1
|
Yu Y, Shi Z, Li W, Bian M, Cheng C, Xi Y, Yao S, Zeng X, Jia Y. Application of exogenous electron mediator in fermentation to enhance the production of value-added products. Appl Environ Microbiol 2025:e0049525. [PMID: 40353653 DOI: 10.1128/aem.00495-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Electron transfer is essential for the production efficiency of value-added products in anaerobic fermentation, such as butanol and ethanol as biofuels, and short-chain fatty acids (SCFAs) including butyric acid and acetic acid as platform chemicals. Electron mediators (EMs), also known as electron shuttles, can facilitate electron transfer to counter irreversible or slow redox reactions that limit fermentation. The addition of EMs has been shown to be an effective strategy to promote fermentation by various bacteria, particularly Clostridium species, for these valuable product syntheses. This paper reviews recent advancements in the application of exogenous electron mediators (EEMs) across various scenarios. Common EEM types, their characteristics, and mechanisms are summarized, and different application scenarios are discussed to elucidate the effect of EEMs. Key technical challenges and future directions for EEM application are also explored.
Collapse
Affiliation(s)
- Yingxuan Yu
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhongliang Shi
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Weiming Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Mengyang Bian
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chi Cheng
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian, China
- Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Shuhua Yao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
2
|
Liu Y, Sun J, Zhao T, Wang L, Zhao C, Fu J, Li D, Yu H. Effects of Fe/Mg-modified lignocellulosic biochar on in vitro ruminal microorganism fermentation of corn stover. BIORESOURCE TECHNOLOGY 2025; 421:132172. [PMID: 39923860 DOI: 10.1016/j.biortech.2025.132172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
This study investigated the effectiveness and synergistic mechanism of trace-element-modified biochar (BC) on in vitro ruminal fermentation of lignocellulose. Fe/Mg-modified BC containing Fe@BC, Mg@BC and Fe/Mg@BC were prepared, and their effects on in vitro ruminal fermentation of corn stover were assessed. Results indicate that Mg@BC achieved the highest reducing-sugar content (320.4 mg/L) with an additive dose of 12 g/L and a substrate load of 4 %, owing to the presence of enriched lignocellulolytic microorganisms like Treponema and Bacillus. Moreover, Mg@BC promoted the growth of acid-producing bacteria, including Bacteroides and Lachnospiraceae, resulting in the highest production of volatile fatty acid (3.2 g/L). Fe@BC increased the amount of hydrogenogens including Prevotellaceae_YAB2003 and Lachnospiraceae_NK3A20, contributing to the highest hydrogen production. Meanwhile, Fe/Mg@BC facilitated the growth of Succiniclasticum and Lactobacillus, which effectively produce succinic and lactic acids. These findings provide new insights into efficient lignocellulose bioconversion via in vitro ruminal fermentation with Fe/Mg-modified BC supplementation.
Collapse
Affiliation(s)
- Yuping Liu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Jiyu Sun
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Taotao Zhao
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Lin Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Chenyu Zhao
- Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Jilin Agricultural University, Changchun 130118 China
| | - Jingjing Fu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| | - Dawei Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China.
| | - Haiye Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022 China
| |
Collapse
|
3
|
Sun ZF, Gao J, Chen C, Wu KK, Liu DM, Yang SS, Xing DF, Wang AJ, Ren NQ, Zhao L. Promoting caproate production using anaerobically digested sludge-derived biochar: Performances, mechanisms, and environmental impacts. BIORESOURCE TECHNOLOGY 2025; 420:132122. [PMID: 39880336 DOI: 10.1016/j.biortech.2025.132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Carbon chain elongation offers a promising pathway for converting waste resources into caproate. However, challenges in yield and selectivity have limited its broader application. To address these limitations, anaerobically digested sludge-derived biochar (ADS-B) was incorporated into the carbon chain elongation process. The findings reveal that the addition of 20 g/L ADS-B resulted in the highest net caproate yield (6.5 g/L) and selectivity (61.1%). Further analysis highlighted that ADS-B's superior physicochemical properties enhanced the conversion of butyrate to caproate and facilitated the colonization of key microorganisms, such as Terrisporobacter and Clostridium, essential for caproate production. Additionally, a life cycle assessment indicated that ADS-B addition effectively reduced the environmental impact of caprate production, with additional potential for further mitigation through feedstock substitution. This study provides critical insights into the application of anaerobically digested sludge-derived biochar for enhancing carbon chain elongation, presenting an alternative approach for waste reutilization.
