1
|
Kim S, Cha H, Lee T, Kim JY, Lee J, Jang SH, Kwon EE. Suppression of carbon footprint through the CO 2-assisted pyrolysis of livestock waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178615. [PMID: 39862505 DOI: 10.1016/j.scitotenv.2025.178615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production. Hen manure was particularly chosen due to its abundance of calcium carbonate (CaCO3) compared to other mammalian livestock, exhibiting distinctive thermolytic behaviours. The thermolysis of CaCO3 in hen manure releases carbon dioxide (CO2), simultaneously served as a partial oxidant for the carbon monoxide (CO) enhancement. To further evaluate the effectiveness of CO2, hen manure was pyrolyzed under the presence of CO2. The use of CO2 demonstrated a gas-phase interaction with hen manure-derived volatiles, re-allocating the pyrogenic products into CO-rich syngas. To accelerate the reaction kinetics of CO2, catalytic pyrolysis over a supported Ni catalyst was conducted, further enhancing CO-rich syngas. To assess the environmental advantages, the carbon footprints under various pyrolysis conditions were estimated by confirming the energy consumption and CO2 mitigation potential of pyrogenic products. Therefore, this study highlights that the CO2-mediated pyrolysis of hen manure globally generated offers a potential to mitigate 934.67 million tons of CO2 in annual.
Collapse
Affiliation(s)
- Seungwon Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hoyeon Cha
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Taewoo Lee
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jee Young Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jaewon Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Seong-Ho Jang
- Department of Bio-Environmental Energy, Pusan National University, Miryang, 50463, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Yoon K, Lee T, Cha H, Lee J, Lee J, Song H. Evaluating sustainability of CO 2-mediated pyrolysis of lignocellulose. BIORESOURCE TECHNOLOGY 2025; 416:131765. [PMID: 39515431 DOI: 10.1016/j.biortech.2024.131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Despite the growing interest in biomass as a carbon-neutral resource, technical challenges have limited its comprehensive utilization. Pyrolysis has emerged as a promising method for reducing the carbon footprint by more effectively valorizing carbon in biomass. This study investigated the use of carbon dioxide (CO2) in the pyrolysis of pine cone (PC), a lignocellulosic biomass. Thermogravimetric analysis confirmed that lignin was the primary component of the PC. Characterization and quantification of the three pyrolytic products (syngas, biocrude, and biochar) revealed that CO2 enhanced CO production and the surface area of the biochar, thereby improving its CO2 adsorption capacity. Additional heat and a Ni catalyst further amplified CO2's functionality. The sustainability of the proposed pyrolysis system was evaluated by calculating energy requirements of the pyrolysis processes and the net CO2 emissions. Catalytic pyrolysis under CO2 was the most effective, achieving a reduction of 3.34 g of CO2 per gram of PC.
Collapse
Affiliation(s)
- Kwangsuk Yoon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Taewoo Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hoyeon Cha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Joohyung Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jegeon Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Kim JH, Lee T, Tsang YF, Moon DH, Lee J, Kwon EE. Functional use of carbon dioxide for the sustainable valorization of orange peel in the pyrolysis process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173701. [PMID: 38844232 DOI: 10.1016/j.scitotenv.2024.173701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Although biomass is carbon-neutral, its use as a primary feedstock faces challenges arising from inconsistent supply chains. Therefore, it becomes crucial to explore alternatives with reliable availability. This study proposes a strategic approach for the thermochemical valorization of food processing waste, which is abundantly generated at single sites within large-scale processing plants. As a model biomass waste from the food industry, orange peel waste was particularly chosen considering its substantial consumption. To impart sustainability to the pyrolysis system, CO2, a key greenhouse gas, was introduced. As such, this study highlights elucidating the functionality of CO2 as a reactive feedstock. Specifically, CO2 has the potential to react with volatile pyrolysates evolved from orange peel waste, leading to CO formation at ≥490 °C. The formation of chemical constituents, encompassing acids, ketones, furans, phenols, and aromatics, simultaneously decreased by 15.1 area% in the presence of CO2. To activate the efficacy of CO2 at the broader temperature spectrum, supplementary measures, such as an additional heating element (700 °C) and a nickel-based catalyst (Ni/Al2O3), were implemented. These configurations promote thermal cracking of the volatiles and their reaction kinetics with CO2, representing an opportunity for enhanced carbon utilization in the form of CO. Finally, the integrated process of CO2-assisted catalytic pyrolysis and water-gas shift reaction was proposed. A potential revenue when maximizing the productivity of H2 was estimated as 2.62 billion USD, equivalent to 1.11 times higher than the results from the inert (N2) environment. Therefore, utilizing CO2 in the pyrolysis system creates a promising approach for enhancing the sustainability of the thermochemical valorization platform while maximizing carbon utilization in the form of CO.
