1
|
Nazar M, Tian J, Wang X, Wang S, Khan NA, Cheng Y, Zhang W, Xu N, Liu B, Ding C. Effect of biological lignin depolymerization on rice straw enzymatic hydrolysis, anerobic fermentation characteristics and in vitro ruminal digestibility. Int J Biol Macromol 2025; 305:141664. [PMID: 40032122 DOI: 10.1016/j.ijbiomac.2025.141664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
This study investigated the effects of lignin depolymerization using laccase on rice straw silage fermentation characteristics, lignocellulose biodegradation and in vitro digestibility. Rice straw was ensiled for 120 days, either without additives (control), or pretreated with Lactobacillus plantarum and cellulases (LPC), cellulases and laccase (CL), and L. plantarum, cellulases and laccase (LPCL). The results revealed that LPC and LPCL treated silages exhibited significantly lower (P < 0.05) pH values, higher (P < 0.05) lactic acid content (24.76 and 27.02 g/kg dry matter (DM)) and significantly higher water-soluble carbohydrate content (20.12 and 22.46 g/kg DM) compared to control and CL treated silages. Laccase-containing treatments (CL, LPCL) significantly reduced lignin, cellulose and hemicellulose contents in the ensiled rice straw compared to the control and LPC treated silages. Structural alterations in the straw, induced by pretreatments, were confirmed by Fourier Transform Infrared spectroscopy, Scanning Electron Microscope and X-ray diffraction analysis. The CL treated silage exhibited the lowest (P < 0.05) in vitro digestibility, while the LPCL treated silage had the highest in vitro total gas production (25.50 mL). In conclusion, laccase effectively degraded lignin during ensiling, and the combined application of laccase with L. plantarum and cellulases enhanced both the enzymatic hydrolysis and ensiling quality of rice straw. These findings demonstrate the potential of biological lignin depolymerization during ensiling as an innovative strategy to significantly enhance the nutritional value of straw bioresources, paving the way for sustainable livestock production and waste reutilization.
Collapse
Affiliation(s)
- Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jipeng Tian
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xin Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Siran Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Nazir Ahmad Khan
- Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Yunhui Cheng
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Wenjie Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Nengxiang Xu
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Beiyi Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Chenglong Ding
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
2
|
Sun Z, Liu Y, Ji F, Li S, Wang L, Zhou Z, Wu Z, Yu Z. Dynamic changes in carbohydrate components and the bacterial community during the ensiling of wilted and unwilted sweet sorghum. Front Microbiol 2024; 15:1452798. [PMID: 39224214 PMCID: PMC11366713 DOI: 10.3389/fmicb.2024.1452798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Sweet sorghum can be used to produce a substantial quantity of biofuel due to its high biological yield and high carbohydrate content. In this study, we investigated the dynamic changes in fermentation characteristics, carbohydrate components, and the bacterial community during the ensiling of wilted and unwilted sweet sorghum. The results revealed a rapid fermentation pattern and high-quality fermentation quality in wilted and unwilted sweet sorghum, wherein lactic acid, and acetic acid accumulated and stabilized during the initial 9 days of ensiling, with the pH values less than 4.2, until 60 days of ensiling. We found that the ensiling of sweet sorghum involved the degradation (5% ~ 10%) of neutral detergent fiber (NDF) and hemicellulose and that the degradation of NDF fit a first-order exponential decay model. A shift in dominance from Lactococcus to Lactobacillus occurred before the first 9 days of ensiling, and the abundance of Lactobacillus (r = -0.68, p < 0.001) was negatively correlated with the NDF content. The relative abundances of Lactobacillus in wilted and unwilted sweet sorghum after ensiling for 60 days were 76.30 and 93.49%, respectively, and relatively high fermentation quality was obtained. In summary, ensiling is proposed as a biological pretreatment for sweet sorghum for subsequent biofuel production, and unlike other materials, sweet sorghum quickly achieves good fermentation quality and has great potential for bioresource production.
Collapse
Affiliation(s)
- Zhiqiang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiting Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fangcai Ji
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Shuangye Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Lei Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhe Wu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Sun P, Ge G, Sun L, Du S, Liu Y, Yan X, Zhang J, Zhang Y, Wang Z, Jia Y. Effects of selenium enrichment on fermentation characteristics, selenium content and microbial community of alfalfa silage. BMC PLANT BIOLOGY 2024; 24:555. [PMID: 38877393 PMCID: PMC11177373 DOI: 10.1186/s12870-024-05268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Selenium is essential for livestock and human health. The traditional way of adding selenium to livestock diets has limitations, and there is a growing trend to provide livestock with a safe and efficient source of selenium through selenium-enriched pasture. Therefore, this study was conducted to investigate the effects of selenium enrichment on fermentation characteristics, selenium content, selenium morphology, microbial community and in vitro digestion of silage alfalfa by using unenriched (CK) and selenium-enriched (Se) alfalfa as raw material for silage. RESULTS In this study, selenium enrichment significantly increased crude protein, soluble carbohydrate, total selenium, and organic selenium contents of alfalfa silage fresh and post-silage samples, and it significantly decreased neutral detergent fiber and acid detergent fiber contents (p < 0.05). Selenium enrichment altered the form of selenium in plants, mainly in the form of SeMet and SeMeCys, which were significantly higher than that of CK (p < 0.05). Selenium enrichment could significantly increase the lactic acid content, reduce the pH value, change the diversity of bacterial community, promote the growth of beneficial bacteria such as Lactiplantibacillus and inhibit the growth of harmful bacteria such as Pantoea, so as to improve the fermentation quality of silage. The in vitro digestibility of dry matter (IVDMD), in vitro digestibility of acid detergent fibers (IVADFD) and in vitro digestibility of acid detergent fibers (IVNDFD) of silage after selenium enrichment were significantly higher than those of CK (p < 0.05). CONCLUSION This study showed that the presence of selenium could regulate the structure of the alfalfa silage bacterial community and improve alfalfa silage fermentation quality. Selenium enrichment measures can change the morphology of selenium in alfalfa silage products, thus promoting the conversion of organic selenium.
