1
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
2
|
Zhou N, Xiao Z, Chen D. Formation/characterization of humin-mediated anaerobic granular sludge and enhanced methanogenic performance. BIORESOURCE TECHNOLOGY 2024; 399:130603. [PMID: 38499204 DOI: 10.1016/j.biortech.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
This study presents a novel method for accelerating the granulation of methanogenic anaerobic granular sludge (AnGS) in an upflow anaerobic sludge blanket (UASB) reactor using solid-phase humin (HM). The results demonstrated that HM-mediated AnGS (HM-AnGS) formed rapidly within 50 days. The increase in particle size, settling velocity and mechanical strength was attributed to the rapid granulation of the HM-AnGS. The maximum methane yield of the HM-AnGS was 5-fold higher than that of the control group. This is consistent with the findings, which showed that HM-AnGS had 3.2-3.4 times more methyl-coenzyme M reductase (Mcr) activity and 2.4-2.9 times more adenosine triphosphate (ATP) than control groups. Molecular analyses indicate that HM most likely accelerated interspecies electron transfer (IET) in HM-AnGS (e.g., from Enterococcus to Methanosaeta). Furthermore, the HM-AnGS was effective in recovering energy from actual slaughterhouse wastewater.
Collapse
Affiliation(s)
- Ningli Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
3
|
Tanguay-Rioux F, Spreutels L, Roy C, Frigon JC. Assessment of the Feasibility of Converting the Liquid Fraction Separated from Fruit and Vegetable Waste in a UASB Digester. Bioengineering (Basel) 2023; 11:6. [PMID: 38275574 PMCID: PMC10813218 DOI: 10.3390/bioengineering11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Anaerobic digestion of food waste still faces important challenges despite its world-wide application. An important fraction of food waste is composed of organic material having a low hydrolysis rate and which is often not degraded in digesters. The addition of this less hydrolysable fraction into anaerobic digesters requires a longer hydraulic residence time, and therefore leads to oversizing of the digesters. To overcome this problem, the conversion of the highly biodegradable liquid fraction from fruit and vegetable waste in a up-flow anaerobic sludge blanket (UASB) digester is proposed and demonstrated. The more easily biodegradable fraction of the waste is concentrated in the liquid phase using a 2-stage screw press separation. Then, this liquid fraction is digested in a 3.5 L UASB digester at a high organic loading rate. A good and stable performance was observed up to an organic loading rate (OLR) of 12 g COD/(Lrx.d), with a specific methane production of 2.6 L CH4/(Lrx.d) and a degradation of 85% of the initial total COD. Compared to the conversion of the same initial waste with a continuously stirred tank reactor (CSTR), this new treatment strategy leads to 10% lower COD degradation, but can produce the same amount of methane with a digester that is twice as small. The scale-up of this process could contribute to reduced costs related to the anaerobic digestion of food waste, while reducing management efforts associated with digestate handling and increasing process stability at high organic loading rates.
Collapse
Affiliation(s)
| | - Laurent Spreutels
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Ave., Montreal, QC H4P 2R2, Canada; (F.T.-R.); (J.-C.F.)
| | | | | |
Collapse
|
4
|
Bounaga A, Alsanea A, Danouche M, Rittmann BE, Zhou C, Boulif R, Zeroual Y, Benhida R, Lyamlouli K. Effect of alkaline leaching of phosphogypsum on sulfate reduction activity and bacterial community composition using different sources of anaerobic microbial inoculum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166296. [PMID: 37591387 DOI: 10.1016/j.scitotenv.2023.166296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Phosphogypsum (PG), a by-product of the phosphate industry, is high in sulfate, (SO42-), which makes it an excellent substrate for sulfate-reducing bacteria (SRB) to produce hydrogen sulfide. This work aimed to optimize SO42- leaching from PG to achieve a high biological reduction of SO42- and generate high sulfide concentrations for subsequent use in the biological recovery of elemental sulfur. Five SRB consortia were isolated and enriched from: IS (Industrial sludges), MS (Marine sediments), WC (Winogradsky column), SNV (petroleum industry sediments) and PG (stored Phosphogypsum). The five consortia showed reduction activity when using PG leachate (with water) as source of SO42- and lactate, acetate, or glucose as the electron donor. The highest reduction rate (81.5 %) was registered using lactate and the IS consortium (81.5 %) followed by MS (79 %) and PG (71 %). To enhance the concentration of leached SO42- from PG for future utilization with the isolated consortia, PG was treated with NaOH solutions (2 % and 5 %). SO42- release of 97 % was achieved with a 5 % concentration and the resulting leachate was further diluted to target a SO42- concentration of 12.4 g·L-1 for utilization with the isolated consortia. Compared to water leachate, a significantly higher reduction rate was registered (2 g·L-1 of SO42) using the IS consortium, demonstrating limited inhibition effect of sulfide- concentration on SRB functionalities. Moreover, metagenomic analysis of the consortia revealed that using PG as a source of SO42- increased the abundance of Deltaproteobacteria, including known SRB like Desulfovibrio, Desulfomicrobium, and Desulfosporosinus, as well as novel SRB genera (Cupidesulfovibrio, Desulfocurvus, Desulfococcus) that showed, for the first time, significant potential as novel sulfate-reducers using PG as a SO42- source.
