1
|
Wang QR, Hong Y, Li LH. Insights into differences between spore-assisted and pellet-assisted microalgae harvesting using a highly efficient fungus: Efficiency, high-value substances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162945. [PMID: 36934945 DOI: 10.1016/j.scitotenv.2023.162945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
To achieve efficient and low-cost microalgae harvesting, investigations were conducted on the harvesting efficiency and potential mechanisms of Chlorella sp. HQ by filamentous fungi using two strategies, fungal spore-assisted harvesting (FSH) and fungal pellet-assisted harvesting (FPH). Five of the 19 fungal species isolated from domestic sewage could form pellets, and Aspergillus niger HW8-1 comprised the highest harvesting efficiencies of 99.17 % and 88.70 % for FPH and FSH, respectively. FSH had 2-3 times more lipids and polysaccharides in fungus-alga pellets and caused richer saturated and monounsaturated fatty acids compared with FPH. Moreover, by optimizing the microalgae preculture time, glucose concentration, and microalgae initial density, the contents of high-value substances, such as lipids, polysaccharides, and proteins of fungus-alga pellets after FPH were improved from 5.96 %, 5.67 %, and 7.27 % to 20.18 %, 24.34 % and 10.48 %, respectively. Furthermore, fungal pellets secreted more extracellular polymeric substances (EPS) during FPH than those by FSH, which could chemisorb algal cells by lowering the surface potential of fungal pellets. FPH caused algal cells to cover the outside, which increased the light exposure area of algae, thereby increasing the photosynthesis rate, whereas FSH mainly captured microalgae physically through mycelium entanglement.
Collapse
Affiliation(s)
- Qian-Ru Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Li-Hua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Marangon BB, Magalhães IB, Pereira ASAP, Silva TA, Gama RCN, Ferreira J, Castro JS, Assis LR, Lorentz JF, Calijuri ML. Emerging microalgae-based biofuels: Technology, life-cycle and scale-up. CHEMOSPHERE 2023; 326:138447. [PMID: 36940833 DOI: 10.1016/j.chemosphere.2023.138447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Microalgae biomass is a versatile feedstock with a variable composition that can be submitted to several conversion routes. Considering the increasing energy demand and the context of third-generation biofuels, algae can fulfill the increasing global demand for energy with the additional benefit of environmental impact mitigation. While biodiesel and biogas are widely consolidated and reviewed, emerging algal-based biofuels such as biohydrogen, biokerosene, and biomethane are cutting-edge technologies in earlier stages of development. In this context, the present study covers their theoretical and practical conversion technologies, environmental hotspots, and cost-effectiveness. Scaling-up considerations are also addressed, mainly through Life Cycle Assessment results and interpretation. Discussions on the current literature for each biofuel directs researchers towards challenges such as optimized pretreatment methods for biohydrogen and optimized catalyst for biokerosene, besides encouraging pilot and industrial scale studies for all biofuels. While presenting studies for larger scales, biomethane still needs continuous operation results to consolidate the technology further. Additionally, environmental improvements on all three routes are discussed in light of life-cycle models, highlighting the ample research opportunities on wastewater-grown microalgae biomass.