Collapse
Affiliation(s)
- Pengbo Sun
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yichao Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingquan Yan
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiawei Zhang
- Ordos Institute of Forestry and Grassland Science, Ordos, China
| | - Yuhan Zhang
- Forestry and Grassland Work Station of Inner Mongolia, Hohhot, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China.
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China.
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Beijing, People's Republic of China.
- Key Laboratory of Grassland Resources, Ministry of Education, Beijing, People's Republic of China.
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
4
|
Shi J, Zhang G, Ke W, Pan Y, Hou M, Chang C, Sa D, Lv M, Liu Y, Lu Q. Effect of endogenous sodium and potassium ions in plants on the quality of alfalfa silage and bacterial community stability during fermentation. FRONTIERS IN PLANT SCIENCE 2023; 14:1295114. [PMID: 38205017 PMCID: PMC10777314 DOI: 10.3389/fpls.2023.1295114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
This study investigated the impact of endogenous sodium and potassium ions in plants on the quality of alfalfa silage, as well as the stability of bacterial communities during fermentation. Silage was produced from the fermented alfalfa, and the chemical composition, fermentation characteristics, and microbiome were analyzed to understand their interplay and impact on silage fermentation quality. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1‰ (CK); (b) 1‰-2‰ (LP); (c) 2‰-3‰ (MP); (d) 3‰-4‰ (HP). The results revealed that the pH of silage was negatively correlated with the lactic acid content. With the increase of lactic acid (LA) content increased (26.3-51.0 g/kg DM), the pH value decreased (4.9-5.3). With the increase of salt stress, the content of Na+ in silage increased (2.2-5.4 g/kg DM). The presence of endogenous Na+ and K+ ions in plants significantly affected the quality of alfalfa silage and the dynamics of bacterial communities during fermentation. Increased salt stress led to changes in microbial composition, with Lactococcus and Pantoea showing a gradual increase in abundance, especially under high salt stress. Low pH inhibited the growth of certain bacterial genera, such as Pantoea and Pediococcus. The abundance of Escherichia-Shigella and Comamonas negatively correlated with crude protein (CP) content, while Enterococcus and Lactococcus exhibited a positive correlation. Furthermore, the accumulation of endogenous Na+ in alfalfa under salt stress suppressed bacterial proliferation, thereby reducing protein degradation during fermentation. The pH of the silage was high, and the LA content was also high. Silages from alfalfa under higher salt stress had higher Na+ content. The alpha diversity of bacterial communities in alfalfa silages showed distinct patterns. Desirable genera like Lactococcus and Lactobacillus predominated in silages produced from alfalfa under salt stress, resulting in better fermentation quality.
