1
|
Dong L, Wang W, Xie Q, Du X, Wang Y, Niu XZ, Cao G. Self-adaptable HAc/NaAc buffer system enhanced biohydrogen production from dark fermentation of cellulose. BIORESOURCE TECHNOLOGY 2025; 416:131738. [PMID: 39489314 DOI: 10.1016/j.biortech.2024.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
ThepHdecrease caused by potential accumulation and dissociation of organic acidsis considereda major challenge hindering stable and constant operation in hydrogen production. In this study, a self-adaptableHAc/NaAc buffer system was investigated based on batch dark fermentation hydrogen production (DFHP) metabolic typesto controlthe pH of fermentation process. Resultsshowedthat increasing substrate concentration resulted in lower H2 production yield, especially when the substrate concentration exceeded 10 g/L. A maximum H2yield of2326.25 mL/L was achieved at the HAc/NaAc-buffered group; productions were 2.84 times and 57.7 % higher than the control and NaOH control groups. Our buffersystem retardedthe decrease of pH, enhanced the selectivemetabolic flux of acetic acid production, promoted the growth of microorganisms, enhanced microbial secretion of cellulase, andregulatedthe ratio of NADH/NAD+. The research provided a preliminary understanding and reference for the buffer regulatory strategy on organic waste for DFHP.
Collapse
Affiliation(s)
- Lili Dong
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Wanqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiulan Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Du
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuhao Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xi-Zhi Niu
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Guangli Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Sun P, Lu C, Liang X, Wang G, Song C, Zhang Q, Zhang Z, Wang H, Alam M, Liu H, Wang K, Xia C, Jiang D. Enhanced the energy conversion of corn stalk via co-production of photo-fermentation biohydrogen and bioethanol. BIORESOURCE TECHNOLOGY 2024; 408:131196. [PMID: 39094961 DOI: 10.1016/j.biortech.2024.131196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Hydrogen-ethanol co-production can significantly improve the energy conversion efficiency of corn stalk (CS). In this study, with CS as the raw material, the co-production characteristics of one-step and two-step photo-fermentation hydrogen production (PFHP) and ethanol production were investigated. In addition, the gas and liquid characteristics of the experiment were analyzed. The kinetics of hydrogen-ethanol co-production was calculated, and the economics of hydrogen and ethanol were analyzed. Results of the experiments indicated that the two-step hydrogen-ethanol co-production had the best hydrogen production performance when the concentration of CS was 25 g/L. The total hydrogen production was 350.08 mL, and the hydrogen yield was 70.02 mL/g, which was 2.45 times higher than that of the one-step method. The efficiency of hydrogen-ethanol co-production was 17.79 %, which was 2.76 times more efficient than hydrogen compared to fermentation with hydrogen. The result provides technical reference for the high-quality utilization of CS.
Collapse
Affiliation(s)
- Peng Sun
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Chaoyang Lu
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China.
| | - Xiaoyu Liang
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Guangtao Wang
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Changkun Song
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Quanguo Zhang
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China; Huanghe S & T University, Zhengzhou 450006, China
| | - Zhiping Zhang
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Huanhuan Wang
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Mujeeb Alam
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Hong Liu
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Kaixin Wang
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China
| | - Chenxi Xia
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China; Huanghe S & T University, Zhengzhou 450006, China
| | - Danping Jiang
- Henan Key Laboratory of Rural Renewable Energy, Henan Agricultural University, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Jiao Y, Jiang M, Li Y, Ai F, Zhang Q, Zhang Z. Bio-hydrogen-producing Potential Evaluation and Capacity Enhancement from Tobacco Processing Leftovers by Photo-fermentation Under Diverse Initial pH. Mol Biotechnol 2023:10.1007/s12033-023-00968-9. [PMID: 37993757 DOI: 10.1007/s12033-023-00968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
The use of tobacco growing and processing residues for bio-hydrogen production is an effective exploration to broaden the source of bio-hydrogen production raw materials and realize waste recycling. In this study, bio-hydrogen-producing potential was evaluated and the effect of diverse initial pH on hydrogen production performance was investigated. The cumulative hydrogen yield (CHY) and the properties of fermentation liquid were monitored. The modified Gompertz model was adopted to analyze the kinetic characteristics of photo-fermentation bio-hydrogen production process. Results showed that CHY increased firstly and then decreased with the increase of initial pH. Highest CHY and hydrogen production rate of appeared at the initial pH of 8, which were 257.7 mL and 6.15 mL/h, respectively. The acidic initial pH was found to severely limit the bio-hydrogen production capacity. The correlation coefficients (R2) of hydrogen production kinetics parameters were all greater than 0.99, meaning that the fitting effect was good. The main metabolites of bacteria in the system were acetic acid, butyric acid, and ethanol, and the consumption of acetic acid was promoted with the increase of initial pH.
