1
|
Liu H, Tian M, Dong P, Zhao Y, Deng Y. Metabolic Engineering of Escherichia coli for the Improved Malonic Acid Production. ACS Synth Biol 2025; 14:1277-1287. [PMID: 40195009 DOI: 10.1021/acssynbio.5c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Malonic acid (MA) is a high-value chemical with diverse applications in the fields of food, agriculture, medicine, and chemical synthesis. Despite the successful biosynthesis of MA has been performed in Escherichia coli, Myceliophthora thermophila, and Saccharomyces cerevisiae, the resulting MA titers remain insufficient for industrial-scale production. In this study, three distinct metabolic pathways were designed and constructed to increase MA production in E. coli. Among these, the fumaric acid pathway comprising four key enzymes including the aspartase (AspA), the decarboxylase (PanD), the β-alanine-pyruvate transaminase (Pa0132), and the succinic aldehyde dehydrogenase (YneI) was identified as the most effective for MA production. Additionally, the supplementation of fumaric acid was found to significantly improve MA production. To further enhance the MA production, metabolic engineering strategies were employed, including the deletion of the ydfG gene, responsible for encoding the malonic semialdehyde reductase, and the ptsG gene, which encodes a glucose transporter. Finally, through the optimization of fermentation conditions and feeding strategies, the engineered strain achieved an MA titer of 1.4 g/L in shake flask and 17.8 g/L in fed-batch fermentation. This study provides new insights into the industrial-scale production of MA utilizing the metabolically engineered E. coli cells.
Collapse
Affiliation(s)
- Han Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengzhen Tian
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ping Dong
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunying Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Zhang J, Fan B, Zhao L, Zhao C, Yang F. Biochar promotes compost humification by regulating bacterial and fungal communities. Front Microbiol 2024; 15:1470930. [PMID: 39360319 PMCID: PMC11445164 DOI: 10.3389/fmicb.2024.1470930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Humus can be formed during composting through biological pathways, nonetheless, the mechanisms through which bacterial and fungal communities govern the development of humus in compost with the addition of biochar remain uncertain. Methods In this study, compost with cow dung and maize stover as feedstock was employed as a control group, and compost with 10% biochar added on top of the feedstock was adopted as a treatment group to investigate the effect of bacterial and fungal communities on humus formation during biochar composting. Results and Discussion The results demonstrated that the humic acid content increased by 24.82 and 25.10% at the cooling and maturation stages, respectively, after adding biochar. Besides, the degree of polymerization content in the maturation stage was elevated by 90.98%, which accelerated the humification process of the compost. During the thermophilic and maturity stages, there was a respective increase of 51.34 and 31.40% in reducing sugar content, suggesting that the inclusion of biochar could furnish ample reducing sugar substrate for the Maillard reaction. The addition of biochar reduced the number of humus precursor-associated genera by 35, increased the number of genera involved in humus synthesis by two, and enhanced the stability of the cross-domain network between bacteria and fungi, which confirms that microorganisms contribute to the humification process by decreasing humus precursor consumption as well as increasing humus synthesis with the addition of biochar. Additionally, adding biochar could enhance the humification capacity of the compost pile by dominating the Maillard reaction with reducing sugars as the substrate and strengthening the function of humus synthesis-associated genera. This study enhances our comprehension of the regulatory pathways of biochar in the humification process during composting.
Collapse
Affiliation(s)
- Junying Zhang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
| | - Bowen Fan
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changjiang Zhao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
3
|
Liu C, Yang X, Yu Z, Pu J, Xu M. Impacts of MnO 2 on tomato (Lycopersicon esculentum Mill.) growth: A study with MnO 2-amended organic fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173591. [PMID: 38810753 DOI: 10.1016/j.scitotenv.2024.173591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Manganese dioxide (MnO2), as a catalyst in composting processes, can accumulate in soil over multiple fertilizations. However, its impact on crop growth remains to be explored. In this study, a pot experiment was conducted to investigate the impacts of MnO2 on the tomato plant performance across various growth stages. Results showed that MnO2 reduced the plant height, leaf number and length by 35.53 %, 27.61 %, and 37.00 %, respectively, and decreased the fruit weight (23.16 %) and sugar-acid ratio (29.7 %) of fruits compared to the MnO2-free control. The adverse impacts of MnO2 on plant growth might be attributed to the inhibition of microbial activity in soil reflected by the reduction of soil urease (9.30 %) and acid phosphatase (12.52 %) activities, which decreased the efficiency of nutrients conversion and uptake. The decrease of nutrient elements in roots resulted in oxidative stress in the plant, inhibiting the plasma membrane H+-ATPase activity thereby reducing the translocation of nutrients (e.g., calcium, magnesium, and phosphorus) translocation from roots to leaves. Furthermore, the phytohormones indolebutyric acid, gibberellin, and jasmonic acid of leaves were disturbed. This study reveals the risks associated with the application of MnO2-containing organic fertilizers.
