1
|
Kumar KK, Deeba F, Pandey AK, Islam A, Paul D, Gaur NA. Sustainable lipid production by oleaginous yeasts: Current outlook and challenges. BIORESOURCE TECHNOLOGY 2025; 421:132205. [PMID: 39923863 DOI: 10.1016/j.biortech.2025.132205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Yeast lipid has gained prominence as a sustainable energy source and so various oleaginous yeasts are being investigated to create efficient lipogenic platforms. This review aims to assess the various biotechnological strategies for enhanced production of yeast lipids via agro-waste processing and media engineering including multiomic analyses, genetic engineering, random mutagenesis, and laboratory adaptive evolution. The review also emphasizes the role of cutting-edge omics technologies in pinpointing differentially expressed genes and enriched networks crucial for designing advanced metabolic engineering strategies for prominent oleaginous yeast species. The review addresses the challenges and future prospects of a viable lipid production industry that is possible through advancements in current technologies, strain improvement, media optimization and techno-economic and life cycle analyses at lab, pilot and industrial scales. This review comprehensively provides deep insights for enhancement of yeast lipid biosynthesis to reach industrially benchmarked standard of a lipid production platform.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India
| | - Farha Deeba
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India
| | - Ajay Kumar Pandey
- School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur-208024, Uttar Pradesh, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Debarati Paul
- Amity Institute of Biotechnology, AUUP, Noida, sec-125, 201313, India.
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India.
| |
Collapse
|
2
|
de Lima JGO, Veríssimo NVP, de Azevedo Lima C, Picheli FP, de Paula AV, Santos-Ebinuma VDC. Improvement of torularhodin production by Rhodotorula glutinis through the stimulation of physicochemical stress and application of the bioproduct as an additive in the food industry. Bioprocess Biosyst Eng 2025; 48:543-563. [PMID: 40021520 DOI: 10.1007/s00449-024-03126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/30/2024] [Indexed: 03/03/2025]
Abstract
Carotenoids are pigments responsible for the red-orange colorations in valuable food products, and they can be produced via biotechnological means through microorganisms. Beyond their role as natural colorants, some carotenoids offer significant health benefits due to their antioxidant properties, making them valuable nutritional additives in the food industry. However, obtaining these compounds from natural sources with high quantity and purity poses challenges which reduces its market share when produced through a biotechnological route. This study proposes utilizing nutritional and physical stress to enhance carotenoid production, specifically torularhodin, using the yeast Rhodotorula glutinis CCT-2186. A Design of Experiments approach identified malt extract as the most suitable nitrogen source for maximizing carotenoid production. Furthermore, introducing a surfactant (Tween 80) in the culture medium, and extending the cultivation time to 96 h, led to an increase in torularhodin production, reaching a notable 2.097 mg/mL (377,68% more when compared to the initial condition) under the best condition [(%w/v): dextrose (1), KH2PO4 (0.052), MgSO4.7H2O (0.052) and NH4NO3 (0.4), malt extract with a pH of 5.0/ 96 h/30 °C]. Lastly, to demonstrate the viability of utilizing the carotenoid extract as a food colorant, it was applied in edible gelatin. These findings highlight the critical role of nutritional, physical, and mechanical stresses in optimizing torularhodin production, particularly the conversion of γ-carotene to torularhodin by R. glutinis.
Collapse
Affiliation(s)
- Júlio Gabriel Oliveira de Lima
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Nathalia Vieira Porphirio Veríssimo
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, São Paulo University (USP), Ribeirão Preto, Brazil
| | - Caio de Azevedo Lima
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Flávio Pereira Picheli
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Ariela Veloso de Paula
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Valéria de Carvalho Santos-Ebinuma
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (UNESP), Câmpus de Araraquara Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville, Araraquara, SP, CEP 14800-903, Brazil.