Collapse
Affiliation(s)
- Jinhong Shi
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Guijie Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wencan Ke
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yongxiang Pan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Chun Chang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Mingju Lv
- Inner Mongolia Agriculture and Animal Husbandry Extension Center, Hohhot, China
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Nazar M, Xu Q, Zahoor, Ullah MW, Khan NA, Iqbal B, Zhu D. Integrated laccase delignification with improved lignocellulose recalcitrance for enhancing enzymatic saccharification of ensiled rice straw. INDUSTRIAL CROPS AND PRODUCTS 2023; 202:116987. [DOI: 10.1016/j.indcrop.2023.116987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
6
|
Okoye CO, Wu Y, Wang Y, Gao L, Li X, Jiang J. Fermentation profile, aerobic stability, and microbial community dynamics of corn straw ensiled with Lactobacillus buchneri PC-C1 and Lactobacillus plantarum PC1-1. Microbiol Res 2023; 270:127329. [PMID: 36812838 DOI: 10.1016/j.micres.2023.127329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Corn straw is suitable for preservation as silage despite being neglected due to its varying chemical composition, yield, and pathogenic influence during ensiling. This study examined the effects of beneficial organic acid-producing lactic acid bacteria (LAB), including Lactobacillus buchneri (Lb), L. plantarum (Lp), or their combination (LpLb), on fermentation profile, aerobic stability, and microbial community dynamics of corn straw harvested at late maturity stage after 7d, 14d, 30d, and 60d of ensiling. Higher levels of beneficial organic acids, LAB counts, and crude protein (CP), and lower levels of pH and ammonia nitrogen were detected in LpLb-treated silages after 60d. Lactobacillus, Candida, and Issatchenkia abundances were higher (P < 0.05) in Lb and LpLb-treated corn straw silages after 30d and 60d ensiling. Additionally, the positive correlation between Lactobacillus, Lactococcus and Pediococcus, and the negative correlation with Acinetobacter in LpLb-treated silages after 60d emphasizes a potent interaction mechanism initiated by organic acid and composite metabolite production to reduce pathogenic microorganisms' growth. Also, a significant correlation between Lb and LpLb-treated silages with CP and neutral detergent fiber after 60d further highlights the synergistic effect of incorporating L. buchneri and L. plantarum for improved nutritional components of mature silages. The combination of L. buchneri and L. plantarum improved aerobic stability, fermentation quality, and bacterial community and reduced fungal population after 60d of ensiling, which are properties of well-preserved corn straw.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Effects of Different Types of LAB on Dynamic Fermentation Quality and Microbial Community of Native Grass Silage during Anaerobic Fermentation and Aerobic Exposure. Microorganisms 2023; 11:microorganisms11020513. [PMID: 36838477 PMCID: PMC9965529 DOI: 10.3390/microorganisms11020513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Silage of native grasses can alleviate seasonal forage supply imbalance in pastures and provide additional sources to meet forage demand. The study aimed to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and Lactobacillus plantarum in combination with Lactobacillus buchneri (PB) on the nutritional quality, fermentation quality, and microbial community of native grass silage at 2, 7, 15, and 60 days after ensiling and at 4 and 8 days after aerobic exposure. The results showed that dry matter content, crude protein content, the number of lactic acid bacteria, and lactic acid and acetic acid content increased and pH and ammonia nitrogen content decreased after lactic acid bacteria (LAB) inoculation compared with the control group (CK). LP had the lowest pH and highest lactic acid content but did not have greater aerobic stability. LB maintained a lower pH level and acetic acid remained at a higher level after aerobic exposure; aerobic bacteria, coliform bacteria, yeast, and molds all decreased in number, which effectively improved aerobic stability. The effect of the compound addition of LAB was in between the two other treatments, having higher crude protein content, lactic acid and acetic acid content, lower pH, and ammonia nitrogen content. At the phylum level, the dominant phylum changed from Proteobacteria to Firmicutes after ensiling, and at the genus level, Lactiplantibacillus and Lentilactobacillus were the dominant genera in both LAB added groups, while Limosilactobacillus was the dominant genus in the CK treatment. In conclusion, the addition of LAB can improve native grass silage quality by changing bacterial community structure. LP is beneficial to improve the fermentation quality in the ensiling stage, LB is beneficial to inhibit silage deterioration in the aerobic exposure stage, and compound LAB addition is more beneficial to be applied in native grass silage.
Collapse
|
8
|
Lin J, Li G, Sun L, Wang S, Meng X, Sun L, Yuan L, Xu L. Varieties and ensiling: Impact on chemical composition, fermentation quality and bacterial community of alfalfa. Front Microbiol 2023; 13:1091491. [PMID: 36713170 PMCID: PMC9873995 DOI: 10.3389/fmicb.2022.1091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Six species of alfalfa commonly found in northern China were collected in the present study. Methods The chemical composition and epiphytic microbial communities during the ensiling were analyzed; and their effects on fermentation quality and silage bacterial communities were assessed. The effects of physicochemical characteristics of alfalfa on the bacterial community were also investigated in terms of nutritional sources of microbial growth and reproduction. Results and discussion The results showed that the chemical composition was significantly different in various alfalfa varieties, yet, the dominant genera attached to each variety of alfalfa was similar, except for pantoea (p<0.05). After ensiling, both the fermentation quality and microbial community changed obviously (p<0.05). Specifically, ZM2 had lower pH and ammonia nitrogen (NH3-N) content but higher LA content than other varieties of alfalfa silage. Beneficial bacteria such as Lentilactobacillus and Lactiplantibacillus were predominant in ZM2, which accounted for the higher fermentation quality. Significant correlations between the chemical composition of silage, fermentation quality and bacterial communities composition were observed. Moreover, variations in bacteria community structure during the fermentation of alfalfa were mainly influenced by water-soluble carbohydrates (36.79%) and dry matter (21.77%). Conclusion In conclusion, this study revealed the influence of chemical composition on microbial community and fermentation quality, laying the groundwork for future studies on high-quality silage.