Collapse
Affiliation(s)
- Yinggang Jiao
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengge Jiang
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou, 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou, 450002, China
| | - Fuke Ai
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou, 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Yang X, Li Y, Zhang N, Zhang H, Liu H, Xiang G, Zhang Q. Influence of titanate photocatalyst in biohydrogen yield via photo fermentation from corn stover. BIORESOURCE TECHNOLOGY 2023; 386:129544. [PMID: 37506929 DOI: 10.1016/j.biortech.2023.129544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The effects of three common titanate photocatalysts (TPC) on the photo fermentation biohydrogen production (PFHP) from corn stover were studied in this paper. Compared with CaTiO3 and BaTiO3, the experimental group with the addition of MgTiO3 showed stronger potential for PFHP, the maximum hydrogen yield of 344 mL (68.8 mL/g TS) was obtained at 3 g/L MgTiO3, increased by 48.3%. For CaTiO3, BaTiO3, the optimal amount of addition was 8 and 7 g/L, respectively, in which, the hydrogen yield was 308 and 288 mL (61.6 and 57.6 mL/g TS). TPC addition could shorten the delay period of hydrogen production lower the Oxidation-Reduction Potential (ORP) of fermentation broth, especially MgTiO3 addition, the delayed hydrogen production could be shortened by 33.2% compared with control group, and the ORP could reach the lowest value of -371 mV.
Collapse
Affiliation(s)
- Xudong Yang
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S &T University, Zhengzhou 450006, China
| | - Yameng Li
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S &T University, Zhengzhou 450006, China
| | - Ningyuan Zhang
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Liu
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Guanning Xiang
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Equipment for Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S &T University, Zhengzhou 450006, China.
| |
Collapse
|
5
|
Xiang G, Zhang Q, Li Y, Zhang X, Liu H, Lu C, Zhang H. Enhancement on photobiological hydrogen production from corn stalk via reducing hydrogen pressure in bioreactors by way of phased decompression schemes. BIORESOURCE TECHNOLOGY 2023; 385:129377. [PMID: 37385557 DOI: 10.1016/j.biortech.2023.129377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
In this project, it was verified that properly reducing the bioreactor hydrogen partial pressure (HPP) could significantly enhance the photo-fermentative hydrogen production (PFHP) by corn stalk. The maximal cumulative hydrogen yield (CHY) of 82.37 mL/g was obtained under full decompression to 0.4 bar, which was 35% higher than that without decompression. To increase CHY and save the pressure control cost, 12-hour, 24-hour and 36-hour decompression schemes were provided, and the optimal decompression phase in fermentation under each scheme was investigated. The 12-hour decompression scheme was suitable for 24-36 h of fermentation; the 24-hour decompression scheme implemented within 12-36 h of fermentation had a more desirable CHY; when adopting the 36-hour decompression scheme, operation during 12-48 h yielded a CHY of 81.70 mL/g that approximated whole process decompression. The strategies of decompression at the appropriate phase of fermentation were innovative, which offered a new option for optimizing PFHP economically.
Collapse
Affiliation(s)
- Guanning Xiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Xueting Zhang
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affaires of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Liu S, Shen F, Nadeem F, Ur Rahman M, Usman M, Ramzan H, Shahzaib M, Singhania RR, Yi W, Qing C, Tahir N. Triggering photo fermentative biohydrogen production through NiFe 2O 4 photo nanocatalysts with various excitation sources. BIORESOURCE TECHNOLOGY 2023:129378. [PMID: 37352989 DOI: 10.1016/j.biortech.2023.129378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The triggering effects of nickel ferrite (NiFe2O4) photo nanocatalysts on photo fermentative hydrogen production (PFHP), and metabolic pathways under various excitation sources (incandescent lamp, Xenon lamp, and 532 laser) have been investigated. Compare to the control group (CG) highest cumulative hydrogen volume (CHV) and the maximum hydrogen production rate (HPR) of 568.8 mL and 9.17 mL/h, respectively were achieved at a loading centration of 150 mg/L excited with an incandescent lamp. The change in metabolites with NiFe2O4 incorporation suggests that bacterial activity is significantly affected by photo nanocatalysts. Triggering of NiFe2O4 by laser excitation showed the highest HPR of 7.83 mL /h within 24 h, which greatly reduces the lag time. The microbial community investigation showed that the addition of NiFe2O4 photo nanocatalysts and the change of light source effectively improved the microbial community structure and increased the abundance of hydrogen-producing bacteria (HPB) which leads to enhanced hydrogen production.