Collapse
Affiliation(s)
- Ayoub Bounaga
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Anwar Alsanea
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, AZ 85287-5701, USA
| | - Mohammed Danouche
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, AZ 85287-5701, USA
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875017, Tempe, AZ 85287-5701, USA
| | - Rachid Boulif
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Youssef Zeroual
- Situation Innovation, OCP Group BP 118, Jorf Lasfar El Jadida 24000, Morocco
| | - Rachid Benhida
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France
| | - Karim Lyamlouli
- College of Sustainable Agriculture and Environmental Sciences, Agrobioscience program, Mohammed VI Polytechnic University, Benguerir 43150, Morocco.
| |
Collapse
|
5
|
A AL, S S. Efficacies of a locust bean gum polymer on the startup of a novel upflow anaerobic sludge blanket reactor treating municipal sewage. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1672-1687. [PMID: 37830990 PMCID: wst_2023_298 DOI: 10.2166/wst.2023.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The present study investigates the potential of locust bean gum (LBG), in accelerating the startup of a novel upflow anaerobic sludge blanket (UASB) reactor handling municipal sewage. Under identical conditions, two lab-scale UASB reactors were operated in parallel, to substantiate this idea. The novel reactor (RH) with an inner centric hybrid UASB module and an outer concentric downflow hanging sponge (DHS) unit started off with an LBG polymer as an additive. Its performance was compared with a conventional system (RC). RH outclassed with an accelerated startup in 40 days, with the highest COD removal of 89% by the UASB compartment and 95% by the entire system (UASB + DHS). RC took nearly 85 days to achieve the highest COD removal of 83%. The polymer also succeeded with a dense sludge bed fastening most of the anaerobes, read by the least sludge volume index (SVI) of 26 mL/g. Specific methanogenic activity (SMA) (RH - 0.715 ± 0.05 and RC - 0.670 ± 0.07 g CH4-COD/g VSS/ day) and extracellular polymer (ECP) concentration (0.30-0.32 g/g VSS) of biomass in both reactors were almost similar. This further confirmed that early granulation was induced solely by the polymer and it also had no deleterious impact on substrate transfer.
Collapse
Affiliation(s)
- Aishwarya Lakshmi A
- Department of Civil Engineering, SRM Institute of Science and Technology, Ramapuram campus, Chennai, Tamil Nadu, India E-mail:
| | - Sadarajan S
- Centre for Water Resources, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Yao HY, Guo H, Shen F, Li T, Show DY, Ling M, Yan YG, Show KY, Lee DJ. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents. BIORESOURCE TECHNOLOGY 2023; 379:129060. [PMID: 37075851 DOI: 10.1016/j.biortech.2023.129060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Eco-friendly treatment of complex textile and dyeing wastewaters poses a pressing environmental concern. An approach adopting different treatment paths and integrated anaerobic-aerobic processes for high-strength and recalcitrant textile dyeing wastewater was examined. The study demonstrated that over 97% of suspended solids (SS) and more than 70% of chemical oxygen demand (COD) were removed by polyaluminum chloride pre-coagulation of suede fabric dyeing stream. Up to 58% of COD and 83% of SS were removed through hydrolysis pretreatment of other low-strength streams. Notable COD removal of up to 99% from a feed of 20,862 mg COD/L was achieved by integrated anaerobic-aerobic treatment of high strength stream. Besides achieving high COD removal of 97%, the anaerobic granular sludge process demonstrated multi-faceted attributes, including high feed loading, smaller footprint, little sludge production, and good stability. The integrated anaerobic-aerobic treatment offers a robust and viable option for highly contaminated and recalcitrant textile dyeing wastewater.
Collapse
Affiliation(s)
- Hai-Yong Yao
- Jiangnan University, Wuxi, Jiangsu, China; ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - Hui Guo
- Jiangnan University, Wuxi, Jiangsu, China; ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - Feng Shen
- ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - Ting Li
- ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - De-Yang Show
- Shuhan Technologies Co., Ltd., Tongxiang, Zhejiang, China
| | - Ming Ling
- ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Kuan-Yeow Show
- Jiangnan University, Wuxi, Jiangsu, China; ZheJiang JuNeng Co., Ltd., Tongxiang, Zhejiang, China; Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
7
|
Liu J, Meng X, Zhai L, Gao G, Jiang W, Zhang X. Electrochemical degradation of acrylic acid using Ti/Ta 2O 5-IrO 2 electrode. RSC Adv 2023; 13:17155-17165. [PMID: 37304781 PMCID: PMC10248716 DOI: 10.1039/d3ra01997g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023] Open
Abstract
Acrylic acid (AA) is widely used as a raw material in the industrial production of various chemicals. Its extensive use has produced environmental problems that need to be solved. The Ti/Ta2O5-IrO2 electrode, a type of dimensionally stable anode, was used to investigate the electrochemical deterioration of AA. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis showed that IrO2 existed as an active rutile crystal and as a TiO2-IrO2 solid solution in Ti/Ta2O5-IrO2 electrode with a corrosion potential of 0.212 V and chlorine evolution potential of 1.30 V. The effects of current density, plate spacing, electrolyte concentration, and initial concentration on the electrochemical degradation of AA were investigated. Response surface methodology (RSM) was used to determine the ideal degradation conditions: current density 22.58 mA cm-2, plate spacing 2.11 cm, and electrolyte concentration 0.07 mol L-1, and the highest degradation rate reached was 95.6%. Free radical trapping experiment verified that reactive chlorine played a dominant role in the degradation of AA. The degradation intermediates were analyzed by GC-MS.
