1
|
Azarakhsh FAS, Ziloue H, Ebrahimian F, Khoshnevisan B, Denayer JFM, Karimi K. Life cycle analysis of apple pomace biorefining for biofuel and pectin production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175780. [PMID: 39187078 DOI: 10.1016/j.scitotenv.2024.175780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
This study investigated the environmental impacts associated with converting apple pomace, a globally abundant resource, into biofuels and high-value products using a comparative consequential life cycle assessment. In three developed scenarios, an acid pretreatment method was applied and the pretreated liquid was used for ethanol and pectin production. The pretreated solids were utilized to produce different products: scenario 1 produced biogas, scenario 2 generated butanol, and scenario 3 yielded both biogas and butanol from the solids. The results demonstrated that scenario 1 exhibited the best performance compared to the other two scenarios, imposing the lowest environmental burdens across all damage categories, including human health, ecosystems, and resources. Despite the induced impacts, the benefits of avoided products, i.e., ethanol, natural gas, butanol, acetone, and pectin, compensated for these induced environmental impacts to some extent. The results also revealed that among all products generated through the biorefineries, first-generation ethanol substitution had the most significant positive environmental impacts. Overall, the biorefinery developed in scenario 1 represents the most feasible strategy for a circular bioeconomy. It performs 84.38 % and 72.98 % better than scenarios 2 and 3 in terms of human health, 85.34 % and 74.54 % better in terms of ecosystems, and more than 100 % better in terms of resources. Conversely, scenario 2 resulted in the highest net impacts across all damage categories. Furthermore, in scenario 1, the midpoint results showed 83.10 % and 71.08 % lower impacts on global warming, 85.15 % and 74.17 % lower impacts on terrestrial acidification, and 99.26 % and 98.53 % lower impacts on fossil resource scarcity compared to scenarios 2 and 3, respectively. In conclusion, the first scenario shows promise for the sustainable valorization of apple pomace.
Collapse
Affiliation(s)
| | - Hamid Ziloue
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farinaz Ebrahimian
- Future Energy Center, School of Business, Society and Engineering, Mälardalen University, Västerås, Sweden
| | | | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
2
|
Nabila DS, Chan R, Syamsuri RRP, Nurlilasari P, Wan-Mohtar WAAQI, Ozturk AB, Rossiana N, Doni F. Biobutanol production from underutilized substrates using Clostridium: Unlocking untapped potential for sustainable energy development. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100250. [PMID: 38974669 PMCID: PMC11225672 DOI: 10.1016/j.crmicr.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
The increasing demand for sustainable energy has brought biobutanol as a potential substitute for fossil fuels. The Clostridium genus is deemed essential for biobutanol synthesis due to its capability to utilize various substrates. However, challenges in maintaining fermentation continuity and achieving commercialization persist due to existing barriers, including butanol toxicity to Clostridium, low substrate utilization rates, and high production costs. Proper substrate selection significantly impacts fermentation efficiency, final product quality, and economic feasibility in Clostridium biobutanol production. This review examines underutilized substrates for biobutanol production by Clostridium, which offer opportunities for environmental sustainability and a green economy. Extensive research on Clostridium, focusing on strain development and genetic engineering, is essential to enhance biobutanol production. Additionally, critical suggestions for optimizing substrate selection to enhance Clostridium biobutanol production efficiency are also provided in this review. In the future, cost reduction and advancements in biotechnology may make biobutanol a viable alternative to fossil fuels.
Collapse
Affiliation(s)
- Devina Syifa Nabila
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Rosamond Chan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | | | - Puspita Nurlilasari
- Department of Agro-industrial Technology, Faculty of Agro-industrial Technology, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdullah Bilal Ozturk
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul 34220, Türkiye
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| |
Collapse
|
3
|
Xiong J, Zhang S, Ke L, Wu Q, Zhang Q, Cui X, Dai A, Xu C, Cobb K, Liu Y, Ruan R, Wang Y. Research progress on pyrolysis of nitrogen-containing biomass for fuels, materials, and chemicals production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162214. [PMID: 36796688 DOI: 10.1016/j.scitotenv.2023.162214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Pyrolysis of nitrogen-containing biomass holds tremendous potential for producing varieties of high value-added products, alleviating energy depletion. Based on the research status about nitrogen-containing biomass pyrolysis, the effect of biomass feedstock composition on pyrolysis products is first introduced from the aspects of elemental analysis, proximate analysis, and biochemical composition. The properties of biomass with high and low nitrogen used in pyrolysis are briefly summarized. Then, with the pyrolysis of nitrogen-containing biomass as the core, biofuel characteristics, nitrogen migration during pyrolysis, the application prospects, unique advantages of nitrogen-doped carbon materials for catalysis, adsorption and energy storage are introduced, as well as their feasibility in producing nitrogen-containing chemicals (acetonitrile and nitrogen heterocyclic) are reviewed. The future outlook for the application of the pyrolysis of nitrogen-containing biomass, specifically, how to realize the denitrification and upgrading of bio-oil, performance improvement of nitrogen-doped carbon materials, as well as separation and purification of nitrogen-containing chemicals, are addressed.