Collapse
Affiliation(s)
- Zhong-Fang Sun
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Gao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai-Kai Wu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong-Mei Liu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Srivastava N, Singh R, Lal B, Haque S. Evaluation of bioprocess parameters for pilot scale fermentative biohydrogen production using organic waste: Environmental remediation, techno-economic challenges & future solutions. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024. [DOI: 10.1016/j.ijhydene.2024.05.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Lou T, Yin Y, Wang J. Influence of adding strategy of biochar on medium-chain fatty acids production from sewage sludge. CHEMOSPHERE 2024; 354:141660. [PMID: 38462181 DOI: 10.1016/j.chemosphere.2024.141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Production of medium-chain fatty acids (MCFAs) from sewage sludge has dual effects on valuable sludge disposal and renewable energy generation, while low efficiency limits its application. Biochar addition is considered an effective method to improve MCFAs production. In this study, the influence of biochar adding strategies (i.e., adding biochar in acidification or chain elongation (CE) processes) on MCFAs production was explored. Results showed that by adding biochar in the acidification process, MCFAs accumulation increased by over 114%, accompanied by the highest carbon conversion efficiency (134.66%) and electron transfer efficiency of MCFAs (94.22%) by the terminal CE. Adding biochar before the acidification process better enriched CE bacteria (e.g., Paraclostridium) and strengthened the dominant metabolic pathway. In contrast, the biochar added before the CE process priorly enriched the bacteria capable of degrading organics, like unclassified_f__Dysgonomonadaceae, norank_f__norank_o__OPB41, and Acetobacterium. The differences in excessive ethanol oxidation and short-chain fatty acids accumulation induced by varied adding strategies might be responsible for this.
Collapse
Affiliation(s)
- Tianru Lou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
6
|
Zhang S, Hou J, Zhang X, Cai T, Chen W, Zhang Q. Potential mechanism of biochar enhanced degradation of oxytetracycline by Pseudomonas aeruginosa OTC-T. CHEMOSPHERE 2024; 351:141288. [PMID: 38272135 DOI: 10.1016/j.chemosphere.2024.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Extensive use of oxytetracycline (OTC) and the generation of its corresponding resistance genes have resulted in serious environmental problems. Physical-biological combined remediation is an attractive method for OTC degradation because of its high remediation efficiency, stability, and environmental friendliness. In this study, an effective OTC-degrading strain identified as Pseudomonas aeruginosa OTC-T, was isolated from chicken manure. In the degradation experiment, the degradation rates of OTC in the degradation systems with and without the biochar addition were 92.71-100 % and 69.11-99.59 %, respectively. Biochar improved the tolerance of the strain to extreme environments, and the OTC degradation rate increased by 20.25 %, 18.61 %, and 13.13 % under extreme pH, temperature, and substrate concentration conditions, respectively. Additionally, the degradation kinetics showed that biochar increased the reaction rate constant in the degradation system and shortened the degradation period. In the biological toxicity assessment, biochar increased the proportion of live cells by 17.63 % and decreased the proportion of apoptotic cells by 58.87 %. Metabolomics revealed that biochar had a significant effect on the metabolism of the strains and promoted cell growth and reproduction, effectively reducing oxidative stress induced by OTC. This study elucidates how biochar affects OTC biodegradation and provides insights into the future application of biochar-assisted microbial technology in environmental remediation.