Collapse
Affiliation(s)
- Shengyong Liu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuhua Shen
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Faiqa Nadeem
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muneeb Ur Rahman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Usman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hina Ramzan
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Shahzaib
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Wang Yi
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunyao Qing
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Nadeem Tahir
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Chen J, Bian Y, Wu Z, Li X, Wang T, Lv G. Accumulation Rule of Sugar Content in Corn Stalk. PLANTS (BASEL, SWITZERLAND) 2023; 12:1373. [PMID: 36987060 PMCID: PMC10055673 DOI: 10.3390/plants12061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
The primary parts of corn stalks are the leaves and the stems, which comprise the cortex and the pith. Corn has long been cultivated as an grain crops, and now it is a primary global source of sugar, ethanol, and biomass-generated energy. Even though increasing the sugar content in the stalk is an important breeding goal, progress has been modest in many breeding researchers. Accumulation is the gradual rise in quantity when new additions are made. The challenging characteristics of such sugar content in corn stalks are below the protein, bio-economy, and mechanical injury. Hence, in this research, plant water-content-enabled micro-Ribonucleic acids (PWC-miRNAs) were designed to increase the sugar content in corn stalks following an accumulation rule. High-throughput sequencing of the transcriptome, short RNAs, and coding RNAs was performed here; leaf and stem degradation from two early-maturing Corn genotypes revealed new information on miRNA-associated gene regulation in corn during the sucrose accumulation process. For sugar content in corn stalk, PWC-miRNAs were used to establish the application of the accumulation rule for data-processing monitoring throughout. Through simulation, management, and monitoring, the condition is accurately predicted, providing a new scientific and technological means to improve the efficiency of the construction of sugar content in corn stalks. The experimental analysis of PWC-miRNAs outperforms sugar content in terms of performance, accuracy, prediction ratio, and evaluation. This study aims to provide a framework for increasing the sugar content of corn stalk.
Collapse
Affiliation(s)
- Jianjian Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (J.C.); (Z.W.); (X.L.); (T.W.)
| | - Yunlong Bian
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Zhenxing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (J.C.); (Z.W.); (X.L.); (T.W.)
| | - Xiangnan Li
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (J.C.); (Z.W.); (X.L.); (T.W.)
| | - Tingzhen Wang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (J.C.); (Z.W.); (X.L.); (T.W.)
| | - Guihua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (J.C.); (Z.W.); (X.L.); (T.W.)
| |
Collapse
|
8
|
Xiang G, Zhang H, Li Y, Liu H, Zhang Z, Lu C, Zhang Q. Enhancing biohydrogen yield from corn stover by photo fermentation via adjusting photobioreactor headspace pressure. BIORESOURCE TECHNOLOGY 2023; 369:128388. [PMID: 36435416 DOI: 10.1016/j.biortech.2022.128388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In this study, the effect of bioreactor headspace pressure regulation on photo-fermentative hydrogen production (PFHP) from corn stover (CS) was investigated. The results showed that the headspace pressure could significantly affect the performance of PFHP. With the decrease in the reactor headspace pressure (100 kPa-10 kPa), cumulative biohydrogen production firstincreased and then decreased, the maximum hydrogen yield of 546.57 mL was obtained at the headspace pressure of 30 kPa. The parameters of Gompertz model showed a lower hydrogen partial pressure was beneficial to speed up the reaction process and shorten the hydrogen production delay time of the system, however, too low pressure would inhibit the metabolism of microorganisms in the PFHP process, resulting lower hydrogen yield obtained.
Collapse
Affiliation(s)
- Guanning Xiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.
| |
Collapse
|
9
|
Arhin SG, Cesaro A, Di Capua F, Esposito G. Recent progress and challenges in biotechnological valorization of lignocellulosic materials: Towards sustainable biofuels and platform chemicals synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159333. [PMID: 36220479 DOI: 10.1016/j.scitotenv.2022.159333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic materials (LCM) have garnered attention as feedstocks for second-generation biofuels and platform chemicals. With an estimated annual production of nearly 200 billion tons, LCM represent an abundant source of clean, renewable, and sustainable carbon that can be funneled to numerous biofuels and platform chemicals by sustainable microbial bioprocessing. However, the low bioavailability of LCM due to the recalcitrant nature of plant cell components, the complexity and compositional heterogeneity of LCM monomers, and the limited metabolic flexibility of wild-type product-forming microorganisms to simultaneously utilize various LCM monomers are major roadblocks. Several innovative strategies have been proposed recently to counter these issues and expedite the widespread commercialization of biorefineries using LCM as feedstocks. Herein, we critically summarize the recent advances in the biological valorization of LCM to value-added products. The review focuses on the progress achieved in the development of strategies that boost efficiency indicators such as yield and selectivity, minimize carbon losses via integrated biorefinery concepts, facilitate carbon co-metabolism and carbon-flux redirection towards targeted products using recently engineered microorganisms, and address specific product-related challenges, to provide perspectives on future research needs and developments. The strategies and views presented here could guide future studies in developing feasible and economically sustainable LCM-based biorefineries as a crucial node in achieving carbon neutrality.