| |
Collapse
|
3
|
Srivastava N, Roy Choudhury A. Gellan-amino acid hydrogel-based bioreactor for optimizing the production of yeast metabolites. Carbohydr Polym 2025; 351:123101. [PMID: 39779015 DOI: 10.1016/j.carbpol.2024.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored. This study is the first attempt to integrate gellan and amino acids to develop an innovative hydrogel bioreactor. The performance of this system was determined by cultivating Rhodosporidium sp. (MTCC 9733) as a model organism and evaluating its metabolite production. Further, gellan and amino acids concentration was optimized using one-factor-at-a-time and D-optimal response surface methodologies to produce β-carotene, lipid, and protein. Additionally, a comparison of productivity, yield, and process economics suggested that novel solid-state hydrogel fermentation approach outperformed classical submerged fermentation in YMB liquid media. Moreover, rheological properties of optimized hydrogel, conducted before and after yeast cultivation, revealed that this system possesses significant mechanical strength and structural integrity. Such attributes render the hydrogel suitable for utilization across multiple fermentation cycles. Hence, this study illustrates the potential of gellan-amino acid hydrogels as sustainable, efficient alternatives to conventional fermentation methods.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
5
|
Li K, Li C, Liu CG, Zhao XQ, Ou R, Swofford CA, Bai FW, Stephanopoulos G, Sinskey AJ. Engineering carbon source division of labor for efficient α-carotene production in Corynebacterium glutamicum. Metab Eng 2024; 84:117-127. [PMID: 38901555 DOI: 10.1016/j.ymben.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Effective utilization of glucose, xylose, and acetate, common carbon sources in lignocellulose hydrolysate, can boost biomanufacturing economics. However, carbon leaks into biomass biosynthesis pathways instead of the intended target product remain to be optimized. This study aimed to enhance α-carotene production by optimizing glucose, xylose, and acetate utilization in a high-efficiency Corynebacterium glutamicum cell factory. Heterologous xylose pathway expression in C. glutamicum resulted in strain m4, exhibiting a two-fold increase in α-carotene production from xylose compared to glucose. Xylose utilization was found to boost the biosynthesis of pyruvate and acetyl-CoA, essential precursors for carotenoid biosynthesis. Additionally, metabolic engineering including pck, pyc, ppc, and aceE deletion, completely disrupted the metabolic connection between glycolysis and the TCA cycle, further enhancing α-carotene production. This strategic intervention directed glucose and xylose primarily towards target chemical production, while acetate supplied essential metabolites for cell growth recovery. The engineered strain C. glutamicum m8 achieved 30 mg/g α-carotene, 67% higher than strain m4. In fed-batch fermentation, strain m8 produced 1802 mg/L of α-carotene, marking the highest titer reported to date in microbial fermentation. Moreover, it exhibited excellent performance in authentic lignocellulosic hydrolysate, producing 216 mg/L α-carotene, 1.45 times higher than the initial strain (m4). These labor-division strategies significantly contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiwen Ou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Charles A Swofford
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.
