1
|
Wei L, Li Z, Hong T, Zhang Q, Luo L, Tang Y, Ji J, Kong J, Ding X. Electricity production and nutrient recovery from waste activated sludge via microbial fuel cell and subsequent struvite crystallization: Effect of low temperature thermo-alkaline pretreatment. BIORESOURCE TECHNOLOGY 2024; 414:131575. [PMID: 39370010 DOI: 10.1016/j.biortech.2024.131575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Microbial fuel cell (MFC) and subsequent struvite crystallization are available low-carbon environmental- friendly techniques for resource utilization of waste activated sludge (WAS). In this study, low temperature thermo-alkaline pretreatment (LTTAP) was innovatively proposed for enhancing MFC electricity generation and subsequent struvite crystallization from WAS. The results indicated that LTTAP at 75 °C and pH 10 not only substantially shortened the start-up time of MFC to 3-4 days, but also significantly increased maximum power density to 5.38 W/m3. Moreover, thermo-alkaline pretreated WAS effectively exhibited stable and high output voltage over long period, compared to unpretreated WAS. Furthermore, pretreated WAS can provide an effective pH buffering function for MFC operation. In addition, about 90 % of phosphate in the pretreated WAS supernatant was recovered by struvite crystallization. The findings herein provided a new route for enhancing electricity production and nutrient recovery from WAS, which can realize the full-scale applicationof WAS resource utilization.
Collapse
Affiliation(s)
- Lin Wei
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Ziyue Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Tianqiu Hong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Zhang
- Instrumental Analysis Center, Hefei University of Technology, Hefei 230009, China
| | - Lei Luo
- College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiming Tang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Junjie Ji
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Jianyu Kong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xiaoke Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Zhang P, Wang X, Zhang Z, Wang Y, Zhu T, Liu Y. Hydrocyclone combines with alkali-thermal pretreatment to enhance short-chain fatty acids production from anaerobic fermentation of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122409. [PMID: 39236612 DOI: 10.1016/j.jenvman.2024.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The production of short-chain fatty acids (SCFAs) through anaerobic fermentation of waste activated sludge (WAS) is commonly constrained by limited substrate availability, particularly for WAS with low organic content. Combining the hydrocyclone (HC) selection with alkali-thermal (AT) pretreatment is a promising solution to address this limitation. The results indicated that HC selection modified the sludge properties by enhancing the ratio of mixed liquid volatile suspended solids (MLVSS)/mixed liquid suspended solids (MLSS) by 19.0% and decreasing the mean particle size by 17.4%, which were beneficial for the subsequent anaerobic fermentation process. Under the optimal HC + AT condition, the peak value of SCFAs production reached 4951.9 mg COD/L, representing a 23.2% increase compared to the raw sludge with only AT pretreatment. Mechanism investigations revealed such enhancement beyond mechanical separation. It involved an increase in bound extracellular polymeric substances (EPS) through HC selection and the disruption of sludge spatial structure by AT pretreatment. Consequently, this combination pretreatment accelerated the transfer of particulate organics (i.e., bound EPS and intracellular components) to the supernatant, thus increasing the accessibility of WAS substrate to hydrolytic and acidifying bacteria. Furthermore, the microbial structure was altered with the enrichment of key functional microorganisms, probably due to the facilitation of substrate biotransformation and product output. Meanwhile, the activity of hydrolases and SCFAs-forming enzymes increased, while that of methanogenic enzymes decreased. Overall, this strategy successfully enhanced SCFAs production from WAS while reducing the environmental risks of WAS disposal.