Collapse
Affiliation(s)
- Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
7
|
Apollon W. An Overview of Microbial Fuel Cell Technology for Sustainable Electricity Production. MEMBRANES 2023; 13:884. [PMID: 37999370 PMCID: PMC10672772 DOI: 10.3390/membranes13110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The over-exploitation of fossil fuels and their negative environmental impacts have attracted the attention of researchers worldwide, and efforts have been made to propose alternatives for the production of sustainable and clean energy. One proposed alternative is the implementation of bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs), which are sustainable and environmentally friendly. MFCs are devices that use bacterial activity to break down organic matter while generating sustainable electricity. Furthermore, MFCs can produce bioelectricity from various substrates, including domestic wastewater (DWW), municipal wastewater (MWW), and potato and fruit wastes, reducing environmental contamination and decreasing energy consumption and treatment costs. This review focuses on recent advancements regarding the design, configuration, and operation mode of MFCs, as well as their capacity to produce bioelectricity (e.g., 2203 mW/m2) and fuels (i.e., H2: 438.7 mg/L and CH4: 358.7 mg/L). Furthermore, this review highlights practical applications, challenges, and the life-cycle assessment (LCA) of MFCs. Despite the promising biotechnological development of MFCs, great efforts should be made to implement them in a real-time and commercially viable manner.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo 66050, Nuevo León, Mexico
| |
Collapse
|
8
|
Du J, Xu PP, Ren HY, Cao GL, Xie GJ, Ren NQ, Liu BF. Improved sequential production of hydrogen and caproate by addition of biochar prepared from cornstalk residues. BIORESOURCE TECHNOLOGY 2023; 387:129702. [PMID: 37604256 DOI: 10.1016/j.biortech.2023.129702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
This study proposes a new model in which ethanol and acetate produced by dark fermentation are processed by Clostridium kluyveri for chain elongation to produce caproate with an addition of biochar prepared from cornstalk residues after acid pretreatment and enzymatic hydrolysis (AERBC) in the dark fermentation and chain elongation processes. The results show a 6-25% increase in hydrogen production in dark fermentation with adding AERBC, and the maximum concentration of caproate in the new model reached 1740 mg/L, 61% higher than that in the control group. In addition, caproate was obtained by dark fermentation, using liquid metabolites as substrates with an initial pH range of 6.5-7.5. Finally, the electron balance and electron transfer efficiency in the new model were analyzed, and the role of AERBC in dark fermentation and chain elongation was investigated. This study provides a new reference for the use of dark-fermented liquid metabolites and cornstalk residue.
Collapse
Affiliation(s)
- Jian Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pian-Pian Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Zhang L, Tsui TH, Wah Tong Y, Sharon S, Shoseyov O, Liu R. Biochar applications in microbial fermentation processes for producing non-methane products: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023; 386:129478. [PMID: 37460021 DOI: 10.1016/j.biortech.2023.129478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The objective of this review is to encourage the technical development of biochar-assisted microbial fermentation. To this end, recent advances in biochar applications for microbial fermentation processes (i.e., non-methane products of hydrogen, acids, alcohols, and biofertilizer) have been critically reviewed, including process performance, enhanced mechanisms, and current research gaps. Key findings of enhanced mechanisms by biochar applications in biochemical conversion platforms are summarized, including supportive microbial habitats due to the immobilization effect, pH buffering due to alkalinity, nutrition supply due to being rich in nutrient elements, promoting electron transfer by acting as electron carriers, and detoxification of inhibitors due to high adsorption capacity. The current technical limitations and biochar's industrial applications in microbial fermentation processes are also discussed. Finally, suggestions like exploring functionalized biochar materials, biochar's automatic addition and pilot-scale demonstration are proposed. This review would further promote biochar applications in microbial fermentation processes for the production of non-methane products.
