: 10.1016/j.envres.2023.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
This work utilizes a combined biological-electrochemical technique for the in-situ removal of metals from polluted mine tailings. As the main novelty point it is proposed to use electrokinetics (EK) for the in-situ activation of a bioleaching mechanism into the tailings, in order to promote biological dissolution of metal sulphides (Step 1), and for the subsequent removal of leached metals by EK transport out of the tailings (Step 2). Mine tailings were collected from an abandoned Pb/Zn mine located in central-southern Spain. EK-bioleaching experiments were performed under batch mode using a lab scale EK cell. A mixed microbial culture of autochthonous acidophilic bacteria grown from the tailings was used. Direct current with polarity reversal vs alternate current was evaluated in Step 1. In turn, different biological strategies were used: biostimulation, bioaugmentation and the abiotic reference test (EK alone). It was observed that bioleaching activation was very low during Step 1, because it was difficult to maintain acidic pH in the whole soil, but then it worked correctly during Step 2. It was confirmed that microorganisms successfully contributed to the in-situ solubilization of the metal sulphides as final metal removal rates were improved compared to the conventional abiotic EK (best increases of around 40% for Cu, 162% for Pb, 18% for Zn, 13% for Mn, 40% for Ni and 15% for Cr). Alternate current seemed to be the best option. The tailings concentrations of Fe, Al, Cu, Mn, Ni and Pb after treatment comply with regulations, but Pb, Cd and Zn concentrations exceed the maximum values. From the data obtained in this work it has been observed that EK-bioleaching could be feasible, but some upgrades and future work must be done in order to optimize experimental conditions, especially the control of soil pH in acidic values.
Collapse
Affiliation(s)
- Irene Acosta Hernández
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Martín Muñoz Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Francisco Jesús Fernández Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Luis Rodríguez Romero
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - José Villaseñor Camacho
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain.
| |
Collapse
|
5
|
Song X, Yang A, Hu X, Niu AP, Cao Y, Zhang Q. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17695-17708. [PMID: 36203043 DOI: 10.1007/s11356-022-23365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The concentration of Sb bearing tailings in water located in abandoned antimony mines was found to be a big problem, as they contaminate other water resources and entire food chain. Microorganisms were found to be key in tailing leaching and reaction speeding in the presence of extracellular polymeric substances (EPS) produced by bacteria. Herein, we investigated the pattern of the Sb leaching from Sb bearing tailings using Acidithiobacillus ferrooxidans, and analyzed the mechanism of EPS in the leaching process of Sb. To completely and deeply understand the functions of EPS in the bioleaching of antimony tailings, the generation behavior of EPS produced by Acidithiobacillus ferrooxidans (A. ferrooxidans) during bioleaching was characterized by three-dimensional excitation-emission matrix (3D-EEM). Meanwhile, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) were used to show the changes of EPS functional groups before and after leaching. Compared with the functional groups in EPS produced by A. ferrooxidans before leaching, the content of hydroxyl and amino groups that reduce high-valent metals to low-valent metals in EPS decreases after leaching, and the carbonyl content increases, corresponding to the ratio of trivalent antimony increased, indicating that EPS could reduce the risk of pentavalent antimony to trivalent one. At the same time, with biological scanning electron microscopy and energy spectrum scanning, the observation of EPS on the mineral surface showed that Sb was adsorbed in the EPS, and the XPS of Sb was fine. Spectral analysis showed that the Sb adsorbed in EPS contained both Sb(III) and Sb(V). Besides, for revealing the influence of EPS in the leaching process of Sb from tailings, this work provided an in-depth understanding of the mechanism of Sb released from tailings under the action of A. ferrooxidans and further provides a basis for the biogeochemical cycle of Sb.
