1
|
Xu J, Cao F, He C, Dai J. Efficient sulfur accumulation in biological desulfurisation and denitrification induced by microbial and chemical interactions. ENVIRONMENTAL TECHNOLOGY 2025; 46:2023-2034. [PMID: 39432526 DOI: 10.1080/09593330.2024.2416093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Efficient accumulation of sulfur from simultaneous desulfurisation denitrification process can achieve high economic and environmental benefits. This work aims to study the effect of product accumulation on elemental sulfur production and understand its potential mechanism. The addition of the intermediate product thiosulfate and the final product sulfate during the reaction led to an increase in the production of biological elemental sulfur (S bio 0 ). The effect is mainly reflected in the efficient accumulation effect of S bio 0 at high sulfide loads. When the sulfide feed water load was 300 mg/L, the S bio 0 production reached 65.94 mg/L in 24 h with the addition of 30 mg/L thiosulfate and 20 mg/L sulfate, which was 3.11 times higher than that of the control group. The addition of sulfate increased the content of aromatic protein I and aromatic protein II, and accelerated the propagation of Thiobacillus denitrificans, whose viable bacterial amount was 1.12-2.98 times higher than that of the control group. On the one hand, low-dose sulfate induced Thiobacillus denitrificans to participate in the sulfur-producing reaction (S 2 - →S bio 0 ) more quickly by accelerating the propagation of the strains in the pre-reaction stage. On the other hand, the addition of sulfate shifted the overall reaction equilibrium to the left and inhibited the formation of thiosulfate, thus accelerating the accumulation of S bio 0 in the whole reaction stage. This study would provide guidance for artificially promoting efficient sulfur accumulation in desulfurisation denitrification treatments.Highlights The S bio 0 production reached 65.94 mg/L in 24 h at high sulfide load.20 mg/L sulfate induced the rapid propagation of Thiobacillus denitrificans.Thiobacillus denitrificans were involved early in the sulfur-producing reaction.Inhibition of thiosulfate formation indirectly promoted sulfur accumulation.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, People's Republic of China
- Key Laboratory of Environmental Engineering, Xi'an, People's Republic of China
| | - Fen Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, People's Republic of China
- Key Laboratory of Environmental Engineering, Xi'an, People's Republic of China
| | - Chen He
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, People's Republic of China
- Key Laboratory of Environmental Engineering, Xi'an, People's Republic of China
| | - Jianan Dai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, People's Republic of China
- Key Laboratory of Environmental Engineering, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Khandelwal A, Lens PNL. Simultaneous removal of sulfide and bicarbonate from synthetic wastewater using an algae-assisted microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2024; 45:4181-4190. [PMID: 37534576 DOI: 10.1080/09593330.2023.2243544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The anaerobic digestion (AD) process is one of the most practiced technologies for the remediation of organic waste and maximization of energy recovery in terms of biogas or biomethane. The presence of other gaseous components in biogas, e.g. CO2 and H2S, often makes its direct application in engines and electricity production unsuitable. This work aimed to develop and utilize an algae-assisted microbial fuel cell (AMFC) for the purification of biogas by removing both CO2 and H2S and simultaneous bioelectricity generation. In addition to biogas clean-up, elemental sulfur recovery and CO2 utilization for algae cultivation add value to the proposed AMFC process. Experiments were performed with both sulfide and bicarbonate in their dissolved form, in the respective anodic and cathodic chambers of the AMFC. The sulfide concentration was varied from 100 to 800 mg/l and the AMFC exhibited a sulfide removal efficiency exceeding 97% at all concentrations tested. The process efficiency dropped, however, at sulfide concentrations above 300 mg/l in terms of both sulfide removal and power output. The AMFC performed best at 400 mg/l sulfide by exhibiting a power density of 24.99 mW/m3 and sulfide removal efficiency of 98.87%. The system exhibited columbic efficiency (CE %) in the range of 7.85-80%. The total alkalinity representing CO2, carbonate and bicarbonate levels in the algae-based system was reduced by 49.54%. The electrical energy recovered from the AMFC was 0.1 kWh/m3 and the total energy recovery, which is the sum of the electrical and algal lipid energy, amounted to 7.25 kWh/m3.