Collapse
Affiliation(s)
- Jianyu Lin
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guanhua Li
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China
| | - Shuang Wang
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xin Meng
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Licong Sun
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lin Yuan
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, China,*Correspondence: Lin Yuan, ✉
| | - Linbo Xu
- Key Laboratory of Biohazard Monitoring and Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China,*Correspondence: Lin Yuan, ✉
| |
Collapse
|
9
|
Okoye CO, Wei Z, Jiang H, Wu Y, Wang Y, Gao L, Li X, Jiang J. Metagenomics analysis reveals the performance of homo- and heterofermentative lactic acid bacteria in alfalfa silage fermentation, bacterial community, and functional profiles. J Anim Sci 2023; 101:skad163. [PMID: 37280111 PMCID: PMC10243974 DOI: 10.1093/jas/skad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
Alfalfa (Medicago sativa L.) is a kind of roughage frequently utilized as an animal feed but challenging to be ensiled due to its low water-soluble carbohydrate (WSC), high water content, and elevated buffering capacity, thus requiring the application of lactic acid bacteria (LAB) to improve its fermentation. This study employed high-throughput metagenomic sequence technology to reveal the effects of homofermentative LAB, Lactobacillus plantarum (Lp), or Pediococcus pentosaceus (Pp), and heterofermentative LAB, L. buchneri (Lb), or their combinations (LbLp or LbPp) (applied at 1.0 × 109 colony forming units (cfu) per kilogram of alfalfa biomass fresh material) on the fermentation, microbial community, and functional profiles of alfalfa silage after 7, 14, 30, and 60 ensiling days. The results indicated a reduction (P < 0.05) in glucose and pH and higher (P < 0.05) beneficial organic acid contents, xylose, crude protein, ammonia nitrogen, and aerobic stability in Lb-, LbPp-, and LbLp-inoculated alfalfa silages after 30 and 60 d. Also, higher (P < 0.05) WSC contents were recorded in LbLp-inoculated alfalfa silages after 30 d (10.84 g/kg dry matter [DM]) and 60 d (10.92 g/kg DM). Besides, LbLp-inoculated alfalfa silages recorded higher (P < 0.05) LAB count (9.92 log10 cfu/g) after 60 d. Furthermore, a positive correlation was found between the combined LAB inoculants in LbLp-inoculated alfalfa silages and dominant LAB genera, Lactobacillus and Pediococcus, with fermentation properties after 30 and 60 d. In addition, the 16S rRNA gene-predicted functional analyses further showed that the L. buchneri PC-C1 and L. plantarum YC1-1-4B combination improved carbohydrate metabolism and facilitated further degradation of polysaccharides in alfalfa after 60 d of ensiling. These findings reveal the significant performance of L. buchneri and L. plantarum in combination with dominant LAB species in suppressing the growth of Clostridia, molds, and yeasts and improving the fermentation characteristics and functional carbohydrate metabolism of alfalfa after 60 d ensiling, thus suggesting the need for further studies to uncover the diverse performance of the LAB combination and their consortium with other natural and artificial inoculants in various kinds of silages.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huifang Jiang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanfang Wu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Gao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Li J, Wang C, Zhang S, Xing J, Song C, Meng Q, Li J, Jia S, Shan A. Anaerobic fermentation featuring wheat bran and rice bran realizes the clean transformation of Chinese cabbage waste into livestock feed. Front Microbiol 2023; 14:1108047. [PMID: 37032852 PMCID: PMC10079868 DOI: 10.3389/fmicb.2023.1108047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Rapid aerobic decomposition and a high cost/benefit ratio restrain the transformation of Chinese cabbage waste into livestock feed. Herein, anaerobically co-fermenting Chinese cabbage waste with wheat bran and rice bran at different dry matter levels (250, 300, 350 g/kg fresh weight) was employed to achieve the effective and feasible clean transformation of Chinese cabbage waste, and the related microbiological mechanisms were revealed by high-throughput sequencing technology. The bran treatments caused an increase in pH value (4.75-77.25%) and free amino acid content (12.09-152.66%), but a reduction in lactic acid concentration (54.58-77.25%) and coliform bacteria counts (15.91-20.27%). In addition, the wheat bran treatment improved the levels of short-chain fatty acids, nonprotein nitrogen, water-soluble carbohydrates and antioxidant activity and reduced the ammonia nitrogen contents. In contrast, the rice bran treatment decreased the levels of acetic acid, water-soluble carbohydrates, nonprotein nitrogen, ammonia nitrogen, and antioxidant activities. Microbiologically, the bran treatments stimulated Pediococcus, Lactobacillus, Enterobacter, and Weissella but inhibited Lactococcus and Leuconostoc, which were the primary organic acid producers reflected by the redundancy analysis. In addition, Chinese cabbage waste fermented with wheat bran at 350 g/kg fresh weight or with rice bran at 300 g/kg fresh weight increased the scale and complexity of bacteriome, promoted commensalism or mutualism and upregulated the global metabolism pathways, including carbohydrate and amino acid metabolisms. Furthermore, the bran treatments resulted in an increase in bacterial communities that were facultatively anaerobic, biofilm-formed, Gram-negative, potentially pathogenic and stress-tolerant. Collectively, the bran treatments inhibited effluent formation and protein degradation and improved nutrient preservation but reduced organic acid production during the anaerobic fermentation, which is linked to the variations in the bacteriome, indicating that the constructed fermentation system should be further optimized.