Collapse
Affiliation(s)
- Le Zhang
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - To-Hung Tsui
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Sigal Sharon
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Oded Shoseyov
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
10
|
Tian K, Zhang J, Zhou C, Yang M, Zhang X, Yan X, Zang L. Magnetic nitrogen-doped activated carbon improved biohydrogen production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87215-87227. [PMID: 37420156 DOI: 10.1007/s11356-023-28584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Low biological hydrogen (bioH2) production due to non-optimal metabolic pathways occurs frequently. In this work, magnetic nitrogen-doped activated carbon (MNAC) was prepared and added into the inoculated sludge with glucose as substrate to enhance hydrogen (H2) yield by mesophilic dark fermentation (DF). The highest H2 yield appeared in 400 mg/L AC (252.8 mL/g glucose) and 600 mg/L MNAC group (304.8 mL/g glucose), which were 26.02% and 51.94% higher than that of 0 mg/L MNAC group (200.6 mL/g glucose). The addition of MNAC allowed for efficient enrichment of Firmicutes and Clostridium-sensu-stricto-1, accelerating the metabolic pathway shifted towards butyrate type. The Fe ions released by MNAC facilitated electron transfer and favored the reduction of ferredoxin (Fd), thereby obtaining more bioH2. Finally, the generation of [Fe-Fe] hydrogenase and cellular components of H2-producing microbes (HPM) during homeostasis was discussed to understand on the use of MNAC in DF system.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China.
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Mengchen Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| |
Collapse
|
11
|
Zhou C, Zhang J, Pei Y, Tian K, Zhang X, Yan X, Yang J. Molten salt strategy to activate biochar for enhancing biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129466. [PMID: 37429558 DOI: 10.1016/j.biortech.2023.129466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Generally, dark fermentation (DF) of hydrogen (H2) synthesis has low H2 production from industrial-scale plant. In this study, campus greening wastes-ginkgo leaves were used to produce molten salt-modified biochar (MSBC) and nitrogen (N2)-atmosphere BC (NBC) in molten salt and N2 environment at 800 °C, respectively. MSBC showed excellent properties including high specific surface area and electron transfer ability. After supplementation with MSBC, H2 yield rose by 32.4% compared to the control group without carbon material. Electrochemical analysis revealed MSBC improved the electrochemical properties of sludge. Furthermore, MSBC optimized the microbial community structure and increased the relative abundance of dominant microbes, thus promoting H2 production. This work is provide the deep understanding of two carbons that play vital roles in increasing microbial biomass, supplementing trace element and favoring electron transfer in DF reactions. Salt recovery achieved 93.57% in molten salt carbonization, which has sustainability compared with N2-atmosphere pyrolysis.
Collapse
Affiliation(s)
- Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
12
|
Cheng WX, Wang LL, Xu Y, Li SJ, Wang Q, Chen RP, Yu L. Performance and mechanism of different pretreatment methods for inoculated sludge in biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129234. [PMID: 37244304 DOI: 10.1016/j.biortech.2023.129234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
A comparison was conducted between pre-culture bacteria (PCB) and heat treatment anaerobic granular sludge (HTAGS) for hydrogen production, and it was found that hydrogen molar yield (HMY) of PCB was 21-35% higher than that of HTAGS. The addition of biochar increased hydrogen production in both cultivation methods by acting as an electron shuttle to enhance extracellular electron transfers of Clostridium and Enterobacter. On the other hand, Fe3O4 did not promote hydrogen production in PCB experiments but had a positive effect on HTAGS experiments. This was due to the fact that PCB was mainly composed of Clostridium butyricum, which could not reduce extracellular iron oxide, resulting in a lack of respiratory driving force. In contrast, HTAGS retained a significant amount of Enterobacter, which possess the ability of extracellular anaerobic respiration. Different pretreatment methods of inoculum resulted in significant changes in the sludge community, thus exerting a noticeable impact on biohydrogen production.