Collapse
Affiliation(s)
- Amitap Khandelwal
- Department of Microbiology, School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Piet N L Lens
- Department of Microbiology, School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Cheng S, Li H, He X, Chen H, Li L. Improving anammox activity and reactor start-up speed by using CO 2/NaHCO 3 buffer. J Environ Sci (China) 2024; 139:60-71. [PMID: 38105078 DOI: 10.1016/j.jes.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 12/19/2023]
Abstract
Anammox bacteria grow slowly and can be affected by large pH fluctuations. Using suitable buffers could make the start-up of anammox reactors easy and rapid. In this study, the effects of three kinds of buffers on the nitrogen removal and growth characteristics of anammox sludge were investigated. Reactors with CO2/NaHCO3 buffer solution (CCBS) performed the best in nitrogen removal, while 4-(2-hydroxyerhyl)piperazine-1-ethanesulfonic acid (HEPES) and phosphate buffer solution (PBS) inhibited the anammox activity. Reactors with 50 mmol/L CCBS could start up in 20 days, showing the specific anammox activity and anammox activity of 1.01±0.10 gN/(gVSS·day) and 0.83±0.06 kgN/(m3·day), respectively. Candidatus Kuenenia was the dominant anammox bacteria, with a relative abundance of 71.8%. Notably, anammox reactors could also start quickly by using 50 mmol/L CCBS under non-strict anaerobic conditions. These findings are meaningful for the quick start-up of engineered anammox reactors and prompt enrichment of anammox bacteria.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huahua Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyuan He
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hua Chen
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Longxin Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Li X, Yang F, Zhao J, Ge F. Mapping the knowledge domain of microbial desulfurization application in fuels and ores for sustainable industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113151-113174. [PMID: 37853221 DOI: 10.1007/s11356-023-30236-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Direct application of high-sulfur fuels and ores can cause environmental pollution (such as air pollution and acid rain) and, in serious cases, endanger human health and contribute to property damage. In the background of preserving the environment, microbial desulfurization technologies for high-sulfur fuels and ores are rapidly developed. This paper aims to reveal the progress of microbial desulfurization research on fuels and ores using bibliometric analysis. 910 publications on microbial desulfurization of fuels and ores from web core databases were collected in this work, spanning 39 years. Through 910 retrieved documents, collaborative networks of authors, institutions and countries were mapped by this work, the sources of highly cited articles and cited documents were statistically analyzed, and keyword development from different perspectives was discussed. The results of the study provide a reference for microbial desulfurization research and benefit environmental protection and energy green applications.
Collapse
Affiliation(s)
- Xin Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Fuqiang Yang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China.
- Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion and Disaster Prevention, Fuzhou University, No. 2 Xueyuan Road, University Town, Fuzhou, 350116, Fujian Province, China.
| | - Jiale Zhao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Fanliang Ge
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
5
|
Imran MA, Li X, Yang Z, Xu J, Han L. Enhanced biological S 0 accumulation by using signal molecules during simultaneous desulfurization and denitrification. ENVIRONMENTAL TECHNOLOGY 2023; 44:841-852. [PMID: 34559602 DOI: 10.1080/09593330.2021.1985623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
A high rate of elemental sulfur (S0) accumulation from sulfide-containing wastewater has great significance in terms of resource recovery and pollution control. This experimental study used Thiobacillus denitrificans and denitrifying bacteria incorporated with signal molecules (C6 and OHHL) for simultaneous sulfide (S2-) and nitrate (NO3-) removal in synthetic wastewater. Also, the effects on S0 accumulation due to changes in organic matter composition and bacteria proportion through signal molecules were analyzed. The 99.0% of S2- removal and 99.3% of NO3- was achieved with 66% of S0 accumulation under the active S2- removal group. The S0 accumulation, S2- and NO3- removal mainly occurred in 0-48 h. The S0 accumulation in the active S2- removal group was 2.0-6.3 times higher than the inactive S2- removal groups. In addition, S0/SO42- ratio exhibited that S0 conversion almost linearly increased with reaction time under the active S2- removal group. The proportion of Thiobacillus denitrificans and H+ consumption showed a positive correlation with S0 accumulation. However, a very high or low ratio of H+/S0 is not suitable for S0 accumulation. The signal molecules greatly increased the concentration of protein-I and protein-II, which resulted in the high proportion of Thiobacillus denitrificans. Therefore, high S0 accumulation was achieved as Thiobacillus denitrificans regulated the H+ consumption and electron transfer rate and provided suppressed oxygen environment. This technology is cost-effective and commercially applicable for recovering S0 from wastewater.