Collapse
Affiliation(s)
- Peiyao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Beijing Enterprises Water Group Limited, Beijing, 100102, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Shi S, Wang F, Hu Y, Zhou J, Zhang H, He C. Effects of running time on biological activated carbon filters: water purification performance and microbial community evolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21509-21523. [PMID: 38393555 DOI: 10.1007/s11356-024-32421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Ozone-biologically activated carbon (BAC) filtration is an advanced treatment process that can be applied to remove recalcitrant organic micro-pollutants in drinking water treatment plants (DWTPs). In this study, we continuously monitored a new and an old BAC filter in a DWTP for 1 year to compare their water purification performance and microbial community evolution. The results revealed that, compared with the new filter, the use of the old BAC filter facilitated a slightly lower rate of dissolved organic carbon (DOC) removal. In the case of the new BAC filter, we recorded general increases in the biomass and microbial diversity of the biofilm with a prolongation of operating time, with the biomass stabilizing after 7 months. For both new and old BAC filters, Proteobacteria and Acidobacteria were the dominant bacterial phyla. At the genus level, the microbial community gradually shifted over the course of operation from a predominance of Herminiimonas and Hydrogenophaga to one predominated by Bradyrhizbium, Bryobacter, Hyphomicrobium, and Pedomicrobium, with Bradyrhizobium being established as the most abundant genus in the old BAC filter. Regarding spatial distribution, we detected reductions in the biomass and number of operational taxonomic units with increasing biofilm depth, whereas there was a corresponding increase in microbial diversity. However, compared with the effects of time, the influence of depth on the composition of the biofilm microbial community was considerably smaller. Furthermore, co-occurrence network analysis revealed that the microbial community network of the new filter after 11 months of operation was the most tightly connected, although its modular coefficient was the lowest of those assessed. We speculate that the positive and negative interactions within the network may be attributable to symbiotic or competitive relationships among species. Moreover, there may have been a significant negative interaction between SWB02 and Acidovorax, plausibly associated with a competition for substrates.
Collapse
Affiliation(s)
- Shuangjia Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yulin Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Haiting Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Fan X, Shi S, Lin H, Xia Y, He X, Zhou J. The performance and microbial response of zero valent iron alleviating the thermal-alkaline stress and enhancing hydrolysis-acidification of primary sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119134. [PMID: 37793294 DOI: 10.1016/j.jenvman.2023.119134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
The biological thermal-alkaline hydrolysis-acidification (BTAHA) could promote sludge disintegration, which was conducive to producing volatile fatty acids (VFAs). However, high temperature and strong alkali could reduce the BTAHA effluent quality. Because high temperature denatures proteins and significantly changes the material and energy metabolism of bacteria, while strong alkali inhibits fermentation microorganisms (especially acid-producing microorganisms). This study investigated the internal mechanism of zero valent iron (ZVI) and magnetite (Mag.) alleviating temperature and alkali stress and improving the quality of hydrolysis-acidification effluent. At pH 7-10, compared with the control and magnetite, ZVI increased the average effluent VFAs by 24.0%-40.1% and 11.6%-18.1%, respectively. At pH 9, ZVI could provide an ecological niche for acidifying bacteria that preferred neutral and weakly alkaline conditions, with a 49.8% proportion of VFAs to soluble chemical oxygen demand (SCOD). At pH 12, the fluorescence intensity ratio of easy to difficult biodegradable organic matter in control, RMag., and RZVI were 0.63, 0.62, and 1.31, respectively. It indicated ZVI effectively alleviated high temperature and strong alkali stress. This study provides a reference for improving the quality of BTAHA effluent.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hong Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yongqiu Xia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