Collapse
Affiliation(s)
- Samuel Gyebi Arhin
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Francesco Di Capua
- School of Engineering, University of Basilicata, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
10
|
Zhang Q, Liu H, Shui X, Li Y, Zhang Z. Research progress of additives in photobiological hydrogen production system to enhance biohydrogen. BIORESOURCE TECHNOLOGY 2022; 362:127787. [PMID: 35985465 DOI: 10.1016/j.biortech.2022.127787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic biohydrogen has the advantages of extensive raw materials, clean and renewable, etc. But, its low substrate utilization rate limit its commercial application. It is reported that the use of additives in the process of biohydrogen by photofermentation is beneficial to increase biohydrogen. However, in practical application, the mechanism of additives in hydrogen production is not understood. This paper, the promotion effect of some additives on biohydrogen by photofermentation was reviewed. Whatever, the existing problems and development trends of various additives are also discussed. It is necessary to select appropriate additives according to the hydrogen-producing characteristics. The use of composite additives may further enhance biohydrogen, but the specific situation needs further exploration. The research results of this paper can help readers to further understand the role of additives in the crouse of photofermentative biohydrogen, provide reference for the research of photofermentative biohydrogen.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.
| | - Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Xuenan Shui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
11
|
Chen X, Jiang J, Zhu J, Song W, Liu C, Xiao LP. Deep eutectic solvent with Lewis acid for highly efficient biohydrogen production from corn straw. BIORESOURCE TECHNOLOGY 2022; 362:127788. [PMID: 35973566 DOI: 10.1016/j.biortech.2022.127788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
To boost saccharification and biohydrogen production efficiency from corn straw, Lewis acid enhanced deep eutectic solvent (DES) pretreatment using choline chloride/glycerol was developed. A notable enhancement of the enzymatic hydrolysis efficiency from 26.3 % to 87.0 % was acquired when corn straw was pretreated with aqueous DES at 100 °C for 5 h using 2.0 wt% AlCl3. A maximum biohydrogen yield of 114.8 mL/g total solids (TS) was achieved in the sequential dark fermentation stage, which was 2.1 times higher than that of the raw feedstock (37.1 mL/g TS). The enhanced efficient conversion was ascribed to the effective removal of lignin and hemicellulose, which led to the bio-accessibility of the straw. This work provides new sights for the rational design of efficient AlCl3-aided aqueous DES system toward biohydrogen production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xue Chen
- College of Engineering, Jining University, Jining 273100, China
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Jiubin Zhu
- College of Life Sciences and Bioengineering, Jining University, Jining 273100, China
| | - Wenlu Song
- College of Engineering, Jining University, Jining 273100, China
| | - Chuantao Liu
- College of Engineering, Jining University, Jining 273100, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
12
|
Katakojwala R, Tharak A, Sarkar O, Venkata Mohan S. Design and evaluation of gas fermentation systems for CO 2 reduction to C2 and C4 fatty acids: Non-genetic metabolic regulation with pressure, pH and reaction time. BIORESOURCE TECHNOLOGY 2022; 351:126937. [PMID: 35248708 DOI: 10.1016/j.biortech.2022.126937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Addressing the carbon emissions through microbial mediated fermentation is an emerging interest. Custom designed and fabricated gas fermentation (GF) systems were evaluated to optimize the headspace pressure, pH (6.5, 7.5, and 8.5), fermentation time, and substrate concentration by employing enriched homoacetogenic chemolithoautotrophs in non-genetic approach. Headspace pressure showed marked influence on the metabolic conversion of inorganic carbon to acetic and butyric acids with 26% higher productivity than the control (atmospheric pressure). Maximum volatile fatty acid (VFA) yield of 3.7 g/L was observed at alkaline pH (8.5) under 2 bar pressure at carbon load of 10 g/L, 96 h). Acetic (3.0 g/L) and butyric (0.7 g/L) acids were the major products upon conversion of 85% of the inorganic substrate. A better in-situ buffering (β = 0.048) at pH 8.5 along with higher reductive current (RCC: -4.4 mA) depicted better performance of GF towards CO2 reduction.