Collapse
Affiliation(s)
- Wei-Xin Cheng
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling-Ling Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Si-Jia Li
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
14
|
Evaluating Bio-Hydrogen Production Potential and Energy Conversion Efficiency from Glucose and Xylose under Diverse Concentrations. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lignocellulose bioconversion to hydrogen has been proposed as a promising solution to augment the fossil fuel dominated energy market. However, little is known about the effects of the substrate concentration supplied on hydrogen production. Herein, the hydrogen producing bacteria Thermoanaerobacter thermosaccharolyticum W16 feeding with respective glucose, xylose, and glucose and xylose mixture (glucose–xylose) at different concentrations was evaluated, to study whether substrate concentration could impact the lignocellulose bioconversion to hydrogen and the associated kinetics. An average bio-hydrogen yield of 1.40 ± 0.23 mol H2·mol−1 substrate was obtained at an average substrate concentration of 60.89 mM. The maximum bio-hydrogen production rate of 0.25 and 0.24 mol H2·mol−1 substrate h−1 was achieved at a substrate concentration of 27.75 mM glucose and 30.82 mM glucose–xylose, respectively, while the value reached the high point of 0.08 mol H2·mol−1 xylose·h−1 at 66.61 mM xylose. Upon further energy conversion efficiency (ESE) analysis, a substrate of 10 g·L−1 (amounting to 55.51 mM glucose, 66.61 mM xylose or 60.55 mM glucose–xylose) provided the maximum ESE of 15.3 ± 0.3%, which was 15.3% higher than that obtained at a substrate concentration of 5 g·L−1 (amounting to 27.75 mM glucose, 33.30 mM xylose or 30.28 mM glucose–xylose). The findings could be helpful to provide effective support for the future development of efficient and sustainable lignocellulosic bio-hydrogen production.
Collapse
|
15
|
Li W, Lu L, Cheng C, Ren N, Yang ST, Liu M. Biohydrogen production from brown algae fermentation: Relationship between substrate reduction degree and hydrogen production. BIORESOURCE TECHNOLOGY 2022; 364:128069. [PMID: 36208827 DOI: 10.1016/j.biortech.2022.128069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, mannitol and mannitol-rich seaweed were fermented to investigate the relationship between substrate reduction degree and hydrogen production performance. The results showed that acetate was required in mannitol fermentation with an optimum acetate/mannitol mass ratio of 1:5. Hydrogen production and yield of mannitol fermentation reached 123.76 mL and 2.12 mol/mol-mannitol, respectively, 42.02 % and 26.95 % higher than that of glucose, respectively. The acetate was fully assimilated and the butyrate selectivity reached 100 % in the effluent. Redox potential and electron distribution showed that mannitol increased the overall electron input from mannitol and acetate, leading to the increase in hydrogen and butyrate generation. Hydrogen yield reached 2.33 mol/mol-mannitol with brown algae hydrolysate, which was the highest ever reported. This study demonstrated that substrate with a higher reduction degree could yield higher hydrogen and showed the great application potential of brown algae fermentation for the co-production of hydrogen and butyrate.
Collapse
Affiliation(s)
- Weiming Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
16
|
Zhang YT, Wei W, Wang C, Ni BJ. Microbial and physicochemical responses of anaerobic hydrogen-producing granular sludge to polyethylene micro(nano)plastics. WATER RESEARCH 2022; 221:118745. [PMID: 35728500 DOI: 10.1016/j.watres.2022.118745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Micro(nano)plastics is an emerging contaminant in wastewater that has showed significant impacts on various biological treatment processes. Nevertheless, the underlying effects of micro(nano)plastics with different concentrations and sizes on the anaerobic hydrogen-producing granular sludge (HPG) were still unclear. This work firstly attempted to illustrate the microbial and physicochemical responses of HPG to a shock load of polyethylene microplastics (PE-MPs) with varied concentrations and sizes. The results revealed that the PE-MPs inhibitory effect on hydrogen production by HPG was both concentration- and size-dependent. Specifically, the increase of PE-MPs concentration and the decline of PE-MPs size to nano-sized plastics (NPs) significantly decreased the hydrogen yield, downgraded to 79.9 ± 2.6% and 63.0 ± 3.9% (p = 0.001, and 0.0002) of control, respectively, at higher MPs concentration and the smaller MPs size (i.e., NPs). The higher PE-MPs concentration and PE-NPs also suppressed extracellular polymeric substances (EPS) generation more severely. The critical bio-processes involved in hydrogen production were disturbed by PE-MPs, with the extent of negative impacts depending on the dosage and size of PE-MPs. These adverse impacts further manifested as granule disintegration and loss of cellular activity. Mechanism analysis highlighted the roles of oxidative stress, leachate released from PE-MPs, interaction between PE-NPs and granules inducing physical crushing of HPG that led to possible direct contact between cells and toxic substances.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