Collapse
Affiliation(s)
- Xia Song
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Xia Hu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - A-Ping Niu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Qingqing Zhang
- Guida Yuanheng Environmental Protection Technology Co., Ltd., of Guizhou, Guiyang, 550025, China
| |
Collapse
|
6
|
Wang J, Cui Y, Chu H, Tian B, Li H, Zhang M, Xin B. Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNi xCo yMn 1-x-yO 2 at high pulp density. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115429. [PMID: 35717690 DOI: 10.1016/j.jenvman.2022.115429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Harmful chemicals present in electric vehicle Li-ion batteries (EV LIBs) can limit the pulp density of bioleaching processes using Acidithiobacillus sp. to 1.0% (w/v) or lower. The strong enhancing mechanisms of extracellular polymeric substances (EPS) on the bioleaching of metals from spent EV LIBs at high pulp density (4% w/v) were studied using bio-chemical, spectroscopic, surface structure imaging and bioleaching kinetic methods. Results demonstrated that the added EPS significantly improved bioleaching efficiency of Ni, Co and Mn improved by 42%, 40% and 44%, respectively. EPS addition boosted the growth of cells under adverse conditions to produce more biogenic H+ while Fe3+ and Fe2+ were adsorbed by the biopolymer. This increased Li extraction by acid dissolution and concentrated the Fe3+/Fe2+ cycle via non-contact mechanisms for the subsequent contact bioleaching of Ni, CO and Mn at the EV LIB-bacteria interface. During the leaching process, added EPS improved adhesion of the bacterial cells to the EV LIBs, and the resultant strong interfacial reactions promoted bioleaching of the target metals. Hence, a combination of non-contact and contact mechanisms initiated by the addition of EPS enhanced the bioleaching of spent EV LIBs at high pulp density.
Collapse
Affiliation(s)
- Jia Wang
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100080, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Yanchao Cui
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100080, PR China
| | - Huichao Chu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Bingyang Tian
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Huimin Li
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100080, PR China
| | - Mingshun Zhang
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100080, PR China
| | - Baoping Xin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
7
|
Chen J, Liu Y, Diep P, Mahadevan R. Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: Progress and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129456. [PMID: 35777147 DOI: 10.1016/j.jhazmat.2022.129456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
With global demands for mineral resources increasing and ore grades decreasing, microorganisms have been increasingly deployed in biomining applications to recover valuable metals particularly from normally considered waste, such as low-grade ores and used consumer electronics. Acidithiobacillus are a genus of chemolithoautotrophic extreme acidophiles that are commonly found in mining process waters and acid mine drainage, which have been reported in several studies to aid in metal recovery from bioremediation of metal-contaminated sites. Compared to conventional mineral processing technologies, biomining is often cited as a more sustainable and environmentally friendly process, but long leaching cycles and low extraction efficiency are main disadvantages that have hampered its industrial applications. Genetic engineering is a powerful technology that can be used to enhance the performance of microorganisms, such as Acidithiobacillus species. In this review, we compile existing data on Acidithiobacillus species' physiological traits and genomic characteristics, progresses in developing genetic tools to engineer them: plasmids, shutter vectors, transformation methods, selection markers, promoters and reporter systems developed, and genome editing techniques. We further propose genetic engineering strategies for enhancing biomining efficiency of Acidithiobacillus species and provide our perspectives on their future applications.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Liao X, Ye M, Liang J, Guan Z, Li S, Deng Y, Gan Q, Liu Z, Fang X, Sun S. Feasibility of reduced iron species for promoting Li and Co recovery from spent LiCoO 2 batteries using a mixed-culture bioleaching process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154577. [PMID: 35304146 DOI: 10.1016/j.scitotenv.2022.154577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The recovery of metals from spent LiCoO2 batteries (SLBs) is essential to avoid resource wastage and the production of hazardous waste. However, the major challenge in regard to recovering metals from SLBs using traditional bioleaching is the low Co yield. To overcome this issue, a mixed culture of Acidithiobacillus caldus and Sulfobacillus thermosulfidooxidans was designed for use in SLBs leaching in this study. With the assistance of Fe2+ as a reductant, 99% of Co and 100% of Li were leached using the above mixed-culture bioleaching (MCB) process, thus solving the problem of low metal leaching efficiency from SLBs. Analysis of the underlying mechanism revealed that the effective extraction of metals from SLBs by the Fe2+-MCB process relied on Fe2+-releasing electrons to reduce refractory Co(III) to Co(II) that can be easily bioleached. Finally, the hazardous SLBs was transformed into a non-toxic material after treatment utilizing the Fe2+-MCB process. However, effective SLBs leaching was not achieved by the addition of Fe0 to the MCB system. Only 25% Co and 31% Li yields were obtained, as the addition of Fe0 caused acid consumption and bacterial apoptosis. Overall, this study revealed that reductants that cause acid consumption and harm bacteria should be ruled out for use in reductant-assisted bioleaching processes for extracting metals from SLBs.