Collapse
Affiliation(s)
- Ranaprathap Katakojwala
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Omprakash Sarkar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Liu H, Zhang Z, Lu C, Wang J, Wang K, Guo S, Zhang Q. Effects of enzymatic hydrolysis and alkalization pretreatment on biohydrogen production by chlorella photosynthesis. BIORESOURCE TECHNOLOGY 2022; 349:126859. [PMID: 35183718 DOI: 10.1016/j.biortech.2022.126859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The effects of alkalization pretreatment and enzymolysis on biohydrogen production with Chlorella vulgaris microalgae biomass by photosynthesis were studied, the alkalization pretreatment enzymolysis was to alkalize biomass raw materials before enzymolysis, the biohydrogen production kinetics equation of microalgae biomass was put forward by comparing the biohydrogen process of enzymatic hydrolysis with that of alkaline pretreatment enzymatic hydrolysis. The experimental results show: the optimum initial substrate concentration for biohydrogen production by enzymatic hydrolysis and alkaline pretreatment was 24 g/L, the maximum biohydrogen was 132.1 mL and 294.5 mL, the maximum specific biohydrogen production was 22.0 mL/g and 49.1 mL/g, and the maximum biohydrogen content was 43.9% and 56.8%. The effect of biohydrogen production by enzymatic hydrolysis after alkaline pretreatment of microalgae biomass is obviously better than that by direct enzymatic hydrolysis, which provides scientific reference and development of high efficiency and low cost biohydrogen production technology by photosynthesis of microalgae biomass.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Kaixin Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Siyi Guo
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural engineering, Huanghe S & T University, Zhengzhou 450006, China.
| |
Collapse
|
14
|
Guo S, Lu C, Wang K, Wang J, Zhang Z, Liu H, Jing Y, Zhang Q. Effect of citrate buffer on hydrogen production by photosynthetic bacteria. BIORESOURCE TECHNOLOGY 2022; 347:126636. [PMID: 34971780 DOI: 10.1016/j.biortech.2021.126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The effect of citrate buffer on biohydrogen production using photosynthetic bacteria was studied. The study was performed in two steps. First, specific concentrations of citrate and sodium citrate as buffers were mixed into batch cultures, and the effects of these buffers on fermentation broth characteristics and biohydrogen production were analyzed. The maximum overall biohydrogen yield of 411.4 mL, which was 42% higher to the control group, was obtained with 0.05 mol/L citrate buffer. Then, the effect of 0.05 mol/L citrate buffer on biohydrogen yield at different pH values (5.5-7.5) were explored. The maximum biohydrogen yield of 429.82 mL was obtained at pH 6, and the final pH values were effectively controlled. The findings indicated that citrate buffer seriously affected the pH of the reaction liquid. The results provide technical support to stabilize the pH of photo-fermentation broth and improve biohydrogen production performance.
Collapse
Affiliation(s)
- Siyi Guo
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Kaixin Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Assessment of Graphical Methods for Determination of the Limiting Current Density in Complex Electrodialysis-Feed Solutions. MEMBRANES 2022; 12:membranes12020241. [PMID: 35207162 PMCID: PMC8875246 DOI: 10.3390/membranes12020241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022]
Abstract
Electrodialysis (ED) is a promising technology suitable for nutrient recovery from a wide variety of liquid waste streams. For optimal operating conditions, the limiting current density (LCD) has to be determined separately for each treated feed and ED equipment. LCD is most frequently assessed in the NaCl solutions. In this paper, five graphical methods available in literature were reviewed for LCD determination in a series of five feed solutions with different levels of complexity in ion and matrix composition. Wastewater from microbial fermentation was included among the feed solutions, containing charged and uncharged particles. The experiments, running in the batch ED with an online conductivity, temperature, and pH monitoring, were conducted to obtain data for the comparison of various LCD determination methods. The results revealed complements and divergences between the applied LCD methods with increasing feed concentrations and composition complexity. The Cowan and Brown method had the most consistent results for all of the feed solutions. Online conductivity monitoring was linearly correlated with the decreasing ion concentration in the feed solution and corresponding LCD. Therefore, the results obtained in this study can be applied as a base for the automatized dynamic control of the operating current density–voltage in the batch ED. Conductivity alone should not be used for the ED control since LCD depends on the ion exchange membranes, feed flow, temperature and concentration, ionic species, their concentration ratios, and uncharged particles of the feed solution.