| |
Collapse
|
6
|
Gong G, Liu L, Wu B, Li J, He M, Hu G. Simultaneous production of algal biomass and lipid by heterotrophic cultivation of linoleic acid-rich oleaginous microalga Chlorella sorokiniana using high acetate dosage. BIORESOURCE TECHNOLOGY 2024; 399:130566. [PMID: 38467262 DOI: 10.1016/j.biortech.2024.130566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
The low-cost carbon source, acetate, was utilized to feed a linoleic acid-rich Chlorella sorokiniana for microalgal biomass and lipid accumulation. Remarkably high tolerance capability to high acetate dosage up to 30 g/L was observed, with heterotrophy being the preferred trophic mode for algal growth and lipogenesis when supplemented 20 g/L acetate. Transcriptome analysis revealed a marked activation of pathways involved in acetate bioconversion and lipogenesis upon exposure to high-level of acetate. However, the enhancement of photorespiration inhibited photosynthesis, which ultimately led to a decrease in biomass and lipid under mixotrophy. Heterotrophic acetate-feeding generated more superior amino acid profiling of algal biomass and a predominant linoleic acid content (50 %). Heterotrophic repeat fed-batch strategy in 5 L fermenter significantly increased the growth performance and lipid titer, with the highest levels achieved being 23.4 g/L and 7.0 g/L, respectively. This work provides a viable approach for bio-products production through acetate-based heterotrophic algal cultivation.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
7
|
Sriphuttha C, Boontawan P, Boonyanan P, Ketudat-Cairns M, Boontawan A. Simultaneous Lipid and Carotenoid Production via Rhodotorula paludigena CM33 Using Crude Glycerol as the Main Substrate: Pilot-Scale Experiments. Int J Mol Sci 2023; 24:17192. [PMID: 38139021 PMCID: PMC10743220 DOI: 10.3390/ijms242417192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Rhodotorula paludigena CM33 is an oleaginous yeast that has been demonstrated to accumulate substantial quantities of intracellular lipids and carotenoids. In this study, crude glycerol, a by-product of biodiesel production, was used as a carbon source to enhance the accumulation of lipids and carotenoids in the cells. The culture conditions were first optimized using response surface methodology, which revealed that the carotenoid concentration and lipid content improved when the concentration of crude glycerol was 40 g/L. Different fermentation conditions were also investigated: batch, repeated-batch, and fed-batch conditions in a 500 L fermenter. For fed-batch fermentation, the maximum concentrations of biomass, lipids, and carotenoids obtained were 46.32 g/L, 37.65%, and 713.80 mg/L, respectively. A chemical-free carotenoid extraction method was also optimized using high-pressure homogenization and a microfluidizer device. The carotenoids were found to be mostly beta-carotene, which was confirmed by HPLC (high pressure liquid chromatography), LC-MS (liquid chromatography-mass spectrometry), and NMR (nuclear magnetic resonance). The results of this study indicate that crude glycerol can be used as a substrate to produce carotenoids, resulting in enhanced value of this biodiesel by-product.
Collapse
Affiliation(s)
- Cheeranan Sriphuttha
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Pailin Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Pasama Boonyanan
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand;
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Apichat Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
- Center of Excellent in Agricultural Product Innovation, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
8
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
9
|
Zhao D, Li C. Effects of TiO2 and H2O2 treatments on the biosynthesis of carotenoids and lipids in oleaginous red yeast Rhodotorula glutinis ZHK. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Gong G, Wu B, Liu L, Li J, Zhu Q, He M, Hu G. Metabolic engineering using acetate as a promising building block for the production of bio-based chemicals. ENGINEERING MICROBIOLOGY 2022; 2:100036. [PMID: 39628702 PMCID: PMC11610983 DOI: 10.1016/j.engmic.2022.100036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2024]
Abstract
The production of biofuels and biochemicals derived from microbial fermentation has received a lot of attention and interest in light of concerns about the depletion of fossil fuel resources and climatic degeneration. However, the economic viability of feedstocks for biological conversion remains a barrier, urging researchers to develop renewable and sustainable low-cost carbon sources for future bioindustries. Owing to the numerous advantages, acetate has been regarded as a promising feedstock targeting the production of acetyl-CoA-derived chemicals. This review aims to highlight the potential of acetate as a building block in industrial biotechnology for the production of bio-based chemicals with metabolic engineering. Different alternative approaches and routes comprised of lignocellulosic biomass, waste streams, and C1 gas for acetate generation are briefly described and evaluated. Then, a thorough explanation of the metabolic pathway for biotechnological acetate conversion, cellular transport, and toxin tolerance is described. Particularly, current developments in metabolic engineering of the manufacture of biochemicals from acetate are summarized in detail, with various microbial cell factories and strategies proposed to improve acetate assimilation and enhance product formation. Challenges and future development for acetate generation and assimilation as well as chemicals production from acetate is eventually shown. This review provides an overview of the current status of acetate utilization and proves the great potential of acetate with metabolic engineering in industrial biotechnology.