5
|
Shi S, Cao M, Zhang Y, Fan X, Liu S, Chen J, Zhou J. Enhanced hydrolysis/acidogenesis and potential mechanism in thermal-alkali-biofilm synergistic pretreatment of high-solid and low-organic-content sludge. BIORESOURCE TECHNOLOGY 2023; 378:128988. [PMID: 37001699 DOI: 10.1016/j.biortech.2023.128988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Improving the anaerobic digestion (AD) of high-solid and low-organic-content sludge is imperative for sustainable waste activated sludge (WAS) management. Here, a thermal-alkali-biofilm pretreatment (TAB) was established to treat high-solid and low-organic-content sludge and compared with thermal and thermal-alkali methods. The results showed that TAB drastically improved WAS reduction, hydrolysis/acidogenesis efficiency, and biochemical methane potential. TAB possessed the lowest sludge particle size and the highest surface charge due to the stimulated proteolysis and WAS solubilization, supported by the protease activity test and secondary substrate identification. In addition, the biofilm assistance noticeably accelerated the elimination of autochthonous bacteria in WAS (e.g., Proteobacteria) and facilitated the enrichment of specialized fermentative microorganisms (e.g., Firmicutes) along with relevant functional genes, lying molecular foundation for the enhanced hydrolysis/acidogenesis in TAB. These findings could expand the application of biofilm in the AD of WAS and provide new insight into the pretreatment strategy of high-solid and low-organic-content sludge.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shihu Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiahao Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
6
|
Samir Ali S, Jiao H, El-Sapagh S, Sun J. Biodegradation of willow sawdust by novel cellulase-producing bacterial consortium from wood-feeding termites for enhancing methane production. BIORESOURCE TECHNOLOGY 2023:129232. [PMID: 37244303 DOI: 10.1016/j.biortech.2023.129232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
This study was designed to develop a cellulase-producing bacterial consortium (CBC) from wood-feeding termites that could effectively degrade willow sawdust (WSD) and consequently enhance methane production. The bacterial strains Shewanella sp. SSA-1557, Bacillus cereus SSA-1558, and Pseudomonas mosselii SSA-1568 exhibited significant cellulolytic activity. Their CBC consortium showed positive effects on cellulose bioconversion, resulting in accelerated WSD degradation. After nine days of pretreatment, the WSD had lost 63%, 50%, and 28% of its cellulose, hemicellulose, and lignin, respectively. The hydrolysis rate of treated WSD (352 mg/g) was much higher than that of untreated WSD (15.2 mg/g). The highest biogas production (66.1 NL/kg VS) with 66% methane was observed in the anaerobic digester M-2, which contained a combination of pretreated WSD and cattle dung in a 50/50 ratio. The findings will enrich knowledge for the development of cellulolytic bacterial consortia from termite guts for biological wood pretreatment in lignocellulosic anaerobic digestion biorefineries.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shimaa El-Sapagh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Fan X, He L, Shi S, Huang Y, He X, Zhou Y, Zhou J. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification for refractory organics removal from anaerobic digestate food waste effluent (ADFE). BIORESOURCE TECHNOLOGY 2023; 371:128601. [PMID: 36632852 DOI: 10.1016/j.biortech.2023.128601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study was to remove the refractory organics from high-temperature anaerobic digestate food waste effluent by the coupling system of hydrolysis-acidification and denitrification. Iron-based materials (magnetite, zero-valent iron, and iron-carbon) were used to enhance the performance of thermophilic hydrolysis-acidification. Compared with the control group, magnetite had the best strengthening effect, increasing volatile fatty acids concentration and fluorescence intensity of easily biodegradable organics in the effluent by 47.6 % and 108.4 %, respectively. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification achieved a nitrate removal efficiency of 91.2 % (influent NO3--N was 150 mg L-1), and reduced the fluorescence intensity of refractory organics by 33.8 %, compared with influent. Microbiological analysis indicated that magnetite increased the relative abundance of thermophilic hydrolytic acidifying bacteria, and coupling system enriched some genera simultaneously removing nitrate and refractory organics. This study provided fresh information on refractory organics and nitrogen removal of thermophilic wastewater biologically.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