Collapse
|
11
|
Effect of Storage Period on the Fermentation Profile and Bacterial Community of Silage Prepared with Alfalfa, Whole-Plant Corn and Their Mixture. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the impact of storage time on the bacterial community and fermentation profile of silage prepared with alfalfa, whole-plant corn, and their mixture. Fresh alfalfa and whole-plant corn were chopped and combined in fresh weight ratios of 1:0 (alfalfa, control), 0.8:0.2 (M1), 0.6:0.4 (M2), and 0:1 (corn). Three silos of each treatment were analyzed after 30, 60, and 90 d of storage. With storage time, pH, acetic acid, propionic acid, butyric acid, and ammonia nitrogen levels increased in alfalfa silage (p < 0.01), whereas lactic acid level decreased (p < 0.01). Compared to alfalfa silage, M1, M2, and corn silages were better fermented and more stable during storage. The dominant bacteria in M1, M2, and corn silages shifted significantly from L. plantarum, L. buchneri, and L. brevis to L. acetotolerans and L. buchneri during 30 to 60–90 d of storage, and storage time decreased the bacterial diversity of these silages. In conclusion, storage time significantly decreased the fermentation quality of alfalfa silage and remarkably optimized the bacterial community structure of well-fermented M1, M2, and corn silages. Alfalfa should be ensiled with at least 20% whole-plant corn to improve silage fermentation quality and storage stability.
Collapse
|
12
|
The performance of lactic acid bacteria in silage production: a review of modern biotechnology for silage improvement. Microbiol Res 2022; 266:127212. [DOI: 10.1016/j.micres.2022.127212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
|
13
|
Nazar M, Xu L, Ullah MW, Moradian JM, Wang Y, Sethupathy S, Iqbal B, Nawaz MZ, Zhu D. Biological delignification of rice straw using laccase from Bacillus ligniniphilus L1 for bioethanol production: A clean approach for agro-biomass utilization. JOURNAL OF CLEANER PRODUCTION 2022; 360:132171. [DOI: 10.1016/j.jclepro.2022.132171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
14
|
Forwood DL, Holman DB, Chaves AV, Meale SJ. Unsalable Vegetables Ensiled With Sorghum Promote Heterofermentative Lactic Acid Bacteria and Improve in vitro Rumen Fermentation. Front Microbiol 2022; 13:835913. [PMID: 35633729 PMCID: PMC9133931 DOI: 10.3389/fmicb.2022.835913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
This study characterized the nutritive and microbial profiles and the fermentation characteristics of silage with the following compositions on a dry matter (DM) basis: (1) 100% sorghum, (2) 70% sorghum + 30% carrot or pumpkin, and (3) 40% sorghum + 60% carrot or pumpkin. The treatments were further divided based on the addition or no addition of a probiotic inoculant. After 70 days of ensiling, the silage was incubated for 48 h using the in vitro batch culture technique. Crude protein and non-fiber carbohydrates in the silage increased (P ≤ 0.01) by 5.7 percent point (pp) and 9.6 pp, respectively, with pumpkin at 60% DM. The V4 region of the 16S rRNA gene was sequenced to profile pre-ensiled and ensiled archeal and bacterial communities. Silages containing carrot or pumpkin strongly influenced the microbial structure (PERMANOVA: R2 = 0.75; P < 0.001), despite the ensiled treatments being dominated by Lactobacillus spp., except for the control, which was dominated by Weissella and Pediococcus spp. (P < 0.01). Linear discriminant analysis indicated that carrot and pumpkin silages were responsible for the increased relative abundance of Lactobacillus and Acinetobacter spp. (log LDA score ≥ 2), respectively. After 48 h of incubation, carrot and pumpkin inclusion increased (P < 0.01) the in vitro DM digestibility by 22.5 and 31.3%, increased the total volatile fatty acids (VFAs) by 16 and 20.6% (P < 0.01), respectively, and showed a tendency (P = 0.07) to increase the gas production. Therefore, this study supports the use of carrot or pumpkin in sorghum silages to maximize feed digestibility and total VFA concentrations.
Collapse
Affiliation(s)
- Daniel L. Forwood
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, Gatton, QLD, Australia
| | - Devin B. Holman
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Alex V. Chaves
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- *Correspondence: Alex V. Chaves,
| | - Sarah J. Meale
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, Gatton, QLD, Australia
- Sarah J. Meale,
| |
Collapse
|
15
|
Wali A, Hou J, Tsuruta T, Nishino N. Bacterial and fungal microbiota of total mixed ration silage stored at various temperatures. J Appl Microbiol 2022; 133:579-590. [PMID: 35437917 DOI: 10.1111/jam.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
AIMS To obtain insights into how bacterial and fungal microbiota and fermentation products composition are affected by storage temperature for TMR silage, which can be manufactured year-round. METHODS AND RESULTS TMR silage was stored at 10°C, 25°C, ambient temperature (AT; 20-35°C), and 40°C. Lactic acid production was delayed when stored at 10°C, and acid production stagnated after 2 weeks when stored at 40°C. The patterns of acetic acid and ethanol production were inversely related, with ethanol production promoted at 10°C and 25°C and acetic acid production promoted at AT and 40°C. The bacterial diversity was reduced in TMR silage with high lactic acid and acetic acid content, and the fungal diversity was reduced in TMR silage with high ethanol content. CONCLUSIONS The intensity of lactic acid production was accounted for by the high abundance of Lactobacillus, and its stagnated production at a substantially high storage temperature was related to an increased abundance of Bacillus. The enhanced production of acetic acid or ethanol can be explained by differences in the fungal microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY The integrated analysis of bacterial and fungal microbiota can provide in-depth insights into the impact of storage temperature on TMR silage fermentation.