Collapse
Affiliation(s)
| | | | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Qili Zhu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| |
Collapse
|
11
|
Gong G, Wu B, Liu L, Li J, He M, Hu G. Enhanced biomass and lipid production by light exposure with mixed culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source. BIORESOURCE TECHNOLOGY 2022; 364:128139. [PMID: 36252765 DOI: 10.1016/j.biortech.2022.128139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Microbial biomass and lipid production with mixed-culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source was investigated. Synergistic effect of mixed-culture using 20 g/L acetate significantly promoted cell growth and acetate utilization efficiency. Increasing the proportion of algae in co-culture was beneficial for biomass and lipid accumulation and the optimal ratio of yeast/algae was 1:2. Light exposure further enhanced biomass and lipid titer with 6.9 g/L biomass and 2.6 g/L lipid (38.3 % lipid content) obtained in a 5L bioreactor. The results of lipid classes and fatty acid profiles moreover indicated that more neutral lipids and linolenic acid were synthesized in mixed-culture under light exposure condition, suggesting the great potential in applications of biofuels production. This study provided new insight and strategy for economical microbial biomass and lipid production by light-exposed mixed-culture using inexpensive acetate as carbon source.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
12
|
Mussagy CU, Ribeiro HF, Santos-Ebinuma VC, Schuur B, Pereira JFB. Rhodotorula sp.-based biorefinery: a source of valuable biomolecules. Appl Microbiol Biotechnol 2022; 106:7431-7447. [PMID: 36255447 DOI: 10.1007/s00253-022-12221-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
The development of an effective, realistic, and sustainable microbial biorefinery depends on several factors, including as one of the key aspects an adequate selection of microbial strain. The oleaginous red yeast Rhodotorula sp. has been studied as one powerful source for a plethora of high added-value biomolecules, such as carotenoids, lipids, and enzymes. Although known for over a century, the use of Rhodotorula sp. as resource for valuable products has not yet commercialized. Current interests for Rhodotorula sp. yeast have sparked from its high nutritional versatility and ability to convert agro-food residues into added-value biomolecules, two attractive characteristics for designing new biorefineries. In addition, as for other yeast-based bioprocesses, the overall process sustainability can be maximized by a proper integration with subsequent downstream processing stages, for example, by using eco-friendly solvents for the recovery of intracellular products from yeast biomass. This review intends to reflect on the current state of the art of microbial bioprocesses using Rhodotorula species. Therefore, we will provide an analysis of bioproduction performance with some insights regarding downstream separation steps for the extraction of high added-value biomolecules (specifically using efficient and sustainable platforms), providing information regarding the potential applications of biomolecules produced by Rhodotorula sp, as well as detailing the strengths and limitations of yeast-based biorefinery approaches. Novel genetic engineering technologies are further discussed, indicating some directions on their possible use for maximizing the potential of Rhodotorula sp. as cell factories. KEY POINTS: • Rhodotorula sp. are valuable source of high value-added compounds. • Potential of employing Rhodotorula sp. in a multiple product biorefinery. • Future perspectives in the biorefining of Rhodotorula sp. were discussed.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile.
| | - Helena F Ribeiro
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Valeria C Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Boelo Schuur
- Sustainable Process Technology Group, Process and Catalysis Engineering Cluster, Faculty of Science and Technology, University of Twente, PO Box 217, 7500, Enschede, AE, Netherlands
| | - Jorge F B Pereira
- Department of Chemical Engineering, CIEPQPF, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal.