8
|
Gao J, Li Z, Chen H. Untangling the effect of solids content on thermal-alkali pre-treatment and anaerobic digestion of sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158720. [PMID: 36113808 DOI: 10.1016/j.scitotenv.2022.158720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Total solids (TS) content is critical for thermal hydrolysis and anaerobic digestion (AD) performance, but its role in thermal-alkaline pre-treatment (TAP) is unclear. Therefore, this study aimed to reveal the key role of TS content in TAP and AD of waste activated sludge. The results showed that the optimum TS content of TAP (at 90 °C for 1 h, pH = 10) was 8 %. Sludge disintegration and methane production increased from 19.7 ± 2.2 % to 34.3 ± 2.9 % and from 167.4 ± 4.2 to 246.0 ± 6.2 mL/g volatile solids, respectively, when TS content were increased from 2 % to 8 %. A high TS content will likely promote sludge disintegration since it will reduce heat loss and improve heating efficiency. Additionally, increasing TS content from 2 % to 10 % minimized the production of intracellular reactive oxygen species by 30.4 ± 0.7 % and increased cell viability by 11.5 ± 2.6 %. In contrast, excessive TS content (i.e., ≥10 %) deteriorated the fluidity of sludge, which prevents it from disintegration. Once TS reached 10 %, the accumulation of ammonia nitrogen and volatile fatty acids reached 812.7 ± 27.4 and 1932.0 ± 5.3 mg/L, respectively, which reduced the activity of acidulase and coenzyme F420 and shifted the archaeal community from acetylotrophic to hydrogenotrophic methanogens. This article provides new insights into the TS content in TAP and AD technology.
Collapse
Affiliation(s)
- Jiaxin Gao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zeyu Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
9
|
Song Y, Liu R, Yang L, Xiao X, He G. Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China. TOXICS 2022; 10:782. [PMID: 36548615 PMCID: PMC9781051 DOI: 10.3390/toxics10120782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Moss-dominated biocrusts are widespread in degraded mining ecosystems and play an important role in soil development and ecosystem primary succession. In this work, the soil microbial community structure under moss-dominated biocrusts in ionic rare earth tailings was investigated to reveal the relationship between different types of moss and taxonomy/function of microbiomes. The results showed that microbial community structure was significantly influenced by four moss species (Claopodium rugulosifolium, Orthotrichum courtoisii, Polytrichum formosum, and Taxiphyllum giraldii). The microbial assembly was more prominent in Claopodium rugulosifolium soil than in the other moss soils, which covers 482 bacterial genera (including 130 specific genera) and 338 fungal genera (including 72 specific genera), and the specific genus is 40% to 1300% higher than that of the other three mosses. Although only 141 and 140 operational taxonomic units (OTUs) rooted in bacterial and fungal clusters, respectively, were shared by all four mosses grown in ionic rare earth tailings, this core microbiome could represent a large fraction (28.2% and 38.7%, respectively) of all sequence reads. The bacterial population and representation are the most abundant, which mainly includes Sphingomonas, Clostridium_sensu_stricto_1, and unclassified filamentous bacteria and chloroplasts, while the fungi population is relatively singular. The results also show that biocrust dominated by moss has a positive effect on soil microbe activity and soil nutrient conditions. Overall, these findings emphasize the importance of developing moss-dominated biocrusts as hotspots of ecosystem functioning and precious microbial genetic resources in degraded rare-earth mining areas and promoting a better understanding of biocrust ecology in humid climates under global change scenarios.