Collapse
Affiliation(s)
- Congzhu Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jia Pu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
4
|
Liu Y, Pan J, Wang J, Yang X, Zhang W, Tang KHD, Wang H, Zhang X, Gao R, Yang G, Zhang Z, Li R. Insight into the humification and carbon balance of biogas residual biochar amended co-composting of hog slurry and wheat straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33110-6. [PMID: 38570431 DOI: 10.1007/s11356-024-33110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The impact of biogas residual biochar (BRB) on the humification and carbon balance process of co-composting of hog slurry (HGS) and wheat straw (WTS) was examined. The 50-day humification process was significantly enhanced by the addition of BRB, particular of 5% BRB, as indicated by the relatively higher humic acid content (67.28 g/kg) and humification ratio (2.31) than other treatments. The carbon balance calculation indicated that although BRB addition increased 22.16-46.77% of C lost in form of CO2-C, but the 5% BRB treatment showed relatively higher C fixation and lower C loss than other treatments. In addition, the BRB addition reshaped the bacterial community structure during composting, resulting in increased abundances of Proteobacteria (25.50%) during the thermophilic phase and Bacteroidetes (33.55%) during the maturation phase. Combined these results with biological mechanism analysis, 5% of BRB was likely an optimal addition for promoting compost humification and carbon fixation in practice.
Collapse
Affiliation(s)
- Yunpeng Liu
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Junting Pan
- Key Laboratory of Non-Point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Wanqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Kuok Ho Daniel Tang
- The Department of Environmental Science, The University of Arizona (UA), Shantz Building Rm 4291177 E 4th St., Tucson, AZ, 85721, USA
- College of Natural Resources and Environment, NWAFU-UA Micro-Campus, Yangling, 712100, Shaanxi, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Xiu Zhang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, China
| | - Runyu Gao
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
| | - Guoping Yang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, 750021, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China
- College of Natural Resources and Environment, NWAFU-UA Micro-Campus, Yangling, 712100, Shaanxi, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, 712100, Shaanxi, China.
- College of Natural Resources and Environment, NWAFU-UA Micro-Campus, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Mayekar PC, Auras R. Speeding it up: dual effects of biostimulants and iron on the biodegradation of poly(lactic acid) at mesophilic conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:530-539. [PMID: 38345085 DOI: 10.1039/d3em00534h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastic pollution presents a growing concern, and various solutions have been proposed to address it. One such solution involves the development of new plastics that match the properties of traditional polymers while exhibiting enhanced biodegradability when disposed of in a suitable environment. Poly(lactic acid) (PLA) is a biobased, compostable polymer known for its low environmental impact and ability to break down into harmless components within a specified timeframe. However, its degradation in industrial composting facilities poses challenges, and it cannot degrade in home composting. In this study, we investigated the biodegradability of PLA within a biostimulated compost matrix at mesophilic conditions (37 °C) over 180 days. The compost environment was enhanced with Fe3O4 nanopowder, skim milk, gelatin, and ethyl lactate, individually and in combination, to target different stages of the PLA biodegradation process. We monitored key indicators, CO2 evolution, number average molecular weight, and crystallinity, to assess the impact of the various biostimulants and iron. The results demonstrated that the most effective treatment for degrading PLA at mesophilic conditions was adding gelatin and Fe3O4. Gelatin accelerated PLA biodegradation by 25%, Fe3O4 by 17%, and a combination of gelatin and Fe3O4 by 30%. The effect of skim milk and ethyl lactate is also reported. This research introduces novel pathways to enhance PLA biodegradation in home composting scenarios, offering promising solutions to address the plastic pollution challenge.