Collapse
Affiliation(s)
- Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jialin Liang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanghong Deng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiaowei Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zihang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
9
|
Bai Y, Zhang T, Zhai Y, Jia Y, Ren K, Hong J. Strategies for improving the environmental performance of nickel production in China: Insight into a life cycle assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114949. [PMID: 35367689 DOI: 10.1016/j.jenvman.2022.114949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Nickel is a critical metal for global low-carbon energy transition, but its production processes require massive energy inputs and emit large amounts of pollutants. This study constructed life cycle inventories of the mainstream electrolytic nickel production chains in China at the industrial level and subsequently evaluated their environmental performance via a regionalised life cycle impact assessment method. Results show that environmental indicator results of the electrolytic nickel production from the leaching electrowinning method were 17.7%-40.2% lower than those from the grind and flotation electrolytic method. At the endpoint level, the nickel mining and beneficiation stages contributed 54.7%-65.91% of human health damage, 83.0%-84.7% of ecosystem quality damage and 80.8%-83.7% of resources damage. The key processes, including direct processes, cement input and energy consumption (e.g., electricity and coal), accounted for more than 62.1% of the impacts in the key midpoint categories. The potential environmental damage of China's nickel mining and beneficiation industry increased by 29.2% from 2010 to 2018 because of the growing trend of nickel ore demand. In the case that China's nickel metal recovery rate reaches the global average level, then approximately 3.83 × 102 Daly of human health damage, 59.83 Species·year of ecosystem quality damage and 1.64 × 108 $ of resources damage can be avoided annually. Strategies for promoting the full assimilation of renewable electricity, applying the clinker-free cemented backfill materials in the mining process, precious recovery by bioleaching from tailings and reusing waste rock as building materials are recommended. Meanwhile, extended producer responsibility should to be comprehensively implemented in the nickel-related industries to alleviate the environmental implications and nickel supply pressures from geo-mining.
Collapse
Affiliation(s)
- Yueyang Bai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Tianzuo Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yijie Zhai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yuke Jia
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ke Ren
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jinglan Hong
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan, 250012, China.
| |
Collapse
|
10
|
Tian Y, Hu X, Song X, Yang A. Bioleaching of rare earths elements from phosphate rock using Acidothiobacillus ferrooxidans. Lett Appl Microbiol 2022; 75:1111-1121. [PMID: 35611559 DOI: 10.1111/lam.13745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Phosphate rock containing rare earth elements (REEs) is considered one of the most promising potential secondary sources of REEs, as evidenced by large tonnages of phosphate rock mined annually. The bioleaching of REEs from phosphate rock using A. ferrooxidans was done for the first time in this study, and it was found to be greater than abiotic leaching and was more environmentally friendly. The result showed that the total leaching rate of REEs in phosphate rock was 28.46% under the condition of 1% pulp concentration and pH=2, and the leaching rates of four key rare earths, Y, La, Ce, and Nd, were 35.7%, 37.03%, 27.92%, and 32.53%, respectively. The bioleaching process was found to be accomplished by bacterial contact and Fe2+ oxidation. The blank control group which contained Fe2+ was able to leach some of the rare earths, indicating that the oxidation of Fe2+ may affect the leaching of rare earths. X-Ray Diffraction (XRD)analysis showed that the minerals were significantly altered and the intensity of the diffraction peaks of dolomite and apatite decreased significantly after microbial action compared to the blank control, and it was observed that bacteria adhere to the mineral surface and the minerals become smooth and angular after bioleaching by Scanning electron microscope (SEM), indicating that bacteria have a further effect on the rock based on Fe2+ oxidation.Finally.Fourier Transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3DEEM) fluorescence spectra analysis showed that extracellular polymeric substances (EPS) participate in the bioleaching process.