Collapse
|
16
|
Ji W, Yan S, Xie K, Yuan X, Wang Z, Li Y. A clean process for phosphorus recovery and gallium enrichment from phosphorus flue dust by sodium carbonate roasting. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127580. [PMID: 34736211 DOI: 10.1016/j.jhazmat.2021.127580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus flue dust (PFD) is a solid waste product from phosphorus (P) production that contains P and is enriched with gallium (Ga). The recovery of these valuable components not only protects the environment, but also reduces resource waste. This study aimed to develop a green and efficient method to recover P and enriched Ga from PFD. The effects of different parameters on the P leaching rate and Ga loss rate during Na2CO3 roasting and water leaching were investigated and optimized. The reaction mechanisms during the experiment were characterized, revealing that the P-containing compounds in PFD mainly transformed into water-soluble Na3PO4. Furthermore, the leaching rate of P reached 85.38%, while Ga was mainly concentrated in the residue and its loss rate was only about 1%. Ga content in the residue reached about 0.1%. An attempt was made to recover Na+ and PO43- from the aqueous solution by evaporative crystallization and XRD analysis showed that the main phase of the crystallization product was Na2HPO4. The proposed process is technically simple, only Na2CO3 is added and no hazardous substances are generated, and represents a new method for recovering P and enriching Ga from PFD.
Collapse
Affiliation(s)
- Wentao Ji
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| | - Shiyu Yan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| | - Keqiang Xie
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China.
| | - Xiaolei Yuan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| | - Zhixiang Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| | - Yang Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| |
Collapse
|
17
|
Lu C, Jiang D, Jing Y, Zhang Z, Liang X, Yue J, Li Y, Zhang H, Zhang Y, Wang K, Zhang N, Zhang Q. Enhancing photo-fermentation biohydrogen production from corn stalk by iron ion. BIORESOURCE TECHNOLOGY 2022; 345:126457. [PMID: 34863849 DOI: 10.1016/j.biortech.2021.126457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the enhancement of iron ion on growth, metabolic pathway, and biohydrogen production performance of biohydrogen producing bacteria HAU-M1. Different concentrations of Fe2+ and Fe3+ were respectively added into fermentation broth of photo-fermentation biohydrogen production (PFHP) from corn stalk. Regular sampling test was used to measure the characteristics of fermentation broth and gas, metabolic pathway, energy conversion efficiency, and kinetic of PFHP. The analysis of experimental data showed that the maximum hydrogen yield of 70.25 mL/g was observed at 2500 μmol/L Fe2+ addition, with an energy conversion efficiency of 5.21%, which was 19.98% higher over no-addition. However, the maximum hydrogen content of 51.41% and the maximum hydrogen production rate of 17.82 mL/h were observed at 2000 μmol/L Fe2+ addition. The experimental results revealed that iron ion played a key role in PFHP, which provided a technical support for improving the performance of PFHP.
Collapse
Affiliation(s)
- Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xiaoyu Liang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jianzhi Yue
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Kaixin Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ningyuan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
18
|
Zhang N, Lu C, Zhang Z, Zhang H, Liu L, Jiang D, Wang K, Guo S, Wang J, Zhang Q. Enhancing photo-fermentative biohydrogen production using different zinc salt additives. BIORESOURCE TECHNOLOGY 2022; 345:126561. [PMID: 34902490 DOI: 10.1016/j.biortech.2021.126561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The kinetic properties of the hydrogen yield of photosynthetic bacteria were investigated using Han-Levenspiel and modified Gompertz models to determine the effects of different zinc salts on the growth and hydrogen production of the photosynthetic bacterium HAU-M1. Inorganic zinc salts (zinc standard solution and zinc sulfate) inhibited bacterial growth by 1-4-fold higher than organic zinc salts (zinc lactate and zinc gluconate). Among these four zinc salts, 5 mg/L zinc lactate displayed the weakest inhibition performance. This compound increased cumulative hydrogen production by approximately 57.81% (80.44 mL/g) and maximum hydrogen production rate by 58.27% (3.43 mL/[g·h]). The Han-Levenspiel model with parameters m > n > 0 indicated that the addition of zinc salts influenced the hydrogen production process of the bacterium in a noncompetitive manner. Compared with the inorganic zinc, the organic zinc salts were more suitable as exogenous zinc supplements to promote bacterial growth and its hydrogen production.
