1
|
Wei S, Wu Y, Xi J. CO 2-responsive switchable hydrophilic solvent as a novel extractant for selective extraction and separation of natural bioactive ingredients: A comprehensive review. Food Chem 2025; 463:141170. [PMID: 39288456 DOI: 10.1016/j.foodchem.2024.141170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
When conventional solvents such as water, methanol, ethanol, hexane, petroleum ether, etc., are used to extract active ingredients from natural resources, an evaporation process is required to remove solvent from active ingredients, which not only consumes huge amounts of energy, but also causes harm to human health and the environment. The CO2-responsive switchable hydrophilic solvent (SHS) based on amines and water is an emerging, green and recyclable solvent, which not only has high extraction efficiency of active ingredients, but also can remove solvent from active ingredients without evaporation process. This paper reviews the research progress of amine-based SHS in the extraction of bioactive ingredients from natural resources. The process flow, extraction mechanism, critical influencing factors, recovery of amines and latest applications have been summarized. On this basis, some shortcomings of amine-based SHS are also pointed out. Finally, the improvement directions of amine-based SHS extraction in the future is prospected.
Collapse
Affiliation(s)
- Shuang Wei
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuntao Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Vermeeren B, Van Praet S, Arts W, Narmon T, Zhang Y, Zhou C, Steenackers HP, Sels BF. From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Chem Soc Rev 2024; 53:11804-11849. [PMID: 39365265 DOI: 10.1039/d4cs00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.
Collapse
Affiliation(s)
- Benjamin Vermeeren
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Sofie Van Praet
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Wouter Arts
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Yingtuan Zhang
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | | | - Bert F Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| |
Collapse
|
3
|
Wichaphian A, Sriket N, Sensupa S, Pekkoh J, Pathom-Aree W, Chromkaew Y, Suwannarach N, Kumla J, Cheirsilp B, Srinuanpan S. Value-added green biorefinery co-products from ultrasonically assisted DES-pretreated Chlorella biomass. ULTRASONICS SONOCHEMISTRY 2023; 100:106628. [PMID: 37793201 PMCID: PMC10550610 DOI: 10.1016/j.ultsonch.2023.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
This study pursued the goal of creating value-added co-products through an environmentally friendly biorefinery approach, employing ultrasonically assisted deep eutectic solvent (DES)-pretreated Chlorella biomass. The primary focus was on generating enriched biodiesel feedstock with exceptional fuel properties and developing hydroponic biofertilizer. The results demonstrated the effectiveness of a two-step process involving a 5-minute ultrasound-assisted DES pretreatment followed by ultrasound-assisted solvent extraction, which efficiently extracted lipids from Chlorella biomass, yielding biodiesel-quality lipids with good cetane number (59.42) and high heating value (40.11 MJ/kg). Notably, this two-step approach (78.04 mg-lipid/g-microalgal biomass) led to a significant 2.10-fold increase in lipid extraction compared to a one-step process (37.15 mg-lipid/g-microalgal biomass) that combined ultrasound-assisted DES pretreatment and solvent extraction. Importantly, the aqueous extract derived from lipid-extracted microalgal biomass residues (LMBRs) showed promise as a component in hydroponic biofertilizer production, supporting lettuce growth in hydroponic deep water culture system. Consequently, microalgae biorefinery co-products hold tremendous potential in enhancing the profitability and sustainability of interconnected sectors, encompassing renewable energy, agriculture, and the environment.