Collapse
Affiliation(s)
- Jinrui Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Xiangxin Meng
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Luwei Zhai
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Guangfei Gao
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| |
Collapse
|
8
|
Sethi S, Gupta R, Bharshankh A, Sahu R, Biswas R. Celebrating 50 years of microbial granulation technologies: From canonical wastewater management to bio-product recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162213. [PMID: 36796691 DOI: 10.1016/j.scitotenv.2023.162213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microbial granulation technologies (MGT) in wastewater management are widely practised for more than fifty years. MGT can be considered a fine example of human innovativeness-driven nature wherein the manmade forces applied during operational controls in the biological process of wastewater treatment drive the microbial communities to modify their biofilms into granules. Mankind, over the past half a century, has been refining the knowledge of triggering biofilm into granules with some definite success. This review captures the journey of MGT from inception to maturation providing meaningful insights into the process development of MGT-based wastewater management. The full-scale application of MGT-based wastewater management is discussed with an understanding of functional microbial interactions within the granule. The molecular mechanism of granulation through the secretion of extracellular polymeric substances (EPS) and signal molecules is also highlighted in detail. The recent research interest in the recovery of useful bioproducts from the granular EPS is also emphasized.
Collapse
Affiliation(s)
- Shradhanjali Sethi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rohan Gupta
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Ankita Bharshankh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rojalin Sahu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rima Biswas
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India.
| |
Collapse
|
9
|
Gao Y, Cai T, Yin J, Li H, Liu X, Lu X, Tang H, Hu W, Zhen G. Insights into biodegradation behaviors of methanolic wastewater in up-flow anaerobic sludge bed (UASB) reactor coupled with in-situ bioelectrocatalysis. BIORESOURCE TECHNOLOGY 2023; 376:128835. [PMID: 36889605 DOI: 10.1016/j.biortech.2023.128835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Granular sludge disintegration and washing out pose a challenge to up-flow anaerobic sludge bed (UASB) reactor treating methanolic wastewater. Herein, in-situ bioelectrocatalysis (BE) was integrated into UASB (BE-UASB) reactor to alter microbial metabolic behaviors and enhance the re-granulation process. BE-UASB reactor exhibited the highest methane (CH4) production rate of 388.0 mL/Lreactor/d and chemical oxygen demand (COD) removal of 89.6 % at 0.8 V. Sludge re-granulation was strengthened with particle size over 300 µm of up to 22.4%. Bioelectrocatalysis stimulated extracellular polymeric substances (EPS) secretion and formation of granules with rigid [-EPS-cell-EPS-] matrix by enhancing the proliferation of key functional microorganisms (Acetobacterium, Methanobacterium, and Methanomethylovorans) and diversifying metabolic pathways. Particularly, a high Methanobacterium richness (10.8%) drove the electroreduction of CO2 into CH4 and reduced its emissions (52.8%). This study provides a novel bioelectrocatalytic strategy for controlling granular sludge disintegration, which will facilitate the practical application of UASB in methanolic wastewater treatment.
Collapse
Affiliation(s)
- Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Huan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xinyu Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Hongxia Tang
- Shanghai Solid Waste and Chemicals Management Center, Shanghai, No. 55, Sanjiang Road, Xuhui District, PR China
| | - Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
10
|
Guo H, Yao HY, Huang QQ, Li T, Show DY, Ling M, Yan YG, Show KY, Lee DJ. Anaerobic-anoxic-oxic biological treatment of high-strength, highly recalcitrant polyphenylene sulfide wastewater. BIORESOURCE TECHNOLOGY 2023; 371:128640. [PMID: 36681351 DOI: 10.1016/j.biortech.2023.128640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
This paper outlines an integrated anaerobic-anoxic-oxic (A2O) treatment scheme for high-strength, highly recalcitrant wastewater from the production of polyphenylene sulfide (PPS) resins and their composite chemicals. An integrated anaerobic granular sludge blanket (GSB) and anoxic-oxic (AO) reactor indicated that the A2O removed chemical oxygen demand (COD) of up to 7,043 mg/L with no adverse impact from high total dissolved solids (25,000 mg/L) on the GSB COD removal and effluent suspended solids. At a Total Kjeldahl Nitrogen (TKN) nitrification load of 0.11 g TKN/L.d and 400 mg NH3/L, almost 99 % of the NH3 was degraded with effluent NH3 < 5 mg/L, meeting the limit of 35 mg/L. High S2- levels of up to 1470 mg/L can be transformed through aerobic microbial degradation to meet a limit of 1.0 mg/L. With proper microbial acclimation and process designs, the integrated A2O scheme offers a resilient and robust treatment for high-strength recalcitrant PPS wastewater.
Collapse
Affiliation(s)
- Hui Guo
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China
| | - Hai-Yong Yao
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China
| | | | - Ting Li
- Zhejiang Juneng Co. Ltd., Zhejiang, China
| | | | - Ming Ling
- Zhejiang Juneng Co. Ltd., Zhejiang, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Kuan-Yeow Show
- Zhejiang Juneng Co. Ltd., Zhejiang, China; Jiangnan University, Wuxi, Zhejiang, China; Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering & Material Science, Yuan Ze University, Taoyuan 320, Taiwan.