Collapse
Affiliation(s)
- Muhammad A Imran
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| | - Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| | - Zhengli Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| | - Lixin Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| |
Collapse
|
6
|
Li J, Yao C, Song B, Zhang Z, Brock AL, Trapp S, Zhang J. Enrichment of sulfur-oxidizing bacteria using S-doped NiFe 2O 4 nanosheets as the anode in microbial fuel cell enhances power production and sulfur recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156973. [PMID: 35772559 DOI: 10.1016/j.scitotenv.2022.156973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (MFCs) have great promise for power generation by oxidizing organic wastewater, yet the challenge to realize high efficiency in simultaneous energy production and resource recovery remains. In this study, we designed a novel MFC anode by synthesizing S-doped NiFe2O4 nanosheet arrays on carbon cloth (S10-NiFe2O4@CC) to build a three-dimensional (3D) hierarchically porous structure, with the aim to regulate the microbial community of sulfur-cycling microbes in order to enhance power production and elemental sulfur (S0) recovery. The S10-NiFe2O4@CC anode obtained a faster start-up time of 2 d and the highest power density of 4.5 W/m2 in acetate-fed and mixed bacteria-based MFCs. More importantly, sulfide removal efficiency (98.3 %) (initial concentration of 50 mg/L S2-) could be achieved within 3 d and sulfur (S8) could be produced. Microbial community analysis revealed that the S10-NiFe2O4@CC anode markedly enriched sulfur-oxidizing bacteria (SOB) and promoted enrichment of SOB and sulfate-reducing bacteria (SRB) in the bulk solution as well, leading to the enhancement of power generation and S0 recovery. This study shows how carefully designing and optimizing the composition and structure of the anode can lead to the enrichment of a multifunctional microbiota with excellent potential for sulfide removal and resource recovery.
Collapse
Affiliation(s)
- Jiaxin Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chongchao Yao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bo Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhihao Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Libonati Brock
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Stefan Trapp
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Jing Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Wang S, Adekunle A, Raghavan V. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115333. [PMID: 35617867 DOI: 10.1016/j.jenvman.2022.115333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) are considered efficient and sustainable technologies for bioenergy generation and simultaneously removal/recovery metal (loid)s from soil and wastewater. However, several current challenges of BES-based metal removal and recovery, especially concentrating target metals from complex contaminated wastewater or soil and their economic feasibility of engineering applications. This review summarized the applications of BES-based metal removal and recovery systems from wastewater and contaminated soil and evaluated their performances on electricity generation and metal removal/recovery efficiency. In addition, an in depth review of several key parameters (BES configurations, electrodes, catalysts, metal concentration, pH value, substrate categories, etc.) of BES-based metal removal and recovery was carried out to facilitate a deep understanding of their development and to suggest strategies for scaling up their specific application fields. Finally, the future intervention on multifunctional BES to improve their performances of mental removal and recovery were revealed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
8
|
Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. CHEMOSPHERE 2022; 292:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.