Collapse
Affiliation(s)
- Yi Tian
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Xia Hu
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Xia Song
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Aijiang Yang
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
11
|
Fang X, Sun S, Liao X, Li S, Zhou S, Gan Q, Zeng L, Guan Z. Effect of diurnal temperature range on bioleaching of sulfide ore by an artificial microbial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150234. [PMID: 34562759 DOI: 10.1016/j.scitotenv.2021.150234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Temperature is considered to be one of the main factors affecting bioleaching, but few studies have assessed the effects of diurnal temperature range (DTR) on the bioleaching process. This study investigates the effects of different bioleaching temperatures (30 and 40 °C) and DTR on the bioleaching of metal sulfide ores by microbial communities. The results showed that DTR had an obvious inhibitory effect on the bioleaching efficiency of the artificial microbial community, although this effect was mainly concentrated in the early and middle stages (0-18 days) of exposure, gradually decreasing until almost disappearing in the late stage (18-24 days). Extracellular polymeric substance (EPS) analysis showed that DTR did not change the composition of the EPS matrix (humic acid-like substances, polysaccharides and protein-like substances), but had a significant effect on the generative behavior of EPS, inhibiting the secretion of EPS during the early and middle stages of the bioleaching process. However, the continual increase in EPS secretion in the bioleaching system gradually reduced the adverse effects of DTR on mineral dissolution. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy- energy dispersive spectrometry (SEM-EDS) analysis of the bioleached residue showed that DTR had no obvious effect on the mineralogical characteristics of sulfide ore. Therefore, in industrial sulfide ore bioleaching applications, in order to accelerate the artificial microbial community start-up process, temperature control measures should be increased in the bioleaching process to reduce the adverse effects of DTR on mineral dissolution.
Collapse
Affiliation(s)
- Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiaowei Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Liuting Zeng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Zhou S, Liao X, Li S, Fang X, Guan Z, Ye M, Sun S. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114192. [PMID: 34861501 DOI: 10.1016/j.jenvman.2021.114192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Unwieldy fine sulfide ores are produced during mining; without being appropriately disposed of, they can cause environmental pollution and waste resources. This study investigated the leaching performance of a moderately thermophilic consortia (Leptospirillum ferriphilum + Acidithiobacillus caldus + Sulfobacillus benefaciens) for fine lead-zinc sulfide raw ore. The results showed this microbial community created a low pH, high ORP, and high cell concentration environment for mineral leaching, improving bioleaching efficiency. Under the action of this consortia, the zinc leaching rate reached 96.44 in 8 days, and reached 100% after 12 days. EPS analysis indicated that the consortia could mediate the secretion of more polysaccharides to ensure leaching efficiency. EPS levels and amino acids were the main factors affecting bioleaching. An analysis of mineral surface characteristics showed the consortia effectively leached pyrite and sphalerite from the fine sulfide ore, and prevented the mineral surface forming the jarosite that could hinder bioleaching. This study found that bioleaching reduced the potential environmental toxicity of the minerals, providing an important reference for guiding the bioleaching of unwieldy fine sulfide raw ore.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China.
| |
Collapse
|
13
|
Gavrilescu M. Microbial recovery of critical metals from secondary sources. BIORESOURCE TECHNOLOGY 2022; 344:126208. [PMID: 34715340 DOI: 10.1016/j.biortech.2021.126208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The continuous development of technologies involving critical metals, both in Europe and over the world, and geopolitical challenges in areas rich in critical metal sources, imposed increased research efforts to recover them from secondary sources, by eco-efficient processes. Yet, microbes-metal interactions are not sufficiently exploited to recover metals from secondary sources, although they are already used in ore extraction. This review examines and compare strategies and processes involving microorganisms for critical metals recovery, since conventional physico-chemical methods are energy-intensive and often polluting. Two groups of microbial assisted recovery processes are discussed: metal mobilization from metal bearing waste, and selective metal separation from leaching solutions by immobilization on microbial biomass. Because most of the identified microbial technologies are developed on laboratory scale, the increase of biorecovery efficiency is compulsory for enhancing scaling-up potential. Future developments focused on novel microorganisms and high-performance strategies for critical metal recovery by microbial processes are considered.
Collapse
Affiliation(s)
- Maria Gavrilescu
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Mangeron Blvd., 700050 Iasi, Romania.