| |
Collapse
|
11
|
Cui P, Wang S, Su H. Enhanced biohydrogen production of anaerobic fermentation by the Fe 3O 4 modified mycelial pellets-based anaerobic granular sludge. BIORESOURCE TECHNOLOGY 2022; 366:128144. [PMID: 36265787 DOI: 10.1016/j.biortech.2022.128144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
To improve the catalytic efficiency and stability of hydrogen-producing bacteria (HPB), the Fe3O4 nanoparticles modified Aspergillus tubingensis mycelial pellets (AT)-based anaerobic granular sludge (Fe3O4@AT-AGS) was developed. The Fe3O4@AT-AGS protected flora with abundant extracellular polymeric substances, which increased diversity and stability of flora in early and late stage. The porous structure enhanced mass transfer efficiency, thus promoted dominant flora transferred from lactate-producing bacteria (LPB) to HPB in middle stage. The Fe3O4 improved biomass of mycelial by 19.5 %. The enhancement of dehydrogenase and conductivity of Fe3O4 increased the HPB proportion, electron transfer, and butyrate fermentation in early and middle stage. The Fe3O4@AT-AGS enhanced HPB abundance, dehydrogenase activity and stability, and significantly inhibited propionate fermentation. The biohydrogen production and yield respectively reached 2792 mL/L and 2.56 mol/mol glucose. Clostridium sensu stricto 11 as dominant microbes reached 77.3 %. This provided strategy for alleviating inhibition of LPB and improving competitiveness of HPB during biohydrogen production.
Collapse
Affiliation(s)
- Peiqi Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
12
|
Mostafa A, Im S, Song YC, Kang S, Shi X, Kim DH. Electrical voltage application as a novel approach for facilitating methanogenic granulation. BIORESOURCE TECHNOLOGY 2022; 360:127632. [PMID: 35863601 DOI: 10.1016/j.biortech.2022.127632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Despite having high-rate methanogenic performance, up-flow anaerobic sludge blanket reactor still has challenges regarding long-start up period (3-8 months) for granulation. In this study, "electrical voltage (EV, 0.3 V) application" was attempted for facilitating granulation in the continuous operation with increased organic loading rates (0.5-11.0 kg COD/m3/d). Up to 11.0 kg COD/m3/d, EV-reactor exhibited the stable performance, while the control failed. After 49 days of operation (at 7 kg COD/m3/d), the granules collected from EV-reactor had larger diameter (2.3 vs 1.6 mm), higher settling velocity (2.6 vs 1.9 cm/s), and higher hydrophobicity (52.1 % vs 34.5 %), compared to the control. EV application also increased the specific methanogenic activity for propionate and hydrogen almost by two times. The relative abundance of Pseudomonas sp. (quorum sensing (QS)-related microbe) in EV-reactor was 17 % higher than that in the control. In addition, EV application increased the expression of QS genes significantly by 27 times.
Collapse
Affiliation(s)
- Alsayed Mostafa
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seongwon Im
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, PR China
| | - Dong-Hoon Kim
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
13
|
Wang H, Cui T, Chen D, Luo Q, Xu J, Sun R, Zi W, Xu R, Liu Y, Zhang Y. Hexavalent chromium elimination from wastewater by integrated micro-electrolysis composites synthesized from red mud and rice straw via a facile one-pot method. Sci Rep 2022; 12:14242. [PMID: 35987789 PMCID: PMC9392804 DOI: 10.1038/s41598-022-18598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
The widely spread chromium (Cr) contamination is rising environmental concerns, while the reutilization of agro-industrial by-products are also urgently demanded due to their potential risks. In this study, we prepared the integrated micro-electrolysis composites (IMC) through a facile one-pot method with red mud and rice straw. The effects of components relatively mass ratios as well as pyrolysis temperature were analyzed. The XRD, XPS, SEM, FTIR, and various techniques proved the IMC was successfully synthesized, which was also used to analyze the reaction mechanisms. In this study, the dosage of IMC, pH, adsorption time, and temperature of adsorption processes were explored, in the adsorption experiment of Cr(VI), dosage of IMC was 2 g/L (pH 6, 25 °C, and 200 rpm) for isothermal, while the concentration and contact time were also varied. According to the batch experiments, IMC exhibited acceptable removal capacity (190.6 mg/g) on Cr(VI) and the efficiency reached 97.74%. The removal mechanisms of adsorbed Cr(VI) were mainly elaborated as chemical reduction, complexation, co-precipitation, and physical adherence. All these results shed light on the facile preparation and agro-industrial by-products recycled as engineering materials for the heavy metals decontamination in wastewater.
Collapse
|
14
|
Ding M, Zeng H. A bibliometric analysis of research progress in sulfate-rich wastewater pollution control technology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113626. [PMID: 35561547 DOI: 10.1016/j.ecoenv.2022.113626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Sustainable industrial development requires research on pollution control in industrial wastewater, particularly sulfate-rich wastewater, which poses a threat to the environment. This article differs from the previous sulfate wastewater treatment process and equipment review. Based on the quantitative analysis, this paper has determined some characteristics of the related literature on the pollution control technology of high-concentration sulfate wastewater to help researchers establish future research directions. From 1991-2020, the WoS database published 9473 articles related to high-concentration sulfate wastewater treatment technology. We used bibliometric analysis combined with social network analysis and s-curve technical analysis in this research. The United States was the first to start this type of research, Australia has insightful and instructive research articles in this area, and China is the most active in international cooperation. The keywords that appear most frequently in the dataset are degradation, adsorption, oxidation, reduction, and recovery. By S-curve fitting, it is known that biological treatment methods are closer to the maturity stage than physical and chemical treatment methods.