Collapse
Affiliation(s)
- Ajmal Wali
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Jianjian Hou
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takeshi Tsuruta
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naoki Nishino
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
16
|
Wang Q, Wang R, Wang C, Dong W, Zhang Z, Zhao L, Zhang X. Effects of Cellulase and Lactobacillus plantarum on Fermentation Quality, Chemical Composition, and Microbial Community of Mixed Silage of Whole-Plant Corn and Peanut Vines. Appl Biochem Biotechnol 2022; 194:2465-2480. [PMID: 35132520 DOI: 10.1007/s12010-022-03821-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
Significant anaerobic fermentation occurs in silage through the action of anaerobic bacteria. The objective of this study was to evaluate the effects of cellulase and Lactobacillus plantarum on the fermentation quality and bacterial community of whole-plant corn and peanut vine mixed silage. Mixed silage was tested with no addition (CK), addition of Lactobacillus plantarum (LP), addition of cellulase (CE), and the simultaneous addition of Lactobacillus plantarum and cellulase (LPCE). LPCE samples exhibited decreased pH; decreased content of acetic acid, propionic acid, and butyric acid; and increased content of lactic acid. LP and LPCE had better effects on chemical composition than CK and CE, especially in decreasing acid detergent fiber and neutral detergent fiber content. High-throughput sequencing identified Lactobacillus, Klebsiella, Serratia, and Weissella as the main microorganisms. LP and CE increased the abundance of Acetobacter, and LPCE decreased the abundance of Acetobacter. All additives decreased the abundance of Weissella, Leuconostoc, and Lactococcus, and increased the abundance of Pantoea. Overall, simultaneous addition of cellulase and Lactobacillus plantarum helped to improve the quality of mixed silage of whole-plant corn and peanut vines.
Collapse
Affiliation(s)
- Qingdong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruixiang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyue Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenzhao Dong
- Henan Academy of Crops Molecular Breeding, Zhengzhou, 450003, China
| | - Zhongxin Zhang
- Henan Academy of Crops Molecular Breeding, Zhengzhou, 450003, China
| | - Linping Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyou Zhang
- Henan Academy of Crops Molecular Breeding, Zhengzhou, 450003, China.
| |
Collapse
|
17
|
Bai J, Franco M, Ding Z, Hao L, Ke W, Wang M, Xie D, Li Z, Zhang Y, Ai L, Guo X. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J Anim Sci Biotechnol 2022; 13:7. [PMID: 34991716 PMCID: PMC8739699 DOI: 10.1186/s40104-021-00649-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Bacillus amyloliquefaciens (BA) and Bacillus subtilis (BS) are usually used as feed supplements directly or bacterial inoculants in biological feeds for animals. However, few research have reported the effects of BA and BS on fermentation characteristics and bacterial community successions of whole-plant corn silage during ensiling. If the BA and BS inoculants have positive effects on silages, then they could not only improve fermentation characteristics, but also deliver BA or BS viable cells to ruminants, which would play its probiotic effect. Therefore, the objectives of this study were to investigate the effects of BA and BS on the fermentation, chemical characteristics, bacterial community and their metabolic pathway of whole-plant corn silage. Results Freshly chopped whole-plant corn was inoculated without or with BA and BS, respectively, and ensiled for 1, 3, 7, 14 and 60 d. Results showed that BA and BS inoculations increased lactic acid concentrations of whole-plant corn silages compared with control, and BA inoculation decreased acetic acid concentrations, whereas BS inoculation decreased fiber contents and increased crude protein (CP) content. Higher water-soluble carbohydrate contents and lower starch contents were observed in BA- and BS-inoculated silages compared with that in control. The decreased CP content and increased non-protein nitrogen content were observed in BA-inoculated silage, which was consistent with the higher amino acid metabolism abundances observed in BA-inoculated silage. In addition, it was noteworthy that BA and BS inoculations increased the metabolism of cofactors and vitamins, and decreased the relative abundances of drug resistance: antimicrobial pathways. We also found that the bacterial metabolism pathways were clearly separated into three clusters based on the ensiling times of whole-plant corn silage in the present study. There were no significant differences in bacterial community compositions among the three groups during ensiling. However, BA and BS inoculations decreased the relative abundances of undesirable bacteria such as Acetobacter and Acinetobacter. Conclusion Our findings suggested that the BS strain was more suitable as silage inoculants than the BA strain in whole-plant corn silage in this study.