| |
Collapse
|
13
|
Coproduction of Microbial Oil and Carotenoids within the Circular Bioeconomy Concept: A Sequential Solid-State and Submerged Fermentation Approach. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main objective of integrative biorefinery platforms is to propose efficient green methodologies addressed to obtain high-value compounds with low emissions through biochemical conversions. This work first screened the capacity of various oleaginous yeast to cosynthesize high-value biomolecules such as lipids and carotenoids. Selected strains were evaluated for their ability to coproduce such biocompounds in the waste-based media of agro-food (brewer’s spent grain, pasta processing waste and bakery waste). Carbon and nitrogen source feedstock was obtained through enzymatic hydrolysis of the agro-food waste, where up to 80% of total sugar/starch conversion was obtained. Then, the profitability of the bioprocess for microbial oil (MO) and carotenoids production by Sporobolomyces roseus CFGU-S005 was estimated via simulation using SuperPro Designer®. Results showed the benefits of establishing optimum equipment scheduling by identifying bottlenecks to increase profitability. Sensitivity analysis demonstrated the impact of MO price and batch throughput on process economics. A profitable process was achieved with a MO batch throughput of 3.7 kg/batch (ROI 31%, payback time 3.13 years). The results revealed areas that require further improvement to achieve a sustainable and competitive process for the microbial production of carotenoids and lipids.
Collapse
|
14
|
Evaluation of Lignocellulosic Wastewater Valorization with the Oleaginous Yeasts R. kratochvilovae EXF7516 and C. oleaginosum ATCC 20509. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the conversion of lignocellulose, phenolic wastewaters are generated. Therefore, researchers have investigated wastewater valorization processes in which these pollutants are converted to chemicals, i.e., lipids. However, wastewaters are lean feedstocks, so these valorization processes in research typically require the addition of large quantities of sugars and sterilization, which increase costs. This paper investigates a repeated batch fermentation strategy with Rhodotorula kratochvilovae EXF7516 and Cutaneotrichosporon oleaginosum ATCC 20509, without these requirements. The pollutant removal and its conversion to microbial oil were evaluated. Because of the presence of non-monomeric substrates, the ligninolytic enzyme activity was also investigated. The repeated batch fermentation strategy was successful, as more lipids accumulated every cycle, up to a total of 5.4 g/L (23% cell dry weight). In addition, the yeasts consumed up to 87% of monomeric substrates, i.e., sugars, aromatics, and organics acids, and up to 23% of non-monomeric substrates, i.e., partially degraded xylan, lignin, cellulose. Interestingly, lipid production was only observed during the harvest phase of each cycle, as the cells experienced stress, possibly due to oxygen limitation. This work presents the first results on the feasibility of valorizing non-sterilized lignocellulosic wastewater with R. kratochvilovae and C. oleaginosum using a cost-effective repeated batch strategy.
Collapse
|
15
|
Sundaramahalingam MA, Sivashanmugam P, Rajeshbanu J, Ashokkumar M. A review on contemporary approaches in enhancing the innate lipid content of yeast cell. CHEMOSPHERE 2022; 293:133616. [PMID: 35033523 DOI: 10.1016/j.chemosphere.2022.133616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
For the past few decades, industrialization has made a huge environmental hazard to the world with its waste. The approach of waste to wealth in the recent era has made many Eco-economical suggestions for the industries. The valuable products in biorefinery aspects of the eco-economical suggestions include; energy products, high-value drugs and novel materials. Bio-lipids are found to be the major influencing eco-economical products in the process. Production of bio-lipid from microbial sources has paved the way for future research on lipid-bioproducts. The yeast cell is a unique organism with a large unicellular structure capable of accumulating a high amount of lipids. It constitutes 90% of neutral lipids. Various strategies enhance the lipid profile of yeast cells: usage of oleaginous yeast, usage of low cost (or) alternative substrates, developing stress conditions in the growth medium, using genetically modified yeast, altering metabolic pathways of yeast and by using the symbiotic cultures of yeast with other microbes. The metabolic alterations of lipid pathways such as lipid biosynthesis, lipid elongation, lipid accumulation and lipid degradation have been a striking feature of research in lipid-based microbial work. The lipid-bioproducts have also made a strong footprint in the history of alternative energy products. It includes partial acyl glycerol, oleochemicals, phospholipids and biofuels. This report comprises the recent approaches carried out in the yeast cell for enhancing its lipid content. The limitations, challenges and future scope of individual strategies were also highlighted in this article.