Collapse
Affiliation(s)
- Meng Ding
- Peking University ShenZhen Graduate School, Shenzhen 518055, China; Ier Environmental Protection Engineering Technique Co., ltd., Shenzhen 518071, China.
| | - Hui Zeng
- Peking University ShenZhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
15
|
Nagda A, Meena M, Shah MP. Bioremediation of industrial effluents: A synergistic approach. J Basic Microbiol 2022; 62:395-414. [PMID: 34516028 DOI: 10.1002/jobm.202100225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/14/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022]
Abstract
Industrial wastewater consists of inorganic and organic toxic pollutants that pose a threat to environmental sustainability. The organic pollutants are a menace to the environment and life forms than the inorganic substances and pose teratogenic, mutagenic, carcinogenic, and other serious detrimental effects on the living entities, moreover, they have a gene-altering effect on aquatic life forms and affect the soil fertility and quality. Removal of varying effluents having recalcitrant contaminants with conventional treatment technologies is strenuous. In contrast to physical and chemical methods, biological treatment methods are environmentally friendly, versatile, efficient, and technically feasible with low operational costs and energy footprints. Biological treatment is a secondary wastewater treatment system that utilizes the metabolic activities of microorganisms to oxidize or reduce inorganic and organic compounds and transform them into dense biomass, which later can be removed by the sedimentation process. Biological treatment in bioreactors is an ex situ method of bioremediation and provides the benefits of continuous monitoring under controlled parameters. This paper attempts to provide a review of bioremediation technologies discussing most concerning widespread bioreactors and advances used for different industrial effluents with their comparative merits and limitations.
Collapse
Affiliation(s)
- Adhishree Nagda
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Maulin P Shah
- Environmental Technology Lab, Bharuch, Gujarat, India
| |
Collapse
|
16
|
Prakruthi K, Ujwal MP, Yashas SR, Mahesh B, Kumara Swamy N, Shivaraju HP. Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4930-4957. [PMID: 34797548 DOI: 10.1007/s11356-021-17361-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Many untreated and partly treated wastewater from the home and commercial resources is being discharged into the aquatic environment these days, which contains numerous unknown and complex natural and inorganic compounds. These compounds tend to persist, initiating severe environmental problems, which affect human health. Conventionally, physicochemical treatment methods were adopted to remove such complex organic chemicals, but they suffer from critical limitations. Over time, photocatalysis, an advanced oxidation process, has gained its position for its efficient and fair performance against emerging organic pollutant decontamination. Typically, photocatalysis is a green technology to decompose organics under UV/visible light at ambient conditions. Semiconducting nanometal oxides have emerged as pioneering photocatalysts because of large active surface sites, flexible oxidation states, various morphologies, and easy preparation. The current review presents an overview of emerging organic pollutants and their effects, advanced oxidation processes, photocatalytic mechanism, types of photocatalysts, photocatalyst support materials, and methods for improving photodegradation efficiency on the degradation of complex emerging organic pollutants. In addition, the recent reports of metal-oxide-driven photocatalytic remediation of emerging organic pollutants are presented in brief. This review is anticipated to reach a broader scientific community to understand the first principles of photocatalysis and review the recent advancements in this field.
Collapse
Affiliation(s)
- Komargoud Prakruthi
- Department of Environmental Engineering, JSS Science and Technology University, Mysuru , 570006, India
| | | | - Shivamurthy Ravindra Yashas
- Department of Environmental Science, Faculty of Natural Science, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Basavaraju Mahesh
- Department of Chemistry, JSS Academy of Technical Education, Dr. Vishnuvardhan Road, Bengaluru, 560060, India
| | - Ningappa Kumara Swamy
- Department of Chemistry, JSS Science and Technology University, Mysuru, 570006, India.
| | | |
Collapse
|
17
|
Wang Q, Jiang L, Niu H, Liang J, Liu Z, Arslan M, Gamal El-Din M, Chen C. Influences of humic-rich natural materials on efficiencies of UASB reactor: A comparative study. BIORESOURCE TECHNOLOGY 2021; 341:125844. [PMID: 34474236 DOI: 10.1016/j.biortech.2021.125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Two humic-rich natural materials namely peat soil and lignite were supplemented in up-flow anaerobic sludge blanket (UASB) bioreactors for the treatment of phenolic wastewater. Peat soil improved phenol degradation and resistance to shock load; ultimately, contributing to higher COD removal efficiency (83.3%), methane production (4532 mL d-1), and better reactor's stability. Accordingly, the amount of extracellular polymeric substances (EPS) and coenzyme F420 in sludge were increased to 1.3-fold and 2.5-fold, respectively, as compared to the control treatment. The addition of lignite however displayed poor phenol degradation and no effects on the secretion of EPS and F420. The peat soil significantly influenced the microbial community structures, whereas the effect of lignite was inconspicuous. In the presence of peat soil, the abundance of syntrophic fermentation bacteria and methanogens was significantly increased. This study illustrates the potential use of peat soil in UASB for the treatment of phenolic wastewaters.
Collapse
Affiliation(s)
- Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Liangyan Jiang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Hao Niu
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, PR China
| | - Jiahao Liang
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zhiyuan Liu
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, PR China.
| |
Collapse
|
18
|
Sanjaya EH, Cheng H, Qin Y, Kubota K, Li YY. The impact of calcium supplementation on methane fermentation and ammonia inhibition of fish processing wastewater. BIORESOURCE TECHNOLOGY 2021; 337:125471. [PMID: 34320751 DOI: 10.1016/j.biortech.2021.125471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The effect of trace metal supplementation on the methane fermentation of fish processing wastewater (FPW) was studied in both batch and continuous experiments using a self-agitated anaerobic baffled reactor (SA-ABR). In the batch experiments, a single supplementation of Ca2+, Co2+ and Fe2+ was show to have a significant positive impact on the performance of methane fermentation. The continuous experiment results showed that supplementation with 1.5 g-Ca2+/L-substrate remarkably enhanced the performance of methane fermentation of the SA-ABR in treating FPW with the optimal organic loading rate achieved at 7.62 g-COD/L/d. During the steady states (stages 2 to 5), the average removal efficiencies of COD, protein, carbohydrate and lipid were 89, 85, 80 and 91%, respectively. The biogas conversion rates were in the range of 0.39 to 0.45 L-biogas/g-COD with a high methane content of 74%. Besides, Ca2+ supplementation also improved the resistance of the methane fermentation system to ammonia inhibition.