Collapse
Affiliation(s)
- Pooja C Mayekar
- School of Packaging, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
6
|
Zhi Y, Li X, Wang X, Jia M, Wang Z. Photosynthesis promotion mechanisms of artificial humic acid depend on plant types: A hydroponic study on C3 and C4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170404. [PMID: 38281646 DOI: 10.1016/j.scitotenv.2024.170404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique. The transcriptomics suggested that the AHA application up-regulated the genes in photosynthesis, especially related to chlorophyll synthesis and light energy capture, in maize and the genes in photosynthetic vitality and carbohydrate metabolic process in lettuce. Structural equation model suggested that the photodegradable substances and growth hormones in AHA directly contributes to photosynthesis of C4 plants (0.37). AHA indirectly promotes the photosynthesis in the C4 plants by upregulating functional genes (e.g., Mg-CHLI and Chlorophyllase) involved in light capture and transformation (0.96). In contrast, AHA mainly indirectly promotes C3 plants photosynthesis by increasing chlorophyll synthesis, and the Rubisco activity and the ZmRbcS expression in the dark reaction of lettuce (0.55). In addition, Mg2+ transfer and flux in C3 plant leaves was significantly improved by AHA, indirectly contributes to plant photosynthesis (0.24). Finally, the AHA increased the net photosynthetic rate of maize by 46.50 % and that of lettuce by 88.00 %. Application of the nutrients- and hormone-rich AHA improves plant growth and photosynthesis even better than traditional Hoagland solution. The revelation of the different photosynthetic promotion mechanisms on C3 and C4 plant in this work guides the synthesis and efficient application of AHA in green agriculture and will propose the development of AHA technology to against climate change resulting from CO2 emissions in near future.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaowei Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
7
|
Liu Y, Xu J, Li X, Zhou W, Cui X, Tian P, Yu H, Wang X. Synergistic effects of Fe-based nanomaterial catalyst on humic substances formation and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2024; 395:130371. [PMID: 38278455 DOI: 10.1016/j.biortech.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
In this study, a novel Fe-based nanomaterial catalyst (Fe0/FeS) was synthesized via a self-heating process and employed to explore its impact on the formation of humic substances and the mitigation of microplastics. The results reveal that Fe0/FeS exhibited a significant increase in humic acid content (71.01 mg kg-1). Similarly, the formation of humic substances resulted in a higher humification index (4.91). Moreover, the addition of Fe0/FeS accelerated the degradation of microplastics (MPs), resulting in a lower concentration of MPs (9487 particles/kg) compared to the control experiments (22792 particles/kg). Fe0/FeS significantly increased the abundance of medium-sized MPs (50-200 μm) and reduced the abundance of small-sized (10-50 μm) and large-sized MPs (>1000 μm). These results can be attributed to the Fe0/FeS regulating the ▪OH production and specific microorganisms to promote humic substance formation and the degradation of MPs. This study proposes a feasible strategy to improve composting characteristics and reduce contaminants.
Collapse
Affiliation(s)
- Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jiayi Xu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiaolu Li
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Wuyi Zhou
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Pengjiao Tian
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Haizhong Yu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China.
| |
Collapse
|
8
|
Zhang S, Gao W, Xie L, Zhang G, Wei Z, Li J, Song C, Chang M. Malonic acid shapes bacterial community dynamics in compost to promote carbon sequestration and humic substance synthesis. CHEMOSPHERE 2024; 350:141092. [PMID: 38169202 DOI: 10.1016/j.chemosphere.2023.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The incorporation of malonic acid (MA) into compost as a regulator of the tricarboxylic acid (TCA) cycle has the potential to increase carbon sequestration. However, the influence of MA on the transformation of the microbial community during the composting process remains unclear. In this investigation, MA was introduced at different stages of chicken manure (CM) composting to characterize the bacterial community within the compost using high-throughput sequencing. We assess the extent of increased carbon sequestration by comparing the concentration of total organic carbon (TOC). At the same time, this study examines whether increased carbon sequestration contributes to humus formation, which was elucidated by evaluating the content and composition of humus. Our results show that the addition of MA significantly improved carbon sequestration within the compost, reducing the carbon loss rate (C loss (%)) from 64.70% to 52.94%, while increasing HS content and stability. High throughput sequencing and Random Forest (RF) analysis show that the introduction of MA leads to a reduction in the diversity of the bacterial communities, but enhanced the ability of bacterial communities to synthesize humus. Furthermore, the addition of MA favors the proliferation of Firmicutes. Also, the hub of operational taxonomic units (OTUs) within the community co-occurrence network shifts from Proteobacteria to Firmicutes. Remarkably, our study finds a significant decrease in negative correlations between bacteria, potentially mitigating substrate consumption due to negative interactions such as competition. This phenomenon contributes to the improved retention of TOC in the compost. This research provides new insights into the mechanisms by which MA regulates bacterial communities in compost, and provides a valuable theoretical basis for the adoption of this innovative composting strategy.