Collapse
Affiliation(s)
- M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | | |
Collapse
|
16
|
Zhang L, Song Y, Wang Q, Zhang X. Culturing rhodotorula glutinis in fermentation-friendly deep eutectic solvent extraction liquor of lignin for producing microbial lipid. BIORESOURCE TECHNOLOGY 2021; 337:125475. [PMID: 34320755 DOI: 10.1016/j.biortech.2021.125475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Currently, deep eutectic solvents (DES) have attracted increasing attention due to their excellent performance in delignification. However, few studies focused on the treatment of DES waste liquid after extraction of lignin. In this work, the fermentation-friendly DES comprised of glycerol, choline chloride (ChCl) and acetic acid (AA) was applied for delignification of lignocellulose. Subsequently, the extraction effects of different DES were investigated, and the DES extraction liquor was used for lipid production. Results shows ChCl made little difference to lipid synthesis, while excessive AA exerted inhibitory effect on the growth of cells. Following pretreatment, the delignification exceeded 63%. When the DES liquid obtained after lignin extraction was used to produce lipid, the delay period was obvious, while the lipid yield and content were unaffected. Not only is the DES prepared in this study effective in delignification of lignocellulose, it is also applicable as raw material to produce lipid.
Collapse
Affiliation(s)
- Lihe Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yanliang Song
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qian Wang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
17
|
Garcia-Cortes A, Garcia-Vásquez JA, Aranguren Y, Ramirez-Castrillon M. Pigment Production Improvement in Rhodotorula mucilaginosa AJB01 Using Design of Experiments. Microorganisms 2021; 9:microorganisms9020387. [PMID: 33672878 PMCID: PMC7918216 DOI: 10.3390/microorganisms9020387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of biopigments has received considerable attention from the industrial sector, mainly for potential applications as novel molecules with biological activity, in cosmetics or if aquaculture food supplements. The main objective of this study was to increase the production of carotenoid pigments in a naturally pigmented yeast by subjecting the yeast to various cellular stresses using design of experiments. The fungal strain Rhodotorula mucilaginosa AJB01 was isolated from a food sample collected in Barranquilla, Colombia, and one of the pigments produced was β-carotene. This strain was subjected to various stress conditions, including osmotic stress using different salts, physical stress by ultraviolet (UV) light, and light stress using different photoperiods. The optimal growth conditions for carotenoid production were determined to be 1 min of UV light, 0.5 mg/L of magnesium sulfate, and an 18:6 h light/dark period, which resulted in a carotenoid yield of 118.3 µg of carotenoid per gram of yeast.
Collapse
Affiliation(s)
- Alejandra Garcia-Cortes
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Calle 5 # 62-00, Santiago de Cali 760035, Colombia; (A.G.-C.); (J.A.G.-V.)
| | - Julián Andres Garcia-Vásquez
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Calle 5 # 62-00, Santiago de Cali 760035, Colombia; (A.G.-C.); (J.A.G.-V.)
| | - Yani Aranguren
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080003, Colombia;
| | - Mauricio Ramirez-Castrillon
- Facultad de Ciencias Básicas, Universidad Santiago de Cali, Campus Pampalinda, Calle 5 # 62-00, Santiago de Cali 760035, Colombia; (A.G.-C.); (J.A.G.-V.)