Collapse
Affiliation(s)
- Jianyun Xiong
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Shumei Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Linyao Ke
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Anqi Dai
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Chuangxin Xu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Kirk Cobb
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN, United States of America
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN, United States of America
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
The Preparation Processes and Influencing Factors of Biofuel Production from Kitchen Waste. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Kitchen waste is an important component of domestic waste, and it is both harmful and rich in resources. Approximately 1.3 billion tons of kitchen waste are produced every year worldwide. Kitchen waste is high in moisture, is readily decayed, and has an unpleasant smell. Environmental pollution can be caused if this waste is treated improperly. Conventional treatments of kitchen waste (e.g., landfilling, incineration and pulverization discharge) cause environmental, economic, and social problems. Therefore, the development of a harmless and resource-based treatment technology is urgently needed. Profits can be generated from kitchen waste by converting it into biofuels. This review intends to highlight the latest technological progress in the preparation of gaseous fuels, such as biogas, biohythane and biohydrogen, and liquid fuels, such as biodiesel, bioethanol, biobutanol and bio-oil, from kitchen waste. Additionally, the pretreatment methods, preparation processes, influencing factors and improvement strategies of biofuel production from kitchen waste are summarized. Problems that are encountered in the preparation of biofuels from kitchen waste are discussed to provide a reference for its use in energy utilization. Optimizing the preparation process of biofuels, increasing the efficiency and service life of catalysts for reaction, reasonably treating and utilizing the by-products and reaction residues to eliminate secondary pollution, improving the yield of biofuels, and reducing the cost of biofuels, are the future directions in the biofuel conversion of kitchen waste.
Collapse
|
5
|
Ebrahimian F, Denayer JFM, Mohammadi A, Khoshnevisan B, Karimi K. A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. BIORESOURCE TECHNOLOGY 2023; 368:128316. [PMID: 36375700 DOI: 10.1016/j.biortech.2022.128316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The organic fraction of municipal solid waste (OFMSW) is a widely-available promising feedstock for biofuel production. However, the presence of different inhibitors originating from fruit and food/beverage wastes as well as recalcitrant lignocellulosic fractions hampers its bioconversion. This necessitates a pretreatment to augment the biodigestibility and fermentability of OFMSW. Hence, this review aims to provide the in-vogue inhibitory compound removal and pretreatment techniques that have been employed for efficient OFMSW conversion into biofuels, i.e., hydrogen, biogas, ethanol, and butanol. The techniques are compared concerning their mode of action, chemical and energy consumption, inhibitor formation and removal, economic feasibility, and environmental sustainability. This critique also reviews the existing knowledge gap and future perspectives for efficient OFMSW valorization. The insights provided pave the way toward developing energy-resilient cities while addressing environmental crises related to generating OFMSW.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, Denmark
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
6
|
Manna MS, Mazumder A, Bhowmick TK, Gayen K. Economic analysis of biobutanol recovery from the acetone-butanol-ethanol fermentation using molasses. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Re A, Mazzoli R. Current progress on engineering microbial strains and consortia for production of cellulosic butanol through consolidated bioprocessing. Microb Biotechnol 2022; 16:238-261. [PMID: 36168663 PMCID: PMC9871528 DOI: 10.1111/1751-7915.14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone-butanol-ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes. The development of consolidated processing (i.e., single-pot fermentation) can dramatically reduce lignocellulose fermentation costs and promote its industrial application. Here, strategies for developing microbial strains and consortia that feature both efficient (hemi)cellulose depolymerization and butanol production will be depicted, that is, rational metabolic engineering of native (hemi)cellulolytic or native butanol-producing or other suitable microorganisms; protoplast fusion of (hemi)cellulolytic and butanol-producing strains; and co-culture of (hemi)cellulolytic and butanol-producing microbes. Irrespective of the fermentation feedstock, biobutanol production is inherently limited by the severe toxicity of this solvent that challenges process economic viability. Hence, an overview of strategies for developing butanol hypertolerant strains will be provided.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTorinoItaly,Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| |
Collapse
|
8
|
Technoeconomic analysis and environmental sustainability estimation of bioalcohol production from barley straw. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Wang C, Zou F, Yap JBH, Tang R, Li H. Geographic information system and system dynamics combination technique for municipal solid waste treatment station site selection. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:457. [PMID: 35612675 DOI: 10.1007/s10661-022-10077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of municipal solid waste put pressure on the end treatment facilities, and the site selection of MSW treatment facilities needs to be carefully conducted. This study aims to develop a Standard Operational Procedures (SOP) for municipal solid waste (MSW) treatment station site selection based on GIS and system dynamics combination. System dynamics was used to establish a forecasting model for MSW simulation followed by the spatial analysis method to generate a geographic information system. The MSW simulation in Xiamen city using the system dynamics model proved that the model was with high prediction accuracy. An SOP for GIS-based MSW treatment station site selection was developed. The site selection for MSW comprehensive treatment in Xiamen using GIS and system dynamics screened the locations of the comprehensive solid waste treatment stations in Xiamen and eliminated unsuitable lands using the mapping function of the geographic information system, thus validating the SOP.