17
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB. Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. BIORESOURCE TECHNOLOGY 2022; 351:127045. [PMID: 35331884 DOI: 10.1016/j.biortech.2022.127045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
As a clean energy carrier, hydrogen is a promising alternative to fossil fuel so as the global growing energy demand can be met. Currently, producing hydrogen from biowastes through fermentation has attracted much attention due to its multiple advantages of biowastes management and valuable energy generation. Nevertheless, conventional dark fermentation (DF) processes are still hindered by the low biohydrogen yields and challenges of biohydrogen purification, which limit their commercialization. In recent years, researchers have focused on various advanced strategies for enhancing biohydrogen yields, such as screening of super hydrogen-producing bacteria, genetic engineering, cell immobilization, nanomaterials utilization, bioreactors modification, and combination of different processes. This paper critically reviews by discussing the above stated technologies employed in DF, respectively, to improve biohydrogen generation and stating challenges and future perspectives on biowaste-based biohydrogen production.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Lijuan Deng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
18
|
Apollon W, Rusyn I, González-Gamboa N, Kuleshova T, Luna-Maldonado AI, Vidales-Contreras JA, Kamaraj SK. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153055. [PMID: 35032528 DOI: 10.1016/j.scitotenv.2022.153055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico.
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv 79013, Ukraine
| | - Nancy González-Gamboa
- Renewable Energy Unit, Yucatan Center for Scientist Research, Carretera Sierra Papacal-Chuburná Puerto Km 5, CP 97302 Sierra Papacal, Yucatan, Mexico
| | - Tatiana Kuleshova
- Agrophysical Research Institute, Department of Plant Lightphysiology and Agroecosystem Bioproductivity, 195220 Saint-Petersburg 14, Grazhdanskiy pr., Russia
| | - Alejandro Isabel Luna-Maldonado
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Juan Antonio Vidales-Contreras
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Sathish-Kumar Kamaraj
- TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags. C.P. 20330, Mexico.
| |
Collapse
|
19
|
Huang JR, Chen X, Hu BB, Cheng JR, Zhu MJ. Bioaugmentation combined with biochar to enhance thermophilic hydrogen production from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2022; 348:126790. [PMID: 35104653 DOI: 10.1016/j.biortech.2022.126790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, Thermoanaerobacterium thermosaccharolyticum MJ2 and biochar were used to enhance thermophilic hydrogen production from sugarcane bagasse. MJ2 bioaugmentation notably increased the hydrogen production by 95.31%, which was further significantly improved by 158.10% by adding biochar. The addition of biochar promoted the degradation of substrate, improved the activities of hydrogenase and electron transfer system, and stimulated microbial growth and metabolism. Microbial community analysis showed that the relative abundance of Thermoanaerobacterium was significantly increased by bioaugmentation and further enriched by biochar. PICRUSt analysis showed that MJ2 combined with biochar promoted metabolic pathways related to substrate degradation and microbial metabolism. This study provides a novel enhancement method for hydrogen production of the cellulolytic microbial consortium by exogenous hydrogen-producing microorganism combined with biochar and deepens the understanding of its functional mechanism.
Collapse
Affiliation(s)
- Jin-Rong Huang
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jing-Rong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China; College of Life and Geographic Sciences, The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China.