Collapse
Affiliation(s)
- Yongsheng Song
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| | - Renlu Liu
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| | - Liren Yang
- Ji’an Agricultural and Rural Industry Development Service Center, Ji’an 343000, China
| | - Xiaoyu Xiao
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| | - Genhe He
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
10
|
He L, Yu J, Lin Z, Huang Y, He X, Shi S, Zhou J. Organic matter removal performance, pathway and microbial community succession during the construction of high-ammonia anaerobic biosystems treating anaerobic digestate food waste effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115428. [PMID: 35649332 DOI: 10.1016/j.jenvman.2022.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to establish anaerobic biosystems which could tolerate high ammonia, and investigate the microbial community structure in these reactors. High-ammonia anaerobic biosystems that could tolerate 3600 mg L-1 total ammonia nitrogen (TAN) and 1000 mg L-1 free ammonia nitrogen (FAN) were successfully established. The removal efficiencies of COD and total volatile fatty acids (TVFAs) in R1 with dewatered sludge as inoculum were 68.8% and 69.2%, respectively. The maximum methane production rate reached 71.7 ± 1.0 mL CH4 L-1 d-1 at a TAN concentration of 3600 mg L-1. The three-dimension excitation-emission matrix analysis indicated that both easily degradable organics and refractory organics were removed from ADFE in R1 and R2. Functional microorganisms which could bear high ammonia were gradually enriched as TAN stress was elevated. Lysinibacillus, Coprothermobacter and Sporosarcina dominated the final bacterial community. Archaeal community transformed to hydrogenotrophic methanogen. The synergy of Coprothermobacter and Methanothermobacter undertook the organic matter degradation, and was enhanced by increasing TAN stress. This study offers new insights into anaerobic bioremediation of ammonia-rich wastewater.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jianbo Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
11
|
Composition Characterization and Transformation Mechanism of Dissolved Organic Matters in a Full-Scale Membrane Bioreactor Treating Co-Digestion Wastewater of Food Waste and Sewage Sludge. SUSTAINABILITY 2022. [DOI: 10.3390/su14116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The membrane bioreactor (MBR) serves as the most widely used technology in anaerobic digestion wastewater treatment, but the composition and transformation of the dissolved organic matters (DOMs) are vague. This study focused on the composition characterization and transformation mechanism of DOMs in real co-digestion wastewater of food waste and sewage sludge from a full-scale MBR via molecular weight cut-off, 3D-EEM, FT-IR, and SPME-GC/MS. The results indicated that the co-digestion wastewater mainly comprised organics with molecular weight (MW) lower than 1 kDa and dominated by tryptophane-protein-like substances. The hydrolytic/acidogenic process improved the biodegradability with the conversion of high-MW organics into low-MW organics, while the two-stage A/O process possessed the highest contribution to the organic removal with the consumption of most DOMs. However, the deficient removal of refractory organics (MW < 5 kDa) in the ultrafiltration unit led to the residual DOMs in the effluent. The potential functional bacteria in the biological processes have also been identified and were principally affiliated with Proteobacteria and Firmicutes. These findings could help to advance the understanding of the co-digestion wastewater and provide fundamental information for the optimization and development of MBR in anaerobic digestion wastewater treatment.
Collapse
|
12
|
Qu Y, Li Y, Zhu H. Methane production improvement in an osmotic membrane bioreactor for sludge anaerobic digestion: pretreatment optimization and long-term performance. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2786-2796. [PMID: 35576269 DOI: 10.2166/wst.2022.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrolysis is the first step and also rate-limiting step of anaerobic digestion which recovers energy from waste sludge. In order to accelerate the reaction rate of the hydrolysis, many pretreatment conditions had been taken into account. In this study, thermal pretreatment and alkaline pretreatment were combined with each other, serving as a thermal-alkaline pretreatment approach. Firstly, an orthogonal designed batch experiment was conducted to evaluate the pretreatment conditions, and then the optimal conditions were applied to an osmotic membrane bioreactor for a long-term investigation. Based on batch experiments, sludge treated by NaOH at pH 9 or 10 showed a better effect in cell solubilization. Sludge treated by Ca(OH)2 at pH 9, and sludge treated by NaOH at pH 9 or 10 showed advantages in methane production. Ultimately, sludge treated by NaOH at pH 9 and then heated at 90 °C for 60 min was selected as the optimal pretreatment condition. During the long-term operation of osmotic membrane bioreactor for sludge anaerobic digestion, the volume methane production of the sludge treated by thermal-alkaline was maintained at around 200-300 mL/L/d, which was 2-3 times of the sludge treated by ultrasound.