Collapse
Affiliation(s)
- Chen Wang
- Higher-Educational Engineering Research Centre for Intelligence and Automation in Construction of Fujian Province, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Fengqiu Zou
- Higher-Educational Engineering Research Centre for Intelligence and Automation in Construction of Fujian Province, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Jeffrey Boon Hui Yap
- Department of Surveying, Faculty of Engineering and Science, Lee Kong Chian, Universiti Tunku Abdul Rahman (UTAR), 43000, Kajang, Selangor, Malaysia
| | - Rui Tang
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Heng Li
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
10
|
Zhang X, Liu C, Chen Y, Zheng G, Chen Y. Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2022; 24:11471-11513. [PMID: 34776765 PMCID: PMC8579419 DOI: 10.1007/s10668-021-01932-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/25/2021] [Indexed: 05/19/2023]
Abstract
Waste sorting is an effective means of enhancing resource or energy recovery from municipal solid waste (MSW). Waste sorting management system is not limited to source separation, but also involves at least three stages, i.e., collection and transportation (C&T), pretreatment, and resource utilization. This review focuses on the whole process of MSW management strategy based on the waste sorting perspective. Firstly, as the sources of MSW play an essential role in the means of subsequent valorization, the factors affecting the generation of MSW and its prediction methods are introduced. Secondly, a detailed comparison of approaches to source separation across countries is presented. Constructing a top-down management system and incentivizing or constraining residents' sorting behavior from the bottom up is believed to be a practical approach to promote source separation. Then, the current state of C&T techniques and its network optimization are reviewed, facilitated by artificial intelligence (AI) and the Internet of Things technologies. Furthermore, the advances in pretreatment strategies for enhanced sorting and resource recovery are introduced briefly. Finally, appropriate methods to valorize different MSW are proposed. It is worth noting that new technologies, such as AI, show high application potential in waste management. The sharing of (intermediate) products or energy of varying processing units will inject vitality into the waste management network and achieve sustainable development.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Yuexi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| |
Collapse
|
11
|
Li G, Ma S, Xue X, Yang S, Liu F, Zhang Y. Life cycle water footprint analysis for second-generation biobutanol. BIORESOURCE TECHNOLOGY 2021; 333:125203. [PMID: 33901910 DOI: 10.1016/j.biortech.2021.125203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Water is essential in conversion of crop to bioenergy. Therefore, it is important to carefully evaluate the impact of bioenergy technology on water source. Life cycle water footprints of biobutanol from wheat straw, corn grain and corn stover are analyzed in this study according to the characteristics of crop growing and climate conditions. The results show that life cycle water footprints of biobutanol from wheat straw, corn grain and corn stover are 271, 108 and 240 L H2O/MJ biobutanol, respectively. Life cycle water footprints of the crop production stage for wheat straw, corn grain and corn stover are 269.89, 107.84 and 238.95 L H2O/MJ biobutanol, respectively. Owing to the use of fertilizer in the crop production stage, gray water footprint of wheat straw, corn grain and corn stover accounts for 91.08%, 86.65% and 86.40% of the life cycle water footprint, respectively.