Collapse
Affiliation(s)
- Shubo Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mingkai Chang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
9
|
Efremenko E, Stepanov N, Senko O, Lyagin I, Maslova O, Aslanli A. Artificial Humic Substances as Biomimetics of Natural Analogues: Production, Characteristics and Preferences Regarding Their Use. Biomimetics (Basel) 2023; 8:613. [PMID: 38132553 PMCID: PMC10742262 DOI: 10.3390/biomimetics8080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Various processes designed for the humification (HF) of animal husbandry wastes, primarily bird droppings, reduce their volumes, solve environmental problems, and make it possible to obtain products with artificially formed humic substances (HSs) as analogues of natural HSs, usually extracted from fossil sources (coal and peat). This review studies the main characteristics of various biological and physicochemical methods of the HF of animal wastes (composting, anaerobic digestion, pyrolysis, hydrothermal carbonation, acid or alkaline hydrolysis, and subcritical water extraction). A comparative analysis of the HF rates and HS yields in these processes, the characteristics of the resulting artificial HSs (humification index, polymerization index, degree of aromaticity, etc.) was carried out. The main factors (additives, process conditions, waste pretreatment, etc.) that can increase the efficiency of HF and affect the properties of HSs are highlighted. Based on the results of chemical composition analysis, the main trends and preferences with regard to the use of HF products as complex biomimetics are discussed.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia; (N.S.); (O.S.)
| | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Wang J, Yi G, Wu X, Zhang X, Yang X, Ho Daniel Tang K, Xiao R, Zhang Z, Qu G, Li R. Sulfur-aided aerobic biostabilization of swine manure and sawdust mixture: Humification and carbon loss. BIORESOURCE TECHNOLOGY 2023; 387:129602. [PMID: 37536465 DOI: 10.1016/j.biortech.2023.129602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
To investigate how sulfur addition affects humification and carbon loss during swine manure (SM) biostabilisation, various proportions of sulfur, i.e., 0 (CK), 0.2%-0.8% (S1-S4) were added to SM in a 70-day pilot-scale test. Compared to CK (16.07%), sulfur addition resulted in the mineralization of 17.05%-24.27% of the total organic carbon. Sulfur addition also reduced CH4 emissions, which were 3.7%-29.3% lower than that of CK. The total global warming potential values were in the range of 913.1-968.2 g CO2 eq kg-1 for all treatments. Although the sulfur-added treatments showed lower HA/FA ratios than CK after 70 days, no significant impact on the maturity of the final products was observed. Sulfur addition impacted the microbial community, CH4, CO2, N2O emissions, and affected the variation of temperature in biowaste biostabilization. These discoveries provided an important basis for understanding the function of sulfur in regulating the aerobic bio-decomposition of organic waste.
Collapse
Affiliation(s)
- Yang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guorong Yi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kuok Ho Daniel Tang
- The University of Arizona, The Department of Environmental Science, Shantz Building Rm 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Ran Xiao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Bao H, Wang J, Chen Z, Wen Q, Wu Y, Fu Q. Simultaneous passivation of heavy metals and removal of antibiotic resistance genes by calcium peroxide addition during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023:129267. [PMID: 37271461 DOI: 10.1016/j.biortech.2023.129267] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
This research evaluated the effects of calcium peroxide (CP) at 0% (CK, w/w), 5% (T1, w/w), and 10% (T2, w/w), on heavy metals (HMs) mobility and prevalence of antibiotic resistance genes (ARGs) during sludge composting. T1 and T2 significantly reduced (p < 0.05) the mobility of Cu (29.34%, and 32.94%, respectively), Ni (24.07%, and 31.48%, respectively) and Zn (33.28%, and 54.11%, respectively) compared to CK after the composting. CP addition resulted in a decrease in mobile genetic elements (MGEs) and ARGs during composting. Together with structural equation model and random forest analysis depicted MGEs had a primary association with total ARGs variations during composting. Microbial analysis indicated CP downregulated the expression of the genes associated with two-component and type IV secretion system, thus reducing the prevalence of ARGs. This study demonstrates that application of CP is a feasible strategy to mitigate both ARGs and HMs hazards during composting.