Collapse
Affiliation(s)
- Eli Hendrik Sanjaya
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang No. 5, Malang, East Java 65145, Indonesia
| | - Hui Cheng
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu Qin
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
19
|
Torres K, Álvarez-Hornos FJ, Gabaldón C, Marzal P. Start-Up of Chitosan-Assisted Anaerobic Sludge Bed Reactors Treating Light Oxygenated Solvents under Intermittent Operation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094986. [PMID: 34067161 PMCID: PMC8125441 DOI: 10.3390/ijerph18094986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
Quality of the granular sludge developed during the start-up of anaerobic up-flow sludge bed reactors is of crucial importance to ensure the process feasibility of treating industrial wastewater such as those containing solvents. In this study, the microbial granule formation from suspended-growth biomass was investigated in two chitosan-assisted reactors. These reactors operated mimicking industrial sites working with night closures treating a mixture of ethanol, ethyl acetate, and 1-ethoxy-2-propanol. Each reactor operated under different hydrodynamic regimes typical from UASB (R1: <0.15 m h−1) and EGSB (R2: 3 m h−1). High soluble COD removal efficiencies (>90%) accompanied by rapid formation of robust anaerobic granules were achieved at both up-flow velocity levels. After three weeks from the start-up, mean size diameters of 475 µm and 354 µm were achieved for R1 and R2, respectively. The performance of the process was found to be stable for the whole operational period of 106 days treating intermittent OLR up to 13 kg COD m−3 d−1. A memory dose of chitosan at day 42 was beneficial to guarantee good quality of the granules by offsetting the negative impact of intermittent water supply on the granular size. Methanocorpusculum was identified as the dominant archaea at both up-flow velocities. Acetobacterium, Geobacter and Desulfovibrio bacteria were also abundant, demonstrating its role on the degradation of light-oxygenated solvents.
Collapse
|
20
|
Li J, Wang Q, Liang J, Li H, Guo S, Gamal El-Din M, Chen C. An enhanced disintegration using refinery spent caustic for anaerobic digestion of refinery waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112022. [PMID: 33515842 DOI: 10.1016/j.jenvman.2021.112022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Alkali-mediated disintegration is efficient to improve the anaerobic digestion of waste activated sludge (WAS). In the present study, the role and potential of refinery spent caustic (RSC), an alkaline hazardous waste, in enhancing the disintegration of refinery waste activated sludge (RWAS) was investigated. The high alkalinity and free ammonia of RSC destroyed the microbial cell wall and promoted the release of intracellular substances. The contents of N-acetylglucosamine and proteins in the disintegrated liquid greatly increased to 0.41 mg/L and 1147 mg/L, respectively, relative to no disintegration (0.04 mg/L and 3.3 mg/L). The methane production (66.1 mL/g-VS) from RWAS anaerobic digestion increased by 226% compared to without disintegration (20.3 mL/g-VS). This study provides a newly developed "wastes-treat-wastes" management approach of refinery wastewater using combined treatment processes for RWAS and RSC using a cost-efficient and environmentally friendly disintegration of RWAS.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Huimin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
21
|
Liang J, Wang Q, Li J, Guo S, Ke M, Gamal El-Din M, Chen C. Effects of anaerobic granular sludge towards the treatment of flowback water in an up-flow anaerobic sludge blanket bioreactor: Comparison between mesophilic and thermophilic conditions. BIORESOURCE TECHNOLOGY 2021; 326:124784. [PMID: 33548817 DOI: 10.1016/j.biortech.2021.124784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Cost-effective treatment of flowback water remains a challenge for the sustainability of shale gas development. This study evaluated the efficiency of anaerobic granular sludge (AnGS) technology for flowback water treatment under mesophilic and thermophilic conditions. The granule characteristics and metagenomic characterization were also investigated. Thermophilic AnGS achieved 70.9% of COD removal and 362 NmL/d of methane production, higher than those for mesophilic AnGS (60.0% and 241 NmL/d). Thermophilic AnGS had higher extracellular polymeric substances content but low granular size and settleability. Metagenomic analysis revealed the genes related to hydrolysis acidification and carbohydrate metabolism were upregulated during thermophilic condition. Thermophilic condition most likely improved the hydrolysis of complex organics in the flowback water such as guar gum and hydrolyzed polyacrylamide, and led to higher COD removal and methane production. These results suggest that AnGS technology is a promising alternative for the treatment of flowback water, particularly when operated at thermophilic condition.