Collapse
Affiliation(s)
- Jie Bai
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Marcia Franco
- Production systems, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - Zitong Ding
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Lin Hao
- School of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Wencan Ke
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Musen Wang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Dongmei Xie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Ziqian Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Yixin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Lin Ai
- China Animal Agriculture Association, Beijing, 100044, China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China. .,Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Lu Q, Wang Z, Sa D, Hou M, Ge G, Wang Z, Jia Y. The Potential Effects on Microbiota and Silage Fermentation of Alfalfa Under Salt Stress. Front Microbiol 2021; 12:688695. [PMID: 34707575 PMCID: PMC8544858 DOI: 10.3389/fmicb.2021.688695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
This study investigated the fermentation quality of alfalfa grown in different salt stress regions in China. Following the production of silage from the natural fermentation of alfalfa, the interplay between the chemical composition, fermentation characteristics, and microbiome was examined to understand the influence of these factors on the fermentation quality of silage. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1%0 (CK); (b) 1–2%0 (LS); (c) 2–3%0 (MS); (d) 3–4%0 (HS). The pH of the silage was high (4.9–5.3), and lactic acid content was high (26.3–51.0 g/kg DM). As the salt stress increases, the NA+ of the silages was higher (2.2–5.4 g/kg DM). The bacterial alpha diversities of the alfalfa silages were distinct. There was a predominance of desirable genera including Lactococcus and Lactobacillus in silage produced from alfalfa under salt stress, and this led to better fermentation quality. The chemical composition and fermentation characteristics of the silage were closely correlated with the composition of the bacterial community. Furthermore, NA+ was found to significantly influence the microbiome of the silage. The results confirmed that salt stress has a great impact on the quality and bacterial community of fresh alfalfa and silage. The salt stress and plant ions were thus most responsible for their different fermentation modes in alfalfa silage. The results of the study indicate that exogenous epiphytic microbiota of alfalfa under salt stress could be used as a potential bioresource to improve the fermentation quality.
Collapse
Affiliation(s)
- Qiang Lu
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhen Wang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Meiling Hou
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, China
| | - Gentu Ge
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - ZhiJun Wang
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yushan Jia
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
19
|
Separating the effects of chemical and microbial factors on fermentation quality and bacterial community of Napier grass silage by using gamma-ray irradiation and epiphytic microbiota transplantation. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Wang S, Li J, Zhao J, Dong Z, Dong D, Shao T. Effect of epiphytic microbiota from napiergrass and Sudan grass on fermentation characteristics and bacterial community in oat silage. J Appl Microbiol 2021; 132:919-932. [PMID: 34496101 DOI: 10.1111/jam.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the effects of epiphytic microbiota from napiergrass and Sudan grass on ensiling characteristics and microbial community of oat silage. METHODS AND RESULTS By γ-ray irradiation sterilization and microbiota transplantation technology, the sterilized oat was inoculated as follows: (a) aseptic water (STOT), (b) epiphytic bacteria on oat (OTOT), (c) epiphytic bacteria on napiergrass (OTNP) and (d) epiphytic bacteria on Sudan grass (OTSD). STOT remained in the unfermented state based on similar chemical components with fresh oat. Compared with OTOT and OTSD, higher lactic acid content and ratio of lactic acid to acetic acid, and lower pH, acetic acid and ammonia nitrogen contents were observed in OTNP after 60 days of ensiling. At the late stage, Lactobacillus was the most predominant in each group. Lactococcus was eventually replaced by Lactobacillus in OTSD, whereas Lactococcus was found throughout the whole ensiling process in OTNP. Higher abundance of Weissella was observed in OTSD at the early and late stages. The result of co-occurrence network analysis proved that Lactococcus was pivotal in determining the silage fermentation pattern during ensiling. According to the 16S rRNA gene-predicted functional profiles, the inoculation of epiphytic microbiota from oat enhanced the metabolism of amino acids, whereas the inoculation of epiphytic microbiota from napiergrass and Sudan grass accelerated the carbohydrate metabolism. CONCLUSIONS The epiphytic microbiota on napiergrass promoted a homo-fermentative process, whereas the epiphytic microbiota on oat and Sudan grass facilitated a hetero-fermentative pattern in oat silage, which was closely related to the abundance and metabolism of Lactococcus, Weissella and Lactobacillus. SIGNIFICANCE AND IMPACT OF THE STUDY The exogenous microorganisms that promote the carbohydrate metabolism and inhibit the metabolism of amino acids could be a good potential source to improve the silage quality of temperate grass.