- Correspondence:
| |
Collapse
|
18
|
Patel A, Sarkar O, Rova U, Christakopoulos P, Matsakas L. Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review. BIORESOURCE TECHNOLOGY 2021; 321:124457. [PMID: 33316701 DOI: 10.1016/j.biortech.2020.124457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
To meet environmental sustainability goals, microbial oils have been suggested as an alternative to petroleum-based products. At present, microbial fermentation for oil production relies on pure sugar-based feedstocks. However, these feedstocks are expensive and are in limited supply. Volatile fatty acids, which are generated as intermediates during anaerobic digestion of organic waste have emerged as a renewable feedstock that has the potential to replace conventional sugar sources for microbial oil production. They comprise short-chain (C2 to C6) organic acids and are employed as building blocks in the chemical industry. The present review discusses the use of oleaginous microorganisms for the production of biofuels and added-value products starting from volatile fatty acids as feedstocks. The review describes the metabolic pathways enabling lipogenesis from volatile fatty acids, and focuses on strategies to enhance lipid accumulation in oleaginous microorganisms by tuning the ratios of volatile fatty acids generated via anaerobic fermentation.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
19
|
Pinheiro MJ, Bonturi N, Belouah I, Miranda EA, Lahtvee PJ. Xylose Metabolism and the Effect of Oxidative Stress on Lipid and Carotenoid Production in Rhodotorula toruloides: Insights for Future Biorefinery. Front Bioeng Biotechnol 2020; 8:1008. [PMID: 32974324 PMCID: PMC7466555 DOI: 10.3389/fbioe.2020.01008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/31/2020] [Indexed: 12/04/2022] Open
Abstract
The use of cell factories to convert sugars from lignocellulosic biomass into chemicals in which oleochemicals and food additives, such as carotenoids, is essential for the shift toward sustainable processes. Rhodotorula toruloides is a yeast that naturally metabolises a wide range of substrates, including lignocellulosic hydrolysates, and converts them into lipids and carotenoids. In this study, xylose, the main component of hemicellulose, was used as the sole substrate for R. toruloides, and a detailed physiology characterisation combined with absolute proteomics and genome-scale metabolic models was carried out to understand the regulation of lipid and carotenoid production. To improve these productions, oxidative stress was induced by hydrogen peroxide and light irradiation and further enhanced by adaptive laboratory evolution. Based on the online measurements of growth and CO2 excretion, three distinct growth phases were identified during batch cultivations. Majority of the intracellular flux estimations showed similar trends with the measured protein levels and demonstrated improved NADPH regeneration, phosphoketolase activity and reduced β-oxidation, correlating with increasing lipid yields. Light irradiation resulted in 70% higher carotenoid and 40% higher lipid content compared to the optimal growth conditions. The presence of hydrogen peroxide did not affect the carotenoid production but culminated in the highest lipid content of 0.65 g/gDCW. The adapted strain showed improved fitness and 2.3-fold higher carotenoid content than the parental strain. This work presents a holistic view of xylose conversion into microbial oil and carotenoids by R. toruloides, in a process toward renewable and cost-effective production of these molecules.
Collapse
Affiliation(s)
- Marina Julio Pinheiro
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Isma Belouah
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Everson Alves Miranda
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
20
|
Shafiq M, Zeb L, Cui G, Jawad M, Chi Z. High-Density pH-Auxostat Fed-Batch Culture of Schizochytrium limacinum SR21 with Acetic Acid as a Carbon Source. Appl Biochem Biotechnol 2020; 192:1163-1175. [PMID: 32700201 DOI: 10.1007/s12010-020-03396-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Schizochytrium limacinum SR21 is an important strain for industrial production of docosahexaenoic acid (DHA), which is an important omega-3 fatty acid used in the nutraceutical and food industry. However, the high cost of carbon sources has limited its further application in the market with much larger volume, such as animal feed for aquaculture, poultry, and livestock. To seek low-cost carbon source, acetic acid is tested in the present study. The effect of different factors, including initial carbon source concentration, pH, aeration rate, and nitrogen sources, on biomass, lipid, and DHA production were tested. With optimized culture conditions, the biomass concentration of 146 g/L, total fatty acids (TFAs) of 82.3 g/L, and DHA content of 23.0 g/L were achieved with a pH-auxostat fed-batch cultivation. These results suggested that acetic acid is a promising feedstock for the low-cost production of DHA. Graphical Abstract.
Collapse
Affiliation(s)
- Muhammad Shafiq
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Guannan Cui
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Muhammad Jawad
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China.
| |
Collapse
|