Collapse
Affiliation(s)
- B B Marangon
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - I B Magalhães
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - A S A P Pereira
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - T A Silva
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - R C N Gama
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - J Ferreira
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - J S Castro
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - L R Assis
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - J F Lorentz
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - M L Calijuri
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
3
|
Kumar R, Basu A, Bishayee B, Chatterjee RP, Behera M, Ang WL, Pal P, Shah M, Tripathy SK, Ambika S, Janani VA, Chakrabortty S, Nayak J, Jeon BH. Management of tannery waste effluents towards the reclamation of clean water using an integrated membrane system: A state-of-the-art review. ENVIRONMENTAL RESEARCH 2023; 229:115881. [PMID: 37084947 DOI: 10.1016/j.envres.2023.115881] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Tanning and other leather processing methods utilize a large amount of freshwater, dyes, chemicals, and salts and produce toxic waste, raising questions regarding their environmental sensitivity and eco-friendly nature. Total suspended solids, total dissolved solids, chemical oxygen demand, and ions such as chromium, sulfate, and chloride turn tannery wastewater exceedingly toxic for any living species. Therefore, it is imperative to treat tannery effluent, and existing plants must be examined and upgraded to keep up with recent technological developments. Different conventional techniques to treat tannery wastewater have been reported based on their pollutant removal efficiencies, advantages, and disadvantages. Research on photo-assisted catalyst-enhanced deterioration has inferred that both homogeneous and heterogeneous catalysis can be established as green initiatives, the latter being more efficient at degrading organic pollutants. However, the scientific community experiences significant problems developing a feasible treatment technique owing to the long degradation times and low removal efficiency. Hence, there is a chance for an improved solution to the problem of treating tannery wastewater through the development of a hybrid technology that uses flocculation as the primary treatment, a unique integrated photo-catalyst in a precision-designed reactor as the secondary method, and finally, membrane-based tertiary treatment to recover the spent catalyst and reclaimable water. This review gives an understanding of the progressive advancement of a cutting-edge membrane-based system for the management of tanning industrial waste effluents towards the reclamation of clean water. Adaptable routes toward sludge disposal and the reviews on techno-economic assessments have been shown in detail, strengthening the scale-up confidence for implementing such innovative hybrid systems.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Aradhana Basu
- School of Sustainability, XIM University, Bhubaneswar, 752050, India
| | - Bhaskar Bishayee
- EEG Lab, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, West Bengal, India
| | - Rishya Prava Chatterjee
- EEG Lab, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, West Bengal, India
| | - Meeraambika Behera
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Parimal Pal
- Department of Chemical Engineering, NIT Durgapur, M.G Avenue, Durgapur, 713209, India
| | - Maulin Shah
- Environmental Microbiology Lab, Ankelswar, Gujarat, India
| | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Selvaraj Ambika
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India
| | - V Aruna Janani
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamil Nadu, 626126, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Jayato Nayak
- Center for Life Science, Mahindra University, Hyderabad, India.
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Mukhopadhyay S, Jana A, Ghosh S, Majumdar S, Ghosh TK. Arthrospira sp. mediated bioremediation of gray water in ceramic membrane based photobioreactor: process optimization by response surface methodology. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1364-1375. [PMID: 35075966 DOI: 10.1080/15226514.2022.2027865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct discharge of raw domestic sewage enriched with nitrogenous and phosphorous compounds into the water bodies causes eutrophication and other environmental hazards with detrimental impacts on public and ecosystem health. The present study focuses on phycoremediation of gray water with Arthrospira sp. using an innovative hydrophobic ceramic membrane-based photobioreactor system integrated with CO2 biofixation and biodiesel production, aiming for green technology development. Surfactant and oil-rich gray water collected from the domestic kitchen was used wherein, chloride, sulfate, and surfactant concentrations were statistically optimized using response surface methodology (RSM), considering maximum microalgal growth rate as a response for the design. Ideal concentrations (mg/L) of working parameters were found to be 7.91 (sulfate), 880.49 (chloride), and 144.02 (surfactant), respectively to achieve optimum growth rate of 0.43 gdwt/L/day. Enhancement of growth rate of targeted microalgae by 150% with suitable CO2 (19.5%) supply and illumination in the photobioreactor affirms its efficient operation. Additionally, harvested microalgal biomass obtained from the process showed a biodiesel content of around 5.33% (dry weight). The microalgal treatment enabled about 96.82, 87.5, and 99.8% reductions in BOD, COD, and TOC, respectively, indicating the potential of the process in pollutant assimilation and recycling of such wastewater along with value-added product generation.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Animesh Jana