Collapse
Affiliation(s)
- Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiuhua Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
12
|
Lu J, Qiu Y, Muhmood A, Zhang L, Wang P, Ren L. Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162356. [PMID: 36822427 DOI: 10.1016/j.scitotenv.2023.162356] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable plastic bags (BPBs) to collect food waste and microplastics (MPs) produced from their biodegradation have received considerable scientific attention recently. Therefore, the current study was carried out to assess the co-composting efficiency of biodegradable plastic bags (polylactic acid (PLA) + polybutylene terephthalate (PBAT) + ST20 and PLA + PBAT+MD25) and food waste. The variations in greenhouse gas (GHG) emissions, microbial community and compost fertility were likewise assessed. Compared with the control, PLA + PBAT+ST20 and PLA + PBAT+MD25 both accelerated organic matter degradation and increased temperature. Moreover, PLA + PBAT+ST20 aggravated CH4 and CO2 emissions by 12.10 % and 11.01 %, respectively. PLA + PBAT+MD25 decreased CH4 and CO2 emissions by 5.50 % and 9.12 %, respectively. Meanwhile, compared with PLA + PBAT+ST20, the combined effect of plasticizer and inorganic additive in PLA + PBAT+MD25, reduced the NO3--N contents, seed germination index (GI) and compost maturity. Furthermore, adding BPBs changed the richness and diversity of the bacterial community (Firmicutes, Proteobacteria and Bacteroidetes). Likewise, redundancy analysis (RDA) showed that the co-compost system of BPBs and food waste accelerated significantly bacterial community succession from Firmicutes and Bacteroidetes at the initial stage to Proteobacteria and Actinobacteria at the mature stage, increased co-compost temperature to over 64 °C and extended thermophilic composting phase, and promoted the degradation of MPs. Additionally, according to structural equation model quantification results, the inorganic additive of PLA + PBAT+MD25 had more serious toxicity to microorganisms and had significantly adverse effects on GI through CO2-C (λ = -0.415, p < 0.05) and NO3--N (λ = -0.558, p < 0.001), thus reduced compost fertility and quality. The results also indicated that the BPBs with ST20 as an additive could be more suitable for industrial composting than the BPBs with MD25 as an additive. This study provided a vital basis for understanding the potential environmental and human health risks of the MPs' generated by the degradation of BPBs in compost.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
13
|
Piao M, Li A, Du H, Sun Y, Du H, Teng H. A review of additives use in straw composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57253-57270. [PMID: 37012566 DOI: 10.1007/s11356-023-26245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 05/10/2023]
Abstract
Straw composting is not only a process of decomposition and re-synthesis of organic matter, but also a process of harmless treatment, avoiding air pollution caused by straw burning. Many factors, including raw materials, humidity, C/N, and microbial structure, may determine the composting process and the quality of final product. In recent years, many researches have focused on composting quality improvement by adding one or more exogenous substances, including inorganic additives, organic additives, and microbial agents. Although a few review publications have compiled the research on the use of additives in composting, none of them has specifically addressed the composting of crop straw. Additives used in straw composting can increase degradation of recalcitrant substances and provide ideal living surroundings for microorganism, and thus reduce nitrogen loss and promote humus formation, etc. This review's objective is to critically evaluate the impact of various additives on straw composting process, and analyze how these additives enhance final quality of composting. Furthermore, a vision for future perspectives is provided. This paper can serve as a reference for straw composting process optimization and composting end-product improvement.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Ang Li
- College of Engineering, Jilin Normal University, Siping, China
| | - Huishi Du
- College of Tourism and Geographical Science, Jilin Normal University, Siping, China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Engineering, Jilin Normal University, Siping, China.