Collapse
Affiliation(s)
- Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jin Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ming Ke
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
22
|
Tomei MC, Mosca Angelucci D, Clagnan E, Brusetti L. Anaerobic biodegradation of phenol in wastewater treatment: achievements and limits. Appl Microbiol Biotechnol 2021; 105:2195-2224. [PMID: 33630152 DOI: 10.1007/s00253-021-11182-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
Anaerobic biodegradation of toxic compounds found in industrial wastewater is an attractive solution allowing the recovery of energy and resources but it is still challenging due to the low kinetics making the anaerobic process not competitive against the aerobic one. In this review, we summarise the present state of knowledge on the anaerobic biodegradation process for phenol, a typical target compound employed in toxicity studies on industrial wastewater treatment. The objective of this article is to provide an overview on the microbiological and technological aspects of anaerobic phenol degradation and on the research needs to fill the gaps still hindering the diffusion of the anaerobic process. The first part is focused on the microbiology and extensively presents and characterises phenol-degrading bacteria and biodegradation pathways. In the second part, dedicated to process feasibility, anaerobic and aerobic biodegradation kinetics are analysed and compared, and strategies to enhance process performance, i.e. advanced technologies, bioaugmentation, and biostimulation, are critically analysed and discussed. The final section provides a summary of the research needs. Literature data analysis shows the feasibility of anaerobic phenol biodegradation at laboratory and pilot scale, but there is still a consistent gap between achieved aerobic and anaerobic performance. This is why current research demand is mainly related to the development and optimisation of powerful technologies and effective operation strategies able to enhance the competitiveness of the anaerobic process. Research efforts are strongly justified because the anaerobic process is a step forward to a more sustainable approach in wastewater treatment.Key points• Review of phenol-degraders bacteria and biodegradation pathways.• Anaerobic phenol biodegradation kinetics for metabolic and co-metabolic processes.• Microbial and technological strategies to enhance process performance.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione Rome, Italy
| | - Elisa Clagnan
- Ricicla Group - DiSAA, University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen - Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
23
|
Show KY, Yan YG, Zhao J, Shen J, Han ZX, Yao HY, Lee DJ. Startup and performance of full-scale anaerobic granular sludge blanket reactor treating high strength inhibitory acrylic acid wastewater. BIORESOURCE TECHNOLOGY 2020; 317:123975. [PMID: 32799077 DOI: 10.1016/j.biortech.2020.123975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
High strength inhibitory wastewaters from chemical industries are commonly treated by energy-intensive physicochemical methods. The present work examines the startup and performance of a full-scale anaerobic granular sludge blanket (GSB) plant for treatment of an inhibitory acrylic acid wastewater. From a performance test on chemical oxygen demand (COD) loading up to 9800 mg/L and 3074 kg/d, the GSB plant removed 95% of COD. Coupled with a two-stage aerobic effluent polishing unit, the integrated anaerobic-aerobic plant achieved a remarkable total COD removal of 98-99% at full design load. Final effluent ranging from 173 to 278 mg COD/L conformed to the public sewer limits of 500 mg/L. Acclimated microbes and granulation resulted in efficient degradation of the inhibitory wastewater. Adequate reactor and process designs are crucial for granulation and robust treatment. The anaerobic and aerobic processes complement each other as anaerobic prime degrader and aerobic polisher in the integrated processes.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jian Zhao
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jie Shen
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Zhong-Xu Han
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Hai-Yong Yao
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
24
|
Mohanakrishna G, Abu-Reesh IM, Pant D. Enhanced bioelectrochemical treatment of petroleum refinery wastewater with Labaneh whey as co-substrate. Sci Rep 2020; 10:19665. [PMID: 33184377 PMCID: PMC7665216 DOI: 10.1038/s41598-020-76668-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022] Open
Abstract
Petroleum refinery wastewater (PRW) that contains recalcitrant components as the major portion of constituents is difficult to treat by conventional biological processes. Microbial fuel cells (MFCs) which also produce renewable energy were found to be promising for the treatment of PRW. However, due to the high total dissolved solids and low organic matter content, the efficiency of the process is limited. Labaneh whey (LW) wastewater, having higher biodegradability and high organic matter was evaluated as co-substrate along with PRW in standard dual chambered MFC to achieve improved power generation and treatment efficiency. Among several concentrations of LW as co-substrate in the range of 5–30% (v/v) with PRW, 85:15 (PRW:LW) showed to have the highest power generation (power density (PD), 832 mW/m2), which is two times higher than the control with PRW as sole substrate (PD, 420 mW/m2). On the contrary, a maximum substrate degradation rate of 0.420 kg COD/m3-day (ξCOD, 63.10%), was registered with 80:20 feed. Higher LW ratios in PRW lead to the production of VFA which in turn gradually decreased the anolyte pH to below 4.5 (70:30 feed). This resulted in a drop in the performance of MFC with respect to power generation (274 mW/m2, 70:30 feed) and substrate degradation (ξCOD, 17.84%).
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- Department of Chemical Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar
| | - Ibrahim M Abu-Reesh
- Department of Chemical Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar.