Collapse
Affiliation(s)
- Ningyuan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Linghui Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Kaixin Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Siyi Guo
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
19
|
Zhang Q, Jin P, Li Y, Zhang Z, Zhang H, Ru G, Jiang D, Jing Y, Zhang X. Analysis of the characteristics of paulownia lignocellulose and hydrogen production potential via photo fermentation. BIORESOURCE TECHNOLOGY 2022; 344:126361. [PMID: 34801718 DOI: 10.1016/j.biortech.2021.126361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Paulownia biomass is rich in carbohydrates, making which a potential feedstock for biohydrogen production. In the study, different parts and varieties of Paulownia were chose as substrates to evaluate hydrogen production potential of paulownia lignocellulose via biohydrogen production by photo fermentation (BHPPF) and energy conversion efficiency (ECE). Results showed the highest cumulative hydrogen yield (CHY) of 67.11 mL/g total solids (TS) and ECE of 4.74% were obtained from leaves of Paulownia, which were 121.06% and 115.45% higher than those of the branches. Moreover, Paulownia jianshiensis leaves were found to be the best variety for BHPPF, with the maximum CHY of 98.83 mL/g TS and ECE of 7.18%. Using Paulownia waste as the substrate to produce hydrogen helps broaden the range of raw materials for BHPPF and improve the economic utilization of forestry waste.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Jin
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guangming Ru
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Xueting Zhang
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| |
Collapse
|
20
|
Jiang D, Zhang X, Jing Y, Zhang T, Shui X, Yang J, Lu C, Chen Z, Lei T, Zhang Q. Towards high light conversion efficiency from photo-fermentative hydrogen production of Arundo donax L. By light-dark duration alternation strategy. BIORESOURCE TECHNOLOGY 2022; 344:126302. [PMID: 34752886 DOI: 10.1016/j.biortech.2021.126302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Suitable illumination project would help in achieving high light conversion efficiency (LCE) for photo-fermentation. This study proposed an improvement strategy for LCE of photo-fermentative hydrogen production (PFHP) with a photosynthetic consortium by adopting light-dark duration alternation. For this purpose, 6 projects (continues light, 24 h light + 24 h dark, 24 h dark + 24 h light, 48 h light + 48 h light, 48 h dark + 48 h light, and continues dark) light disturbances were carried out to estimate the strategy. The fluctuation of cell growth (OD660) was corresponded to the light-dark alternation. 24 h dark + 24 h light alternation achieved the maximum hydrogen yield (HY) of 390.9 mL/g TS cell (6.7 % higher than continuous light) and maximum improvement of LCE of 114.7%. Moreover, heat map analysis revealed that the light period after inoculation had the closest relation (Pearson's r = 1) with the average hydrogen production rate (HPR) of photo-fermentation. Besides, decreased dark period after inoculation would increase the hydrogen yield of photo-fermentation.
Collapse
Affiliation(s)
- Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xueting Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China; Institute of Agricultural engineering, Huanghe S & T University, Zhengzhou 450006, PR China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tian Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xuenan Shui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jiabin Yang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhou Chen
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tingzhou Lei
- Changzhou University, Changzhou 213164, PR China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
21
|
Supplementing Glycerol to Inoculum Induces Changes in pH, SCFA Profiles, and Microbiota Composition in In-Vitro Batch Fermentation. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycerol was generally added to the inoculum as a cryoprotectant. However, it was also a suitable substrate for microbial fermentation, which may produce more SCFAs, thereby decreased pH of the fermentation broth. This study investigated the effect of supplementing glycerol to inoculum on in vitro fermentation and whether an enhanced buffer capacity of medium could maintain the pH stability during in vitro batch fermentation, subsequently improving the accuracy of short chain fatty acids (SCFAs) determination, especially propionate. Two ileal digesta were fermented by pig fecal inoculum with or without glycerol (served as anti-frozen inoculum or frozen inoculum) in standard buffer or enhanced buffer solution (served as normal or modified medium). Along with the fermentation, adding glycerol decreased the pH of fermentation broth (p < 0.05). However, modified medium could alleviate the pH decrement compared with normal medium (p < 0.05). The concentration of total propionic acid production was much higher than that of other SCFAs in anti-frozen inoculum fermentation at 24 and 36 h, thereby increasing the variation (SD) of net production of propionate. The α-diversity analysis showed that adding glycerol decreased Chao1 and Shannon index under normal medium fermentation (p < 0.05) compared to modified medium (p < 0.05) along with fermentation. PCoA showed that all groups were clustered differently (p < 0.01). Adding glycerol improved the relative abundances of Firmicutes, Anaerovibrio, unclassified_f_Selenomonadaceae, and decreased the relative abundance of Proteobacteria (p < 0.05). The relative abundances of Firmicutes, such as Lactobacillus, Blautia and Eubacterium_Ruminantium_group in modified medium with frozen inoculum fermentation were higher than (p < 0.05) those in normal medium at 36 h of incubation. These results showed that adding glycerol in inoculum changed the fermentation patterns, regardless of substrate and medium, and suggested fermentation using frozen inoculum with modified medium could maintain stability of pH, improve the accuracy of SCFA determination, as well as maintain a balanced microbial community.