| |
Collapse
|
14
|
Chen L, Chen Y, Li Y, Liu Y, Jiang H, Li H, Yuan Y, Chen Y, Zou B. Improving the humification by additives during composting: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:93-106. [PMID: 36641825 DOI: 10.1016/j.wasman.2022.12.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Bin Zou
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
15
|
Lu Q, Jiang Z, Feng W, Yu C, Jiang F, Huang J, Cui J. Exploration of bacterial community-induced polycyclic aromatic hydrocarbons degradation and humus formation during co-composting of cow manure waste combined with contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116852. [PMID: 36435124 DOI: 10.1016/j.jenvman.2022.116852] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
To solve polycyclic aromatic hydrocarbons (PAHs) pollution, composting was chosen as a remediation method. During composting, the dissipation of PAHs was carried out by resource utilization of organic solid waste and its degradation by bacteria. This study was conducted by co-composting with contaminated soil and cow manure. The results showed that the degradation rates of naphthalene (Nap), phenanthrene (Phe), and benzo[α]pyrene (BaP) could reach 82.2%, 79.4%, and 59.6% respectively during composting. Cluster analysis indicated that polyphenol oxidase (PPO), laccase, and protease were important drivers of PAHs transformation. The content of humic substances (HS) was 106.67 g/kg in PAH treatment, which was significantly higher than that in the control group at 65 days. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) and network analysis was used to infer the degradation mechanism of PAHs by microorganisms. The degradation of PAHs by PPO was found to have a significant contribution to the formation of HS. It was shown that PAHs and metabolic intermediates were more inclined to be oxidized and decomposed by PPO to form quinone, which in turn condensed with amino acids to form HS. Composting could promote the degradation of PAHs while improving the quality of compost, achieving a win-win situation.
Collapse
Affiliation(s)
- Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Wenxuan Feng
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Chunjing Yu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fangzhi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jiayue Huang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jizhe Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
16
|
Yu C, Lu Q, Fu C, Jiang Z, Huang J, Jiang F, Wei Z. Exploring the internal driving mechanism underlying bacterial community-induced organic component conversion and humus formation during rice straw composting with tricarboxylic acid cycle regulator addition. BIORESOURCE TECHNOLOGY 2022; 365:128149. [PMID: 36265785 DOI: 10.1016/j.biortech.2022.128149] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the effect of tricarboxylic acid (TCA) cycle regulators on CO2 emissions, the conversion of organic components and humus formation during composting. The addition of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) reduced CO2 emissions during rice straw composting. According to co-occurrence networks results, ATP enhanced the connectivity and complexity of the network; NADH enhanced microbial interactions. The different kind of TCA cycle regulators had different effect on humus formation pathway. The structural equation model showed that ATP might promote lignin transformation into humus via the sugar-amine condensation pathway and lignin-protein pathway while NADH may promote cellulose degradation into soluble sugar and organic matter, which are transformed into humus. This work will provide valuable guidance for exploring the mechanism of TCA cycle regulators in promoting organic carbon fixation and reducing inorganic carbon mineralization.
Collapse
Affiliation(s)
- Chunjing Yu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Chang Fu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Jiayue Huang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Fangzhi Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Chen Y, Luo X, Li Y, Liu Y, Chen L, Jiang H, Chen Y, Qin X, Tang P, Yan H. Effects of CaO 2 based Fenton - like reaction on heavy metals and microbial community during co-composting of straw and sediment. CHEMOSPHERE 2022; 301:134563. [PMID: 35413365 DOI: 10.1016/j.chemosphere.2022.134563] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/12/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, a Fenton-like system was constructed by CaO2 and nano-Fe3O4 in the co-composting system of straw and sediment. Its effect on the passivation of heavy metals and the evolution of microbial community were investigated. The results showed that the establishment of CaO2-Fenton-like system increased the residual Cu and residual Zn by 27.62% and 16.80%, respectively. In addition, the CaO2-Fenton-like system facilitated the formation of humic acid (HA) up to 20.84 g·kg-1. Redundancy analysis (RDA) showed that the CaO2-Fenton-like system accelerated bacterial community succession and promoted the passivation of Cu and Zn. Structural equation models (SEMs) indicated that Fenton reaction affected Cu and Zn passivation by affecting pH, bacterial communities, and HA. This study shows that the CaO2-Fenton-like system could promote the application of composting in the remediation of heavy metals contamination in sediment.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan, 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