| | - Deepak Pant
- Separation and Conversion Technologies, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400, Mol, Belgium
| |
Collapse
|
25
|
Show KY, Yan YG, Zhao J, Shen J, Han ZX, Yao HY, Lee DJ. Laboratory trial and full-scale implementation of integrated anaerobic-aerobic treatment for high strength acrylic acid wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140323. [PMID: 32806384 DOI: 10.1016/j.scitotenv.2020.140323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Sustainable treatment of highly polluting industrial wastewaters poses a challenge to many municipalities. This study presented treatment of a high strength inhibitory acrylic acid wastewater by integrated anaerobic-aerobic processes. A novel scheme integrating anaerobic granular sludge blanket (GSB) reactor, aerobic carrier biofilm (CBR) reactor and activated sludge reactor (ASR) was tested. The laboratory trial showed that the GSB was able to degrade exceptionally high chemical oxygen demand (COD up to 32,420 mg/L) acrylic acid wastewater laden with 5% waste oil. Operated under a high volumetric loading (VLR) rate of 21.6 g/L·d, the integrated GSB-CBR-ASB achieved 99% of COD removal, of which 90% were removed by the anaerobic process and 9% by the aerobic processes. Full-scale implementation indicated comparable performance with overall removal up to 99%, thus meeting the discharge limits of 500 mg COD/L of public sewer. The integrated scheme was effective in which the anaerobic GSB functioning as a prime degrader that degraded most of the pollutants, while the aerobic CBR-ASB serving as a polisher that removed the remaining COD. With adequate microbial acclimation and granulation, the novel integrated scheme offers a resilient and robust treatment system for high strength inhibitory acrylic acid wastewater.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Yue-Gen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jian Zhao
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jie Shen
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Zhong-Xu Han
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Hai-Yong Yao
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
26
|
Chen L, Huang JJ, Hua B, Droste R, Ali S, Zhao W. Effect of steel slag in recycling waste activated sludge to produce anaerobic granular sludge. CHEMOSPHERE 2020; 257:127291. [PMID: 32531493 DOI: 10.1016/j.chemosphere.2020.127291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The amount of waste activated sludge (WAS) has grown dramatically in China. WAS is considered as a problematic and hazardous waste, which should be disposed in a safe and sustainable manner. In order to recycle WAS to an anaerobic granular sludge (AnGS) process for anaerobic digestion, Fe powder and steel slags (rusty and clean slags) were used to enhance the granulation process. The results demonstrated that both rusty and clean slags encouraged the development of granular sludge. Adding 10 g/L clean slags could increase AnGS granulation rate by 37%. In the presence of clean slags, extracellular polymeric substances (EPS) concentration in granules increased noticeably to 715 mg/g mixed liquor suspended solids (MLSS). High throughput sequencing analysis exhibited more diversity and higher abundance of functional microbial communities in the batch bottle with 10 g/L clean slags. This study suggested that adding clean slags at 10 g/L dosage was a sustainable and effective method for the sludge granulation.
Collapse
Affiliation(s)
- Lu Chen
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, PR China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, PR China.
| | - Binbin Hua
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, PR China
| | - Ronald Droste
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Salman Ali
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, PR China
| | - Weixin Zhao
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
27
|
Show KY, Ling M, Guo H, Lee DJ. Laboratory and full-scale performances of integrated anaerobic granule-aerobic biofilm-activated sludge processes for high strength recalcitrant paint wastewater. BIORESOURCE TECHNOLOGY 2020; 310:123376. [PMID: 32334358 DOI: 10.1016/j.biortech.2020.123376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Sustainable treatment of wastewaters generated from paint production is increasingly posing an environmental concern. Recalcitrant paint wastewaters are mostly treated by energy and cost intensive physicochemical methods like incineration, distillation or advanced oxidation. This paper reported for the first time a case study applying biological treatment processes to properly handle a high-strength recalcitrant paint wastewater with 5-day biochemical oxygen demand (BOD5)/chemical oxygen demand (COD) less than 0.02. A biological treatment scheme integrating anaerobic granular sludge blanket reactor, aerobic carrier biofilm reactor and aerobic activated sludge bioreactor was proposed and examined. Laboratory and full-scale trials demonstrated satisfactory operation with overall COD removal up to 99%. Besides yielding consistent effluent quality conforming to the discharge limits, the full-scale plant gained considerable savings in operating cost over a 5-year operation. With proper microbial adaptation and cultivation, as well as adequate reactor and process designs, the scheme offers a good feasibility for efficient and cost-effective treatment of the high strength and recalcitrant paint wastewater.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Ming Ling
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Hui Guo
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Engineering, Tunghai University, Taichung 407302, Taiwan.
| |
Collapse
|
28
|
Mainardis M, Buttazzoni M, Goi D. Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances. Bioengineering (Basel) 2020; 7:E43. [PMID: 32397582 PMCID: PMC7355771 DOI: 10.3390/bioengineering7020043] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023] Open
Abstract
Up-flow anaerobic sludge blanket (UASB) reactor belongs to high-rate systems, able to perform anaerobic reaction at reduced hydraulic retention time, if compared to traditional digesters. In this review, the most recent advances in UASB reactor applications are critically summarized and discussed, with outline on the most critical aspects for further possible future developments. Beside traditional anaerobic treatment of soluble and biodegradable substrates, research is actually focusing on the treatment of refractory and slowly degradable matrices, thanks to an improved understanding of microbial community composition and reactor hydrodynamics, together with utilization of powerful modeling tools. Innovative approaches include the use of UASB reactor for nitrogen removal, as well as for hydrogen and volatile fatty acid production. Co-digestion of complementary substrates available in the same territory is being extensively studied to increase biogas yield and provide smooth continuous operations in a circular economy perspective. Particular importance is being given to decentralized treatment, able to provide electricity and heat to local users with possible integration with other renewable energies. Proper pre-treatment application increases biogas yield, while a successive post-treatment is needed to meet required effluent standards, also from a toxicological perspective. An increased full-scale application of UASB technology is desirable to achieve circular economy and sustainability scopes, with efficient biogas exploitation, fulfilling renewable energy targets and green-house gases emission reduction, in particular in tropical countries, where limited reactor heating is required.
Collapse
Affiliation(s)
- Matia Mainardis
- Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via del Cotonificio 108, 33100 Udine, Italy; (M.B.); (D.G.)
| | | | | |
Collapse
|