Collapse
Affiliation(s)
- Dexin Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yupeng Chen
- School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
9
|
Chandrasekhar K, Raj T, Ramanaiah SV, Kumar G, Jeon BH, Jang M, Kim SH. Regulation and augmentation of anaerobic digestion processes via the use of bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2022; 346:126628. [PMID: 34968642 DOI: 10.1016/j.biortech.2021.126628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is a biological process that can be used to treat a wide range of carbon-rich wastes and producerenewable, green energy. To maximize energy recovery from various resources while controlling inhibitory chemicals, notwithstanding AD's efficiency, many limitations must be addressed. As a result, bioelectrochemical systems (BESs) have emerged as a hybrid technology, extensively studied to remediate AD inhibitory chemicals, increase AD operating efficacy, and make the process economically viable via integration approaches. Biogas and residual intermediatory metabolites such as volatile fatty acids are upgraded to value-added chemicals and fuels with the help of the BES as a pre-treatment step, within AD or after the AD process. It may also be used directly to generate power. To overcome the constraints of AD in lab-scale applications, this article summarizes BES technology and operations and endorses ways to scale up BES-AD systems in the future.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), Chelyabinsk 454080, Russian Federation
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Zhang X, Wang H, Xia T, Wang X. Characterization of a new electrochemically active bacterium phylogenetically related to Alicyclobacillus hesperidum and its electrochemical performance in microbial fuel cell. Biosens Bioelectron 2021; 175:112865. [PMID: 33277147 DOI: 10.1016/j.bios.2020.112865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022]
Abstract
Extremophilic microorganisms in microbial electrochemical systems have opened new possibilities for waste treatment. Here, a phenomenon of electricity generation under acidophilic condition was found in organic acid fermentation wastewater treatment using microbial fuel cell (MFC). The anodic microbial community analysis showed that the percentage of Firmicutes was 99.03%, which accounted for the vast majority of the microbial community at the late discharge stage with pH 3.0. As the dominant bacterium of Firmicutes, Alicyclobacillus hesperidum EG was isolated and identified. MFC experiments confirmed that Alicyclobacillus hesperidum EG exhibited good electricity generating capability with a maximum power density of 188.1 mW m-2 at 50 °C and low pH. It is the first time that Alicyclobacillus hesperidum EG was discovered as a newly electrochemically active bacterium. Additionally, the morphological analysis combined with electrochemical experiments demonstrated that no nanowires were found in the anodic biofilm of Alicyclobacillus hesperidum EG, and Alicyclobacillus hesperidum EG may produce soluble redox-active small molecules as electron shuttles to facilitate extracellular electron transfer. Based on unique characteristics such as good acid resistance, high temperature resistance, and high electricity generation ability, Alicyclobacillus hesperidum EG exhibited great potential in wastewater treatment and energy recovery.
Collapse
Affiliation(s)
- Xueli Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Huimin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Tian Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
11
|
Wang JJ, Huang BC, Li J, Jin RC. Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Chen J, Liu Y, Yang Y, Tang M, Wang R, Jiang L, Tian Y, Hu H, Zhang X, Wei Y. Bacterial community structure and gene function prediction in response to long-term running of dual graphene modified bioelectrode bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2020; 309:123398. [PMID: 32325382 DOI: 10.1016/j.biortech.2020.123398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
This work studied bacterial community structure and gene function prediction in long-term running of dual graphene modified bioelectrode bioelectrochemical systems (LT D-GM-BE BES, 2 year). The maximum power density of LT D-GM-BE BES was 99.03 ± 3.64 mW/m2, which was 3.66 times of dual control BES (D-C-BE BES), and the transfer resistance of LT GM-BE was just approximately 1/4 of control bioelectrode (C-BE). Proteobacteria and Firmicutes were dominant bacteria in long-term modified bioanode (LT GM-BA, 30.03% and 45.64%), and in long-term modified biocathode (LT GM-BC) was Armatimonadetes (47.14%) in phylum level. The dominant bacteria in LT GM-BA was Clostridium (30.56%), in GM-BC was Chthonomonas (47.14%) in genus level. Gene function related with substrate, energy metabolism and environmental adaptation were enriched. LT GM-BE was tended to enrich dominant bacteria and enrich gene to adapt to micro-environmental changes. This study would provide metagenomics information for long-term running of BES in future.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Yanyan Liu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Liting Jiang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuping Tian
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Hanwen Hu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Xiao Zhang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yushan Wei
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|