| |
Collapse
|
14
|
Chu H, Wang J, Tian B, Qian C, Niu T, Qi S, Yang Y, Ge Y, Dai X, Xin B. Generation behavior of extracellular polymeric substances and its correlation with extraction efficiency of valuable metals and change of process parameters during bioleaching of spent petroleum catalyst. CHEMOSPHERE 2021; 275:130006. [PMID: 33639548 DOI: 10.1016/j.chemosphere.2021.130006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/06/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The vital functions of extracellular polymeric substances (EPS) have been well recognized in bioleaching of sulfide ores. However, no report is available about the role of EPS in bioleaching of spent catalyst. To completely and deeply understand the functions of EPS in bioleaching of spent catalyst, the generation behavior of EPS at various pulp densities during bioleaching was characterized by three-dimensional excitation-emission matrix (3DEEM), and its relevance with bioleaching performance and process parameters were analyzed using mathematical means. The results showed that the EPS contain humus-like substances as main component (>70%) and protein-like substances as minor component (<30%). Both total EPS and humus-like substances mainly keep growing over the whole duration of bioleaching at low pulp density of 5.0% or lower; whereas total EPS and humus-like fraction keep declining at high pulp density of 7.5% or higher. Among the total EPS and its components, humus-like substances only have a positive significant correlation with bioleaching efficiencies of both Co and Mo and affect bioleaching process more greatly due to greater correlation coefficient. Biofilm appears at the spent catalyst surface under 2.5% of pulp density mediated by EPS while no biofilm occurs at 10% of pulp density due to shortage of EPS, accounting for the great difference in bioleaching efficiencies between high and low pulp densities which are 48.3% for Mo and 50.0% for Co at 10% of pulp density as well as 75.9% for Mo and 78.8% for Co at 2.5% of pulp density, respectively.
Collapse
Affiliation(s)
- Huichao Chu
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jia Wang
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100080, PR China
| | - Bingyang Tian
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Can Qian
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Tianqi Niu
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Shiyue Qi
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yiran Yang
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yajun Ge
- Beijing Captical Environmental Technology Co, Ltd, Beijing, 100060, PR China
| | - Xiaodong Dai
- Beijing Captical Environmental Technology Co, Ltd, Beijing, 100060, PR China
| | - Baoping Xin
- School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
15
|
Abstract
This review aims to understand the environmental impact that tailings produce on the land and marine ecosystem. Issues related to flora, fauna, and the environment are revised. In the first instance, the origin of the treatment and disposal of marine mining waste in Chile and other countries is studied. The importance of tailings’ valuable elements is analyzed through mineralogy, chemical composition, and oceanographic interactions. Several tailings’ treatments seek to recover valuable minerals and mitigate environmental impacts through leaching, bioleaching, and flotation methods. The analysis was complemented with the particular legislative framework for every country, highlighting those with formal regulations for the disposal of tailings in a marine environment. The available registry on flora and fauna affected by the discharge of toxic metals is explored. As a study case, the “Playa Verde” project is detailed, which recovers copper from marine tailings, and uses phytoremediation to neutralize toxic metals. Countries must regularize the disposal of marine tailings due to the significant impact on the marine ecosystem. The implementation of new technologies is necessary to recover valuable elements and reduce mining waste.
Collapse
|
16
|
Ye M, Liang J, Liao X, Li L, Feng X, Qian W, Zhou S, Sun S. Bioleaching for detoxification of waste flotation tailings: Relationship between EPS substances and bioleaching behavior. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111795. [PMID: 33338773 DOI: 10.1016/j.jenvman.2020.111795] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The production of large volumes of waste flotation tailings results in environmental pollution and presents a major ecological and environmental risk. This study investigates bioleaching of waste flotation tailings using Acidithiobacillus ferrooxidans. The experiments were performed with 5.00% solid concentration, pH 2.0 with 100 mL medium for 25 d in the lab. The pH, OPR, metal concentration, dissolved organic matter (DOM) in leachate and extracellular polymeric substances (EPS) were recorded. Bioleaching tailing materials were finally characterized. Results showed that microorganisms, acclimating with mine tailings, effectively accelerated the bioleaching process, achieving maximum Zn and Fe extraction efficiencies of 95.45% and 83.98%, respectively, after 25 days. Compared with raw mine tailings, bioleaching could reduce 96.36% and 95.84% leachable Zn and Pb, and Pb presented a low risk (4.13%), while Zn, Cu, and Cr posed no risk (0.34%, 0.64%, and 0%). Toxicity and environmental risk analysis revealed bioleaching process significantly reduced the environmental risk associated with mine tailings. EPS analysis indicated that the loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) fractions contained different organic substances, which played different roles in the bioleaching process. Pearson correlation analysis revealed that EPS was highly correlated with bioleaching behavior (p < 0.05), and EPS was the main factor affecting the bioleaching process, promoting bioleaching in the LB-EPS and TB-EPS fractions.