Collapse
|
22
|
Zhang Q, Zhu S, Zhang Z, Zhang H, Xia C. Enhancement strategies for photo-fermentative biohydrogen production: A review. BIORESOURCE TECHNOLOGY 2021; 340:125601. [PMID: 34330005 DOI: 10.1016/j.biortech.2021.125601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Biohydrogen production by photo fermentation is an attractive clean energy production approach with less environmental pollution and higher substrate conversion. In recent years, various measures have been used to improve biohydrogen production performance, but there is a lack of systematic and comprehensive summary and analysis. Hence, the recent literatures on enhancing biohydrogen production by photo fermentation were summarized, and the functional mechanisms of enhancement strategies were explained. In this work, these measures were divided into four categories according to their roles in photo fermentation, including substrate pretreatment, bacterial modification and immobilization, additive addition, reactor design optimization. It can be concluded that the optimal enhancement conditions of each strategy were affected by substrate type, strain and process parameters. According to the results of this work, it was expected to give readers a clear understanding and provide a scientific reference of the research of photosynthetic biohydrogen production.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Shengnan Zhu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China.
| | - Chenxi Xia
- Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| |
Collapse
|
23
|
Zhu S, Yang X, Zhang Z, Zhang H, Li Y, Zhang Y, Zhang Q. Tolerance of photo-fermentative biohydrogen production system amended with biochar and nanoscale zero-valent iron to acidic environment. BIORESOURCE TECHNOLOGY 2021; 338:125512. [PMID: 34260966 DOI: 10.1016/j.biortech.2021.125512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic fermentation system is easy to become acidic due to the generation of small molecular acids, which will affect the metabolism of bacteria. Therefore, it is necessary to improve the acid resistance of system. In this work, the tolerance of photo-fermentative biohydrogen production system amended with biochar, nanoscale zero-valent iron (nZVI) and biochar + nZVI to acidic environment was studied. Results showed that additives improved the stability and performance of the photo fermentation. The best increment of biohydrogen from 0 to 286.83 ± 2.77 mL was obtained by adding biochar and nZVI together at the original pH of 4.5. The additive reduced the oxidation-reduction potential and promoted the consumption of acetate and butyrate. At initial pH of 5, 6 and 7, the highest biohydrogen yield of 361.02 ± 10.11, 419.36 ± 10.70 and 382.67 ± 25.08 mL was obtained by adding nZVI, respectively, representing 42%-44.45% increase compared with the control group under the same conditions.
Collapse
Affiliation(s)
- Shengnan Zhu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Xuemei Yang
- Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China.
| |
Collapse
|
24
|
He C, Qi B, Song H, Zhang H, Lan M, Jiao Y, Li Y, Li P, Li G, Zhang Q, Liu L. Enhanced biohydrogen production from corn straw by basalt fiber addition. BIORESOURCE TECHNOLOGY 2021; 338:125528. [PMID: 34284291 DOI: 10.1016/j.biortech.2021.125528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to study the impact of basalt fiber (BF) on hydrogen fermentation of corn straw. The maximum of hydrogen yield and corn straw conversion rate respectively achieved 323.94 mL and 5.23% by adding 1.5 g/L BF particle with the size of 300-400 mesh, which increased by 15.74% and 15.6% respectively than control group. The BF could promote the growth of photosynthetic bacteria, subsequently influencing the products distribution and hydrogen generation. Overall, this investigation demonstrated that BF addition is an effective way to enhance biohydrogen production from corn straw.
Collapse
Affiliation(s)
- Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Baoyi Qi
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Song
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Zhang
- College of Information & Management Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Mingming Lan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
25
|
Abstract
Due to its characteristics, hydrogen is considered the energy carrier of the future. Its use as a fuel generates reduced pollution, as if burned it almost exclusively produces water vapor. Hydrogen can be produced from numerous sources, both of fossil and renewable origin, and with as many production processes, which can use renewable or non-renewable energy sources. To achieve carbon neutrality, the sources must necessarily be renewable, and the production processes themselves must use renewable energy sources. In this review article the main characteristics of the most used hydrogen production methods are summarized, mainly focusing on renewable feedstocks, furthermore a series of relevant articles published in the last year, are reviewed. The production methods are grouped according to the type of energy they use; and at the end of each section the strengths and limitations of the processes are highlighted. The conclusions compare the main characteristics of the production processes studied and contextualize their possible use.
Collapse
|