18
|
Skwarek E, Janusz W. The study of the interactions of malonic acid ions with the hydroxyapatite surface in liquid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Hu ZT, Huo W, Chen Y, Zhang Q, Hu M, Zheng W, Shao Y, Pan Z, Li X, Zhao J. Humic Substances Derived From Biomass Waste During Aerobic Composting and Hydrothermal Treatment: A Review. Front Bioeng Biotechnol 2022; 10:878686. [PMID: 35646832 PMCID: PMC9133812 DOI: 10.3389/fbioe.2022.878686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Humic substances (HSs) occupy 80% of organic matter in soil and have been widely applied for soil remediation agents, potential battery materials, and adsorbents. Since the HS extraction rate is very low by microbial degradation in nature, artificial humification processes such as aerobic composting (AC) and hydrothermal treatment (HT) have attracted a great deal of attention as the most important strategies in HS production. This article aims to provide a state-of-the-art review on the development of conversion of biomass waste into HSs based on AC and HT for the first time in terms of mechanisms, characteristics of HSs’ molecular structure, and influencing factors. In addition, some differences based on the aforementioned information between AC and HT are reviewed and discussed in the conversion of biomass waste into HSs in a pioneering way. For biomass waste conversion, a feasible strategy on effective humification processes by combining AC with HT is proposed.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou, China
- Industrial Catalysis Institute, Zhejiang University of Technology, Hangzhou, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou, China
| | - Qiang Zhang
- Hangzhou Guotai Environmental Protection Technology Co. LTD, Hangzhou, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou, China
| | - Weicheng Zheng
- Hangzhou Research Institute of China Coal Technology & Engineering Group, Hangzhou, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing, China
- *Correspondence: Yuchao Shao, ; Jun Zhao,
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou, China
| | - Xiaonian Li
- Industrial Catalysis Institute, Zhejiang University of Technology, Hangzhou, China
| | - Jun Zhao
- Department of Biology, Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- *Correspondence: Yuchao Shao, ; Jun Zhao,
| |
Collapse
|
20
|
Zhao L, Wei Z, Chen X, Pan C, Xie X, Wang L, Zhao Y, Zhang Y. The remarkable role of shikimic acid pathway in humic acid formation during biochar and montmorillonite addition composting. BIORESOURCE TECHNOLOGY 2021; 342:125985. [PMID: 34852444 DOI: 10.1016/j.biortech.2021.125985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The final products of shikimic acid pathway, aromatic amino acids (AAA), can be used as humic acid (HA) precursors. Therefore, the aim of this study was to explore the contribution of shikimic acid pathway on the formation of HA during composting. Four composting treatments were carried out in this study, including the control, biochar addition, montmorillonite addition, biochar and montmorillonite combined addition. The results showed that the correlations between AAA and HA were enhanced during combined addition composting, and functional microorganisms involved in the shikimic acid pathway increased. In addition, random forest model suggested that 63.3% of the top 30 genera contributing to the HA formation were functional microorganisms involved in the shikimic acid pathway, which fully proved the critical role of shikimic acid pathway. Therefore, this study provided a new perspective for revealing the crucial factors that promoted the formation of HA during composting.
Collapse
Affiliation(s)
- Li Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yunxian Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
21
|
Moisture-Induced Pattern of Gases and Physicochemical Indices in Corn Straw and Cow Manure Composting. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the altering effect of moisture on the emission pattern of gases and the evolutionary dynamics of physicochemical indices in corn straw and cow manure composting. Exploring this effect was reasonable to unravel the use of moisture as a cheap alternative to control gaseous emissions and improve the final properties of compost. The nutrient dynamics of the compost showed 21.6% losses in total organic carbon content, with a 33.3% increase in total nitrogen content at the end of composting. All the gases (CH4, CO2, N2O and NH3) yielded a common emission pattern despite the differences in moisture content. Except for CH4, the peak and stable emission periods of all the gases were observed on the 5th day (thermophilic phase) and after the 27th day (late mesophilic phase) of composting, respectively. Emission reductions of 89%, 91%, 95% and 100% were recorded for CH4, CO2, N2O and NH3, respectively, during the late mesophilic phase of composting. From the study, the 65% moisture content was efficient in reducing the loss rate of the gasses and nutrient contents of the compost. This study would enable farmers to channel organic residues generated into compost while minimizing pollution and nutrient losses associated with the composting process.
Collapse
|