| |
Collapse
|
20
|
Kant Bhatia S, Palai AK, Kumar A, Kant Bhatia R, Kumar Patel A, Kumar Thakur V, Yang YH. Trends in renewable energy production employing biomass-based biochar. BIORESOURCE TECHNOLOGY 2021; 340:125644. [PMID: 34332449 DOI: 10.1016/j.biortech.2021.125644] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Tremendous population growth and industrialization have increased energy consumption unprecedentedly. The depletion of fossil-based energy supplies necessitates the exploration of solar, geothermal, wind, hydrogen, biodiesel, etc. as a clean and renewable energy source. Most of these energy sources are intermittent, while bioelectricity, biodiesel, and biohydrogen can be produced using abundantly available organic wastes regularly. The production of various energy resources requires materials that are costly and affect the applicability at a large scale. Biomass-derived materials (biochar) are getting attention in the field of bioenergy due to their simple method of synthesis, high surface area, porosity, and availability of functional groups for easy modification. Biochar synthesis using various techniques is discussed and their use as an electrode (anodic/cathodic) in a microbial fuel cell (MFC), catalysts in transesterification, and anaerobic digestion for energy production are reviewed. Renewable energy production using biochar would be a sustainable approach to create an energy secure world.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul-05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul-05029, Republic of Korea
| | - Akshaya K Palai
- School for Advanced Research in Polymers, Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar, Odisha, 751 024, India
| | - Amit Kumar
- School of Engineering and Technology, Central University of Haryana, Haryana, 123031, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla-171005, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Vijay Kumar Thakur
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh, 201314, India; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul-05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul-05029, Republic of Korea.
| |
Collapse
|
21
|
Li W, Cheng C, He L, Liu M, Cao G, Yang S, Ren N. Effects of feedstock and pyrolysis temperature of biochar on promoting hydrogen production of ethanol-type fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148206. [PMID: 34111796 DOI: 10.1016/j.scitotenv.2021.148206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Biochar has been shown to benefit fermentative hydrogen production. However, the influencing factors and key characteristics of its promoting function remained to be elucidated. This study investigated the effects of two crucial factors, feedstock and pyrolysis temperature, on the hydrogen production-promoting function of biochar in ethanol-type fermentation. The physicochemical characteristics and promoting effects of biochars prepared with five biomass wastes (coffee ground, corn stalk, Ginkgo biloba leaf, mealworm frass, and sugarcane bagasse) were determined. Sugarcane bagasse-derived biochar (SBBC) showed the best hydrogen production-promoting effect in ethanol-type fermentation. The physicochemical properties of biochar, such as pH, element composition and surface features, were significantly affected by pyrolysis temperature, but the promoting effects were not significantly changed. The hydrogen production-promoting effect of biochar in ethanol-type fermentation was mainly affected by feedstock instead of pyrolysis temperature. A potential promoting mechanism was proposed that biochar prepared at low temperature boosted the hydrogen production with redox activity, while that at high temperature achieved the promotion via cell growth enhancement. This study revealed the key promoting factor of biochar in ethanol-type fermentative hydrogen production, and provided novel insights for the promoting mechanism of biochar.
Collapse
Affiliation(s)
- Weiming Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Zhu S, Yang X, Zhang Z, Zhang H, Li Y, Zhang Y, Zhang Q. Tolerance of photo-fermentative biohydrogen production system amended with biochar and nanoscale zero-valent iron to acidic environment. BIORESOURCE TECHNOLOGY 2021; 338:125512. [PMID: 34260966 DOI: 10.1016/j.biortech.2021.125512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic fermentation system is easy to become acidic due to the generation of small molecular acids, which will affect the metabolism of bacteria. Therefore, it is necessary to improve the acid resistance of system. In this work, the tolerance of photo-fermentative biohydrogen production system amended with biochar, nanoscale zero-valent iron (nZVI) and biochar + nZVI to acidic environment was studied. Results showed that additives improved the stability and performance of the photo fermentation. The best increment of biohydrogen from 0 to 286.83 ± 2.77 mL was obtained by adding biochar and nZVI together at the original pH of 4.5. The additive reduced the oxidation-reduction potential and promoted the consumption of acetate and butyrate. At initial pH of 5, 6 and 7, the highest biohydrogen yield of 361.02 ± 10.11, 419.36 ± 10.70 and 382.67 ± 25.08 mL was obtained by adding nZVI, respectively, representing 42%-44.45% increase compared with the control group under the same conditions.