Collapse
Affiliation(s)
- Antira Wichaphian
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthakrit Sriket
- Master of Science Program in Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sritip Sensupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
5
|
Oh YK, Kim S, Ilhamsyah DPA, Lee SG, Kim JR. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent advances. BIORESOURCE TECHNOLOGY 2022; 366:128183. [PMID: 36307027 DOI: 10.1016/j.biortech.2022.128183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Chlorella is a promising microalga for CO2-neutral biorefinery that co-produces drop-in biofuels and multiple biochemicals. Cell disruption and selective lipid extraction steps are major technical bottlenecks in biorefinement because of the inherent robustness and complexity of algal cell walls. This review focuses on the state-of-the-art achievements in cell disruption and lipid extraction methods for Chlorella species within the last five years. Various chemical, physical, and biological approaches have been detailed theoretically, compared, and discussed in terms of the degree of cell wall disruption, lipid extractability, chemical toxicity, cost-effectiveness, energy use, scalability, customer preferences, environment friendliness, and synergistic combinations of different methods. Future challenges and prospects of environmental-friendly and efficient extraction technologies are also outlined for practical applications in sustainable Chlorella biorefineries. Given the diverse industrial applications of Chlorella, this review may provide useful information for downstream processing of the advanced biorefineries of other algae genera.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Sangui Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | | | - Sun-Gu Lee
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Biodiesel production from wet microalgae: Progress and challenges. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Wang Z, Song H. The synthesis of quaternary N-alkyl tropinium cationic surfactants and study on their properties: effect of temperature, hydrophobic chain length and anions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Improving biomass growth of Nannochloropsis oceanica with electrical treatment. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Guo H, Cheng J, Mao Y, Qian L, Yang W, Park JY. Synergistic effect of ultrasound and switchable hydrophilicity solvent promotes microalgal cell disruption and lipid extraction for biodiesel production. BIORESOURCE TECHNOLOGY 2022; 343:126087. [PMID: 34624467 DOI: 10.1016/j.biortech.2021.126087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
To facilitate the lipid extraction from Nannochloropsis oceanica with thick cell wall using switchable hydrophilicity solvent, ultrasound-assisted N, N, N', N'-tetraethyl-1,3-propanediamine (TEPDA) was used to effectively destruct the cell wall. TEPDA cations were adsorbed on the cells via electrostatic force and formed the electron-donor-acceptor (EDA) complex with the hydroxyl groups in cellulose. This broke the hydrogen-bonding interactions between cellulose chains and stripped them from cell wall, thus reducing the cell wall thickness from 141 nm to 68.6 nm. Moreover, TEPDA cations neutralized the negatively charged phospholipid bilayers, decreasing the cell surface zeta potential from -27.5 eV to -14.1 eV. The local electrostatic equilibrium led to cell membrane leakage. The ultrasound promoted the stripping of the cellulose chains at a power intensity of 0.5 W/mL and frequency of 20 kHz, achieving the lipid extraction efficiency of 98.2% within 2 h at a volume ratio of 1:4 of wet microalgae to TEPDA.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China.
| | - Yuxiang Mao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Lei Qian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Ji-Yeon Park
- Biomass and Wastes to Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Daejeon 34129, Republic of Korea
| |
Collapse
|
10
|
Jayakumar M, Karmegam N, Gundupalli MP, Bizuneh Gebeyehu K, Tessema Asfaw B, Chang SW, Ravindran B, Kumar Awasthi M. Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review. BIORESOURCE TECHNOLOGY 2021; 331:125054. [PMID: 33832828 DOI: 10.1016/j.biortech.2021.125054] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
| | - Marttin Paulraj Gundupalli
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| | - Kaleab Bizuneh Gebeyehu
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Belete Tessema Asfaw
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
11
|
Karpagam R, Jawaharraj K, Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144236. [PMID: 33422843 DOI: 10.1016/j.scitotenv.2020.144236] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
In recent years, microalgal feedstocks have gained immense potential for sustainable biofuel production. Thermochemical, biochemical conversions and transesterification processes are employed for biofuel production. Especially, the transesterification process of lipid molecules to fatty acid alkyl esters (FAAE) is being widely employed for biodiesel production. In the case of the extractive transesterification process, biodiesel is produced from the extracted microalgal oil. Whereas In-situ (reactive) transesterification allows the direct conversion of microalgae to biodiesel avoiding the sequential steps, which subsequently reduces the production cost. Though microalgae have the highest potential to be an alternate renewable feedstock, the minimization of biofuel production cost is still a challenge. The biorefinery approaches that rely on simple cascade processes involving cost-effective technologies are the need of an hour for sustainable bioenergy production using microalgae. At the same time, combining the biorefineries for both (i) high value-low volume (food and health supplements) and (ii) low value- high volume (waste remediation, bioenergy) from microalgae involves regulatory and technical problems. Waste-remediation and algal biorefinery were extensively reviewed in many previous reports. On the other hand, this review focuses on the cascade processes for efficient utilization of microalgae for integrated bioenergy production through the transesterification. Microalgal biomass remnants after the transesterification process, comprising carbohydrates as a major component (process flow A) or the carbohydrate fraction after bio-separation of pretreated microalgae (process flow B) can be utilized for bioethanol production. Therefore, this review concentrates on the cascade flow of integrated bioprocessing methods for biodiesel and bioethanol production through the transesterification and biochemical routes. The review also sheds light on the recent combinatorial approaches of transesterification of microalgae. The applicability of spent microalgal biomass residue for biogas and other applications to bring about zero-waste residue are discussed. Furthermore, techno-economic analysis (TEA), life cycle assessment (LCA) and challenges of microalgal biorefineries are discussed.
Collapse
Affiliation(s)
- Rathinasamy Karpagam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - Kalimuthu Jawaharraj
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States
| | - Ramasamy Gnanam
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|