Collapse
Affiliation(s)
- Maoyou Ye
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Provincial Key Laboratory of Development and Comprehensive Utilization of Mineral Resources, Guangdong Institute of Resource Comprehensive Utilization, Guangzhou, 510650, China.
| | - Jialin Liang
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojian Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lili Li
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xidan Feng
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wei Qian
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Siyu Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center of Solid Waste Resource Recovery and Heavy Metal Pollution Control, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
17
|
Muravyov M, Panyushkina A. Distinct Roles of Acidophiles in Complete Oxidation of High-Sulfur Ferric Leach Product of Zinc Sulfide Concentrate. Microorganisms 2020; 8:E386. [PMID: 32164331 PMCID: PMC7143523 DOI: 10.3390/microorganisms8030386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022] Open
Abstract
A two-step process, which involved ferric leaching with biologically generated solution and subsequent biooxidation with the microbial community, has been previously proposed for the processing of low-grade zinc sulfide concentrates. In this study, we carried out the process of complete biological oxidation of the product of ferric leaching of the zinc concentrate, which contained 9% of sphalerite, 5% of chalcopyrite, and 29.7% of elemental sulfur. After 21 days of biooxidation at 40°C, sphalerite and chalcopyrite oxidation reached 99 and 69%, respectively, while the level of elemental sulfur oxidation was 97%. The biooxidation residue could be considered a waste product that is inert under aerobic conditions. The results of this study showed that zinc sulfide concentrate processing using a two-step treatment is efficient and promising. The microbial community, which developed during biooxidation, was dominated by Acidithiobacillus caldus, Leptospirillum ferriphilum, Ferroplasma acidiphilum, Sulfobacillus thermotolerans, S. thermosulfidooxidans, and Cuniculiplasma sp. At the same time, F. acidiphilum and A. caldus played crucial roles in the oxidation of sulfide minerals and elemental sulfur, respectively. The addition of L. ferriphilum to A. caldus during biooxidation of the ferric leach product proved to inhibit elemental sulfur oxidation.
Collapse
Affiliation(s)
- Maxim Muravyov
- Winogradsky Institute of Microbiology, Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, 119071 Moscow, Russia;
| | | |
Collapse
|
18
|
Zou H, Jiang Q, Zhu R, Chen Y, Sun T, Li M, Zhai J, Shi D, Ai H, Gu L, He Q. Enhanced hydrolysis of lignocellulose in corn cob by using food waste pretreatment to improve anaerobic digestion performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109830. [PMID: 31733477 DOI: 10.1016/j.jenvman.2019.109830] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
This study aims to enhance hydrolysis and anaerobic digestion of corn cob (CC) by using food waste (FW) pretreatment. FW, which tends to be acidification in fermentation, was applied in this process as an acid-like agent to accelerate lignocellulose hydrolysis, aiming to promote methane yield in further digestion process. The effect of FW pretreatment on pH, soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), cellulose/hemicellulose contents and cellulose crystallinity are specially focused. FW:CC = 1:3 based on volatile solid (VS) was found to be the optimal mixing ratio in pretreatment and its hydrolysis efficiency was 28% higher than the control group. An increase of 13.2% in cellulose reduction and a decrease of 6.7% in cellulose crystallinity was achieved at this ratio. Supplementation of FW increased VFA concentrations in slurry mixture that directly change the activities of enzymes and microorganisms. In the stage of methane production, the digester A3 (FW:CC = 1:6 based on VS) with higher hydrolysis efficiency presented the best performance in methane production with a specific methane yield of 401.6 mL/g·VS, due to the recovery of the pH in this digester to the optimal pH range for methanogens' metabolism (pH 6.3-7.2). Kinetics studies of cellulose/hemicellulose degradation indicated that the pretreatment of FW could improve the degradation of cellulose. Three-dimensional excitation emission matrix (3DEEM) results further confirmed that FW play an important role in lignocellulose hydrolysis. In addition, variations of lignocellulosic textures during the pretreatment were also cleared by using field emission-scanning electron microscopy (FE-SEM) analysis.
Collapse
Affiliation(s)
- Huijing Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Qin Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Ruilin Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Yongdong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Tong Sun
- General Research Institute of Architecture & Planning Design Co. LTD., Chongqing University, 174 Shapingba Road, Chongqing, 400044, PR China
| | - Mingxing Li
- General Research Institute of Architecture & Planning Design Co. LTD., Chongqing University, 174 Shapingba Road, Chongqing, 400044, PR China
| | - Jun Zhai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Hainan Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Urban Construction and Environmental Engineering, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|