Collapse
Affiliation(s)
- Yuetong Qu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China E-mail:
| | - Yunqian Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China E-mail:
| | - Hongtao Zhu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China E-mail:
| |
Collapse
|
13
|
Zhang Z, Guo L, Liao Q, Gao M, Zhao Y, Jin C, She Z, Wang G. Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation. BIORESOURCE TECHNOLOGY 2021; 338:125574. [PMID: 34303141 DOI: 10.1016/j.biortech.2021.125574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
In the present study, bacterial-algal coupling system, an integration process of acidogenic fermentation and microalgae cultivation was used for high strength mariculture wastewater (HSMW) treatment, resource recovery and low-cost biomass production. The effect of temperature on Chlorella vulgaris (C. vulgaris) cultivation was investigated with culture medium of acidogenic liquid. The results showed that acidogenic liquid could be used as culture medium for C. vulgaris and higher biomass was obtained compared to control. The acidogenic liquid obtained at initial pH of 8 was the most suitable culture medium for C. vulgaris growth due to befitting C/N and considerable volatile fatty acids. Moreover, the optimum temperature for C. vulgaris cultivation was 25 °C and the removal efficiency of chemical oxygen demand (COD) and NH4+-N from acidogenic liquid could reach 94.4% and 68.8%, respectively. The outcome could create an innovative value chain with environmental sustainability and economic feasibility in aquaculture industry.
Collapse
Affiliation(s)
- Zengshuai Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Qianru Liao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
14
|
Izydorczyk G, Mikula K, Skrzypczak D, Trzaska K, Moustakas K, Witek-Krowiak A, Chojnacka K. Agricultural and non-agricultural directions of bio-based sewage sludge valorization by chemical conditioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47725-47740. [PMID: 34278553 PMCID: PMC8410704 DOI: 10.1007/s11356-021-15293-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
This literature review outlines the most important-agricultural and non-agricultural-types of sewage sludge management. The potential of waste sludge protein hydrolysates obtained by chemical sludge conditioning was reported. The discussed areas include acidic and alkaline hydrolysis, lime conditioning, polyelectrolyte dewatering and other supporting techniques such as ultrasounds, microwave or thermal methods. The legislative aspects related to the indication of the development method and admission to various applications based on specified criteria were discussed. Particular attention was devoted to the legally regulated content of toxic elements: cadmium, lead, nickel, mercury, chromium and microelements that may be toxic: copper and zinc. Various methods of extracting valuable proteins from sewage sludge have been proposed: chemical, physical and enzymatic. While developing the process concept, you need to consider extraction efficiency (time, temperature, humidity, pH), drainage efficiency of post-extraction residues and directions of their management. The final process optimization is crucial. Despite the development of assumptions for various technologies, excess sewage sludge remains a big problem for sewage treatment plants. The high costs of enzymatic hydrolysis, thermal hydrolysis and ultrasonic methods and the need for a neutralizing agent in acid solubilization limit the rapid implementation of these processes in industrial practice.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Krzystof Trzaska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| |
Collapse
|
15
|
He L, Lin Z, Wang Y, He X, Zhou J, Guan M, Zhou J. Facilitating harmful algae removal in fresh water via joint effects of multi-species algicidal bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123662. [PMID: 32846260 DOI: 10.1016/j.jhazmat.2020.123662] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 05/12/2023]
Abstract