Collapse
Affiliation(s)
- Shengnan Zhu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Xuemei Yang
- Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China.
| |
Collapse
|
23
|
Zhao D, Yan B, Liu C, Yao B, Luo L, Yang Y, Liu L, Wu F, Zhou Y. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2021; 338:125531. [PMID: 34274583 DOI: 10.1016/j.biortech.2021.125531] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion (AD) of food waste is widely accepted as a promising technology for both waste disposal and resource recovery. With the advancing of AD technology, to exploit the capacity of organic waste for maximum energy/resource recovery becomes the new focus and hence, improve the viability of this technology for practical application. Product inhibition and mass transfer are the common limitations encountered during AD of putrescible organic waste. Biochar materials have been widely used to promote AD process in recent years. This review summarizes the mechanism and regulation strategies of biochar and its modified derivatives in promoting AD of solid waste (mainly food waste) from the three aspects of hydrolysis, syntrophic acetogenesis, and methane production. At the same time, the relationship between carbon materials and electron transfer among anaerobic microbes is summarized from the perspective of microbial community. In addition, the market application of this technology was evaluated.
Collapse
Affiliation(s)
- Danyang Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chao Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lichao Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Fan Wu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
24
|
Bu J, Wei HL, Wang YT, Cheng JR, Zhu MJ. Biochar boosts dark fermentative H 2 production from sugarcane bagasse by selective enrichment/colonization of functional bacteria and enhancing extracellular electron transfer. WATER RESEARCH 2021; 202:117440. [PMID: 34304072 DOI: 10.1016/j.watres.2021.117440] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The influence of biochar (BC) on anerobic digestion (AD) of organic wastes have been widely studied. However, the effect of BC on rate-limiting step during AD of lignocellulosic waste, i.e. the hydrolysis and acidogenesis step, is rarely studied and the underlying mechanisms have not been investigated. In this study, the benefits of BC with respect to dark fermentative hydrogen production were explored in a fermentation system by a heat-shocked consortium from sewage sludge (SS) with pretreated sugarcane bagasse (PSCB) as carbon source. The results showed that biochar boosted biohydrogen production by 317.1% through stimulating bacterial growth, improving critical enzymatic activities, manipulating the ratio of NADH/NAD+ and enhancing electron transfer efficiency of fermentation system. Furthermore, cellulolytic Lachnospiraceae was efficiently enriched and electroactive bacteria were selectively colonized and the ecological niche was formed on the surface of biochar. Synergistic effect between functional bacteria and extracellular electron transfer (EET) in electroactive bacteria were assumed to be established and maintained by biochar amendment. This study shed light on the underlying mechanisms of improved performance of biohydrogen production from lignocellulosic waste during mesophilic dark fermentation by BC supplementation.
Collapse
Affiliation(s)
- Jie Bu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Hao-Lin Wei
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Yu-Tao Wang
- The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Jing-Rong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 Hubei, People's Republic of China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China.
| |
Collapse
|
25
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani AE, Kumar G, Yang YH. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144429. [PMID: 33385808 DOI: 10.1016/j.scitotenv.2020.144429] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Biohydrogen is a clean and renewable source of energy. It can be produced by using technologies such as thermochemical, electrolysis, photoelectrochemical and biological, etc. Among these technologies, the biological method (dark fermentation) is considered more sustainable and ecofriendly. Dark fermentation involves anaerobic microbes which degrade carbohydrate rich substrate and produce hydrogen. Lignocellulosic biomass is an abundantly available raw material and can be utilized as an economic and renewable substrate for biohydrogen production. Although there are many hurdles, continuous advancements in lignocellulosic biomass pretreatment technology, microbial fermentation (mixed substrate and co-culture fermentation), the involvement of molecular biology techniques, and understanding of various factors (pH, T, addition of nanomaterials) effect on biohydrogen productivity and yield render this technology efficient and capable to meet future energy demands. Further integration of biohydrogen production technology with other products such as bio-alcohol, volatile fatty acids (VFAs), and methane have the potential to improve the efficiency and economics of the overall process. In this article, various methods used for lignocellulosic biomass pretreatment, technologies in trends to produce and improve biohydrogen production, a coproduction of other energy resources, and techno-economic analysis of biohydrogen production from lignocellulosic biomass are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill 171005, H.P, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Andhra Pradesh 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|