Collapse
Affiliation(s)
- Guang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China.
| | - Shuqi Ma
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Xiaoxiao Xue
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Shicheng Yang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Fan Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| |
Collapse
|
12
|
Yaashikaa PR, Kumar PS, Saravanan A, Varjani S, Ramamurthy R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141312. [PMID: 32814288 DOI: 10.1016/j.scitotenv.2020.141312] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste management is one of the major issues throughout the world. Inappropriate management of municipal solid waste (MSW) can pose a major hazard. Anaerobic processing of MSW followed by methane and biogas generation is one of the numerous sustainable energy source options. Compared with other technologies applicable for the treatment of MSW, factors like economic aspects, energy savings, and ecological advantages make anaerobic processing an attractive choice. This review discusses the framework for evaluating conversion of municipal solid waste to energy and waste derived bioeconomy in order to address the sustainable development goals. Further, this review will provide an innovative work foundation to improve the accuracy of structuring, quality control, and pre-treatment for the ideal treatment of different segments of MSW to achieve a sustainable circular bioeconomy. The increasing advancements in three essential conversion pathways, in particular the thermochemical, biochemical, and physiochemical conversion methods, are assessed. Generation of wastes should be limited and resource utilization must be minimised to make total progress in a circular bioeconomy.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India; SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602 105, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Racchana Ramamurthy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, PO Box 3015, 2601, DA, Delft, the Netherlands
| |
Collapse
|
13
|
Lee DJ, Lu JS, Chang JS. Pyrolysis synergy of municipal solid waste (MSW): A review. BIORESOURCE TECHNOLOGY 2020; 318:123912. [PMID: 32741699 DOI: 10.1016/j.biortech.2020.123912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The synergistic pyrolysis of municipal solid waste (MSW) were recently explored. This review aims to provide an overview on the synergistic pyrolysis studies of MSW, focusing on the synergy occurred during co-pyrolysis of different constituents of MSW. The interactions of intermediates released during pyrolysis can shift end product distributions, accelerate pyrolysis rates, and preferred production of specific compounds, which were categorized into four basic types with discussions. The pyrolysis synergy is proposed to be the key for success of pyrolytic practice of MSW that can handle the waste with maximal resource recovery and minimal carbon emission.
Collapse
Affiliation(s)
- Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; College of Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Jia-Shun Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan
| |
Collapse
|
14
|
Li G, Chang Y, Chen L, Liu F, Ma S, Wang F, Zhang Y. Process design and economic assessment of butanol production from lignocellulosic biomass via chemical looping gasification. BIORESOURCE TECHNOLOGY 2020; 316:123906. [PMID: 32739580 DOI: 10.1016/j.biortech.2020.123906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023]
Abstract
Biomass chemical looping gasification (BCLG) is a promising gasification technology to convert biomass into synthesis gas with no need for molecular oxygen. In this study, a novel process for butanol production from lignocellulosic biomass based on BCLG is proposed. The proposed process is simulated using Aspen Plus and composed of main sub-processes such as BCLG, acid gas removal, synthesis and separation of alcohol. An economic assessment is conducted according to results of Aspen Plus model. The equipment cost for the proposed process is evaluated as 4.65 × 108 CNY and the minimum butanol selling price is estimated as 9.35 CNY/kg. Sensitivity analysis of the process indicates that pine sawdust price has the largest effect on the minimum butanol selling price followed by total equipment cost and plant lifetime. Finally, impacts of CO conversion and carbon tax on the minimum butanol selling price are explored.
Collapse
Affiliation(s)
- Guang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China.
| | - Yuxue Chang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Lei Chen
- College of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, People's Republic of China
| | - Fan Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Shuqi Ma
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Feng Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| |
Collapse
|
15
|
Lu JS, Chang Y, Poon CS, Lee DJ. Slow pyrolysis of municipal solid waste (MSW): A review. BIORESOURCE TECHNOLOGY 2020; 312:123615. [PMID: 32517890 DOI: 10.1016/j.biortech.2020.123615] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
In recent years, extensive studies have been carried out to improve our knowledge of the reactor operations and system performance in thermal pyrolysis of municipal solid wastes (MSW). However, the fundamentals of MSW pyrolysis and their engineering applications remain unsatisfactorily explored. This paper is a review of the pyrolysis of MSW and synergistic co-pyrolysis of the constituents of MSW with reference to pyrolytic performance, the distribution and energy content of the end products, and the mechanisms of the synergistic effects. The prospects for, and challenges of, the MSW pyrolysis process are provided. A MSW pyrolytic process with maximal energy recovery and minimal carbon footprint is proposed.
Collapse
Affiliation(s)
- Jia-Shun Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yingju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|