Collapse
Affiliation(s)
- Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Dong Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Sun R, Yuan X, Li J, Tao X, Dong Z, Shao T. Contributions of epiphytic microbiota on the fermentation characteristics and microbial composition of ensiled six whole crop corn varieties. J Appl Microbiol 2021; 131:1683-1694. [PMID: 33710709 DOI: 10.1111/jam.15064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
AIMS The present study is aimed to reveal the variations in epiphytic microbial composition among six whole crop corn (WCC) varieties and their contributions on ensiling characteristics and microbial composition of WCC silage. METHODS AND RESULTS Six WCC varieties (JS06, YS23, BS20, JS39, JS40 and JS26) were ensiled for 90 days. All WCC varieties were well fermented with low pH value (<4·0) and high LA (73·6-124 g kg-1 DM, dry matter) concentration. Of six varieties, JS40 had the highest LA (124 g kg-1 DM) concentration, which was supported by highest relative abundance of Lactobacillus. Pantoea was the most dominant epiphytic bacteria in all fresh WCC varieties; however, the secondary dominant genera among six WCC were absolutely difference. Lactobacillus became predominant genus in 90-day silages except YS23. YS23 kept the more bacterial genus from fresh to 90-day silages than other silages, meanwhile Acinetobacter and Enterobacter were the dominant bacteria in YS23 silages. CONCLUSIONS Among six WCC varieties, JS40 silage had the highest LA. The variations in epiphytic microbiomes among fresh WCC affected terminal microbial community of 90-day silages. There were differences in fermentation characteristics among six WCC varieties, which might be partly attributed to variations in epiphytic microbiomes among fresh WCC. SIGNIFICANCE AND IMPACT OF THE STUDY The study not only enriches the research on microbial communities of plant phyllosphere but also provides theoretical basis for selecting WCC varieties and inoculants for the forage production.
Collapse
Affiliation(s)
- R Sun
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - X Yuan
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - J Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - X Tao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Z Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - T Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Wali A, Nishino N. Bacterial and Fungal Microbiota Associated with the Ensiling of Wet Soybean Curd Residue under Prompt and Delayed Sealing Conditions. Microorganisms 2020; 8:microorganisms8091334. [PMID: 32882970 PMCID: PMC7563423 DOI: 10.3390/microorganisms8091334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/27/2022] Open
Abstract
Wet soybean curd residue (SCR) obtained from two tofu factories (F1 and F2) was anaerobically stored with or without added beet pulp (BP). Sealing was performed on the day of tofu production (prompt sealing (PS)) or 2 days after SCR was piled and unprocessed (delayed sealing (DS)). Predominant lactic acid fermentation was observed regardless of the sealing time and BP addition. Acinetobacter spp. were the most abundant (>67%) bacteria in pre-ensiled SCR, regardless of the factory and sealing time. In PS silage, the abundances of typical lactic acid-producing bacteria, such as Lactobacillus, Pediococcus, and Streptococcus spp. reached >50%. In DS silage, Acinetobacter spp. were the most abundant in F1 products, whereas Bacillus spp. were the most abundant in long-stored F2 products. The fungal microbiota were highly diverse. Although Candida, Aspergillus, Cladosporium, Hannaella, and Wallemia spp. were found to be the most abundant fungal microbiota, no specific genera were associated with factory, sealing time, or fermentation products. These results indicated that owing to preceding processing, including heating, distinctive microbiota may have participated in the ensiling of wet by-products. Lactic acid fermentation was observed even in DS silage, and an association of Bacillus spp. was suggested.
Collapse
|
23
|
Yang X, Hu W, Xiu Z, Jiang A, Yang X, Saren G, Ji Y, Guan Y, Feng K. Microbial Community Dynamics and Metabolome Changes During Spontaneous Fermentation of Northeast Sauerkraut From Different Households. Front Microbiol 2020; 11:1878. [PMID: 32849461 PMCID: PMC7419431 DOI: 10.3389/fmicb.2020.01878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Sauerkraut, one of the most popular traditional fermented vegetable foods in northern China, has been widely consumed for thousands of years. In this study, the physicochemical characteristics, microbial composition and succession, and metabolome profile were elucidated during the fermentation of traditional northeast sauerkraut sampled from different households. The microbial community structure as determined by high-throughput sequencing (HTS) technology demonstrated that Firmicutes and Proteobacteria were the predominant phyla and Weissella was the most abundant genus in all samples. Except for Weissella, higher relative abundance of Clostridium was observed in #1 sauerkraut, Clostridium and Enterobacter in #2 sauerkraut, and Lactobacillus in #3 sauerkraut, respectively. Meanwhile, Principal component analysis (PCA) revealed significant variances in the volatilome profile among different homemade sauerkraut. Acids and lactones were dominant in the #1 sauerkraut. The #2 sauerkraut had significantly higher contents of alcohols, aldehydes, esters, sulfides, and free amino acids (FAAs). In comparison, higher contents of terpenes and nitriles were found in the #3 sauerkraut. Furthermore, the potential correlations between the microbiota and volatilome profile were explored based on Spearman’s correlation analysis. Positive correlations were found between Clostridium, Enterobacter, Lactobacillus, Leuconostoc, Weissella and most volatile compounds. Pseudomonas, Chloroplast, Rhizobium, Aureimonas, and Sphingomonas were negatively correlated with volatile compounds in sauerkraut. This study provided a comprehensive picture of the dynamics of microbiota and metabolites profile during the fermentation of different homemade northeast sauerkraut. The elucidation of correlation between microbiota and volatile compounds is helpful for guiding future improvement of the fermentation process and manufacturing high-quality sauerkraut.
Collapse
Affiliation(s)
- Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Xiangyan Yang
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Gaowa Saren
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| |
Collapse
|