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Sourja Ghosh
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Swachchha Majumdar
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Tapan Kumar Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| |
Collapse
|
5
|
Mubashar M, Ahmad Z, Li C, Zhang H, Xu C, Wang G, Qiu D, Song L, Zhang X. Carbon-negative and high-rate nutrient removal using mixotrophic microalgae. BIORESOURCE TECHNOLOGY 2021; 340:125731. [PMID: 34426243 DOI: 10.1016/j.biortech.2021.125731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Mixotrophic microalgae have demonstrated great potential for wastewater nutrient removal. How autotrophy/heterotrophy shares affect nutrient removal as well as carbon budget has not been understood. In this study, the autotrophy/heterotrophy shares in mixotrophy were quantified, and N removal rate and carbon budget under different mixotrophic autotrophy/heterotrophy shares were modeled. The results showed that mixotrophic N removal rate reached 2.09 mg L-1h-1, which was 53.18% and 37.98% higher than removal rates in autotrophic (0.97 mg L-1h-1) and heterotrophic (1.25 mg L-1h-1) controls. Mixotrophic-autotrophy and mixotrophic-heterotrophy contributed 1.15 mg L-1h-1 and 0.94 mg L-1h-1 in N removal, respectively. Model disclosed that at balanced share of 6:4, more than 2 mg L-1h-1N removal could be achieved, similar to bacterial nitrogen removal rate but with a negative carbon budget of 6.21 mg L-1h-1. Nutrient removal using mixotrophic microalgae would lead to carbon negative sustainable wastewater treatment and resource recycling.
Collapse
Affiliation(s)
- Muhammad Mubashar
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zulfiqar Ahmad
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haiyang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cong Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaohong Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
6
|
Brar A, Kumar M, Soni T, Vivekanand V, Pareek N. Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: A review. BIORESOURCE TECHNOLOGY 2021; 339:125597. [PMID: 34315089 DOI: 10.1016/j.biortech.2021.125597] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Conventional fuel resources are overburden with speedy global energy demand which ensued the urgent need of alternate energy resources. Biofuel generation efficiency of microalgae is notable due to their comparatively rapid biomass production rate and high oil content. But, the employment of microalgae as biofuel resource is in infancy due to low productivity and high production cost. The issues can be addressed by employing engineered microalgal strains that would be able to efficiently generate enhanced levels of biomass with augmented lipid and/or carbohydrate content for proficient biofuel production. Genetic alterations and metabolic engineering of microalgal species might be helpful in developing high stress-tolerant strains with improved properties for biofuel generation. Various omics approaches appeared significant to upgrade the microalgal lipid production. Intervention of genetic and metabolic engineering approaches would facilitate the development of microalgae as a competent biofuel resource and inflate the economic commercialization of biofuels.
Collapse
Affiliation(s)
- Amandeep Brar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan 302017, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
7
|
Kandasamy S, Narayanan M, He Z, Liu G, Ramakrishnan M, Thangavel P, Pugazhendhi A, Raja R, Carvalho IS. Current strategies and prospects in algae for remediation and biofuels: An overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Pei XY, Ren HY, Liu BF. Flocculation performance and mechanism of fungal pellets on harvesting of microalgal biomass. BIORESOURCE TECHNOLOGY 2021; 321:124463. [PMID: 33290984 DOI: 10.1016/j.biortech.2020.124463] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
In this study, a bioflocculation method assisted by fungal pellets was developed for highly efficient microalgae harvesting. Effects of critical parameters, including flocculation type, temperature, rotation speed and initial pH, on the bioflocculation of fungal Aspergillus niger for microalgae Scenedesmus sp. were investigated. Results showed that the maximum flocculation efficiency of 99.4% was obtained when the fungal pellets were inoculated in the algal solution at the initial pH of 8.0, temperature of 30 °C and rotation speed of 160 rpm for 48 h in BG-11 medium. Furthermore, microscopy examination, scanning electron microscopy, Fourier transform infrared spectroscopy, Zeta potential measurement and three-dimensional excitation emission matrix fluorescence spectroscopy were used to explore the mechanism of bioflocculation process. It was found that the interaction of fungi and microalgae was related to the surface functional groups of fungal pellets. This study provides a interpretation of conceivable mechanism for microalgal bioflocculation by fungal pellets.
Collapse
Affiliation(s)
- Xuan-Yuan Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|