Harmful algae blooms posing serious threats to the ecological environment occur frequently across the world. Multi-species algicidal bacteria were enriched by utilizing immobilized carriers in a pilot scale experiment, which significantly promoted the effect of algal control in the reactors. Under the optimal condition, the algicidal ratio and chlorophyll a degradation rate reached 87.69% and 47.00 μg/(L·d), respectively. The growth of Cyanophyta, diatom, Dinoflagellate and Cryptophyta was inhibited significantly by the joint action of algicidal bacteria and light shading of fillers, accounting for 53.74% and 36.47%, respectively. The results of 16S rRNA high-throughput sequencing suggested algicidal bacteria (10.17%) belonging to 13 genera were enriched. Among the algicidal process, Bacillus and Pseudomonas played crucial roles. Fluorescence spectroscopy and UV254 were adopted to assess the release of dissolved organic matter (DOM) and the precursors of disinfection by-products (DBPs). Two efficient algicidal strains (C1, C4) were isolated which showed high homology with Enterobacter asburiae JCM6051(T) and Pseudomonas simiae oli(T), respectively. This study provided new insights into the in-situ bioremediation of eutrophication in fresh water.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Maoquan Guan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
16
|
Wei L, Zhu F, Li Q, Xue C, Xia X, Yu H, Zhao Q, Jiang J, Bai S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO 2-equivaient emissions analysis. ENVIRONMENT INTERNATIONAL 2020; 144:106093. [PMID: 32890889 DOI: 10.1016/j.envint.2020.106093] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 05/23/2023]
Abstract
This study statistically reported the current state of sludge treatment/disposal in China from the aspects of sources, technical routes, geographical distribution, and development by using observational data after 1978. By the end of 2019, 5476 municipal wastewater treatment plants were operating in China, leading to an annual sludge productivity of 39.04 million tons (80% water content). Overall, 29.3% of the sludge in China was disposed via land application, followed by incineration (26.7%) and sanitary landfills (20.1%). Incineration, compost, thermal hydrolysis and anerobic digestion were the mainstream technologies for sludge treatment in China, with capacities of 27,122, 11,250, 8342 and 6944 t/d in 2019, respectively. Incineration and drying were preferentially constructed in East China. In contrast, sludge compost was most frequently used in Northeast China (46.5%), East China (22.4%) and Central China (12.8%), while anaerobic digestion in East China, North China and Central China. The capacities of sludge facilities exhibited a sharp increase in 2009-2019, with an overall greenhouse gas emissions in China in 2019 reached 108.18 × 108 kg CO2-equivaient emissions, and the four main technical routes contributed as: incineration (45.11%) > sanitary landfills (23.04%) > land utilization (17.64%) > building materials (14.21%). Challenges and existing problems of sludge disposal in China, including high CO2 emissions, unbalanced regional development, low stabilization and land utilization levels, were discussed. Finally, suggestions regarding potential technical and administrative measures in China, and sustainable sludge management for developing countries, were also given.
Collapse
Affiliation(s)
- Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Fengyi Zhu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiaoyang Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chonghua Xue
- Center of Science & Technology of Construction of the Ministry of Housing and Urban Rural Development, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Li X, Tan XW, Yuan Y, Huang Y, Li BL, Jin R. Highly efficient and low-energy nitrogen removal of sludge reduction liquid by coupling denitrification- partial nitrification-Anammox in an innovative auto-recycling integration device with different partitions. BIORESOURCE TECHNOLOGY 2020; 302:122880. [PMID: 32007855 DOI: 10.1016/j.biortech.2020.122880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The denitrification (DN), partial nitrification (PN) and Anammox processes were coupled in an auto-recycling integration device to remove nitrogen from the supernatant of sludge reduction pretreatment. The nitrogen removal performance of the device and the effect of organic matter concentration on the nitrogen transformation were discussed. The results showed that DN, PN and Anammox are well coupled and total nitrogen (TN) removal rate reached 0.85 kg/(m3·d). The pre-DN process can achieve the removal of NO3--N produced by the back-end PN-Anammox process without the need of reflux pump drive. When the influent NH4+-N concentration was approximately 400 mg/L, the effluent TN concentration was less than 20 mg/L. The fluctuation of organic matter led to changes of nitrogen transformation in the system, and the best ratio of influent CODbio/TN was 0.7-0.9. Nitrosomonas and Candidatus Brocadia played important roles in the nitrogen removal process as the main functional microorganisms of PN and Anammox, respectively.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Xin-Wei Tan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Bo-Lin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Run Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|