Collapse
Affiliation(s)
- Jung-Hun Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Taewoo Lee
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
4
|
Rosaiah P, Yue D, Dayanidhi K, Ramachandran K, Vadivel P, Eusuff NS, Reddy VRM, Kim WK. Eggshells & Eggshell Membranes- A Sustainable Resource for energy storage and energy conversion applications: A critical review. Adv Colloid Interface Sci 2024; 327:103144. [PMID: 38581720 DOI: 10.1016/j.cis.2024.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
As the world strives to achieve a sustainable future, the exploration of alternative and renewable raw materials for energy storage and energy conversion has gained significant attention. A growing trend on "Waste to Energy" approach has attained prominence. Accordingly, chicken eggshells, a residual from poultry industry, have emerged as a promising candidate due to their abundant availability, low cost, and unique physical and chemical properties. This review article presents an overview of recent advancements in utilizing eggshell waste for energy storage and energy conversion applications. It discusses the transformation of eggshells usage into functional materials, along with their performance in various energy-related applications. The potential of eggshell-based materials in improving energy efficiency and reducing environmental impact is highlighted, providing insights into the future prospects of this sustainable resource.
Collapse
Affiliation(s)
- P Rosaiah
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China; Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India.
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China.
| | - Kalaivani Dayanidhi
- PG & Research Department of Chemistry, Guru Nanak College (Autonomous), Affiliated to University of Madras, Velachery, Chennai 600042, Tamil Nadu, India
| | - K Ramachandran
- Department of Physics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, Chennai, 600026, Tamilnadu, India.
| | - Porchezhiyan Vadivel
- PG & Research Department of Chemistry, Guru Nanak College (Autonomous), Affiliated to University of Madras, Velachery, Chennai 600042, Tamil Nadu, India
| | - Noorjahan Sheik Eusuff
- PG & Research Department of Chemistry, Guru Nanak College (Autonomous), Affiliated to University of Madras, Velachery, Chennai 600042, Tamil Nadu, India
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Yim H, Valizadeh S, Park YK. Hydrogen production from hazardous petroleum sludge gasification over nickel-loaded porous ZSM-5 and Al 2O 3 catalysts under air condition. ENVIRONMENTAL RESEARCH 2023; 225:115586. [PMID: 36858303 DOI: 10.1016/j.envres.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In this study, the potential of petroleum sludge (PS) for hydrogen production via the gasification process was evaluated. For this purpose, nickel (Ni)-loaded ZSM-5 and γ-Al2O3 (Ni-ZS and Ni-Al) catalysts were prepared and employed for PS gasification in air condition. The effects of different supports, Ni loading content, and reaction temperatures on the production of hydrogen-rich syngas along with the stability and reusability of the best catalyst were investigated. Applying 5%Ni-ZS obtained more gas yield (68.09 wt%) and hydrogen selectivity (25.04 vol%) compared to those obtained by 5%Ni-Al mostly owing to weak metal-support interactions which led to the dominance of well-dispersed metallic Ni. At various Ni loading percentages, 10%Ni-ZS showed the highest catalytic efficiency, which increased both gas yield (70.92 wt%) and hydrogen selectivity (30.74 vol%). However, excessive Ni content (especially 20%) significantly reduced the gas yield and hydrogen selectivity because of limited accessibility of support's active sites, poor dispersion of Ni, and inappropriate acidity. Increasing the temperature promoted the gas yield and produced hydrogen, where the highest gas yield (73.18 wt%) and hydrogen selectivity (33.15 vol%) were obtained at 850 °C due to the endothermic nature of gasification reactions. The 10%Ni-ZS catalyst showed proper stability during three consecutive experiments at 850 °C. The spent catalyst was successfully regenerated without a significant reduction in activity or selectivity.
Collapse
Affiliation(s)
- Hoesuk Yim
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Y-K Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
6
|
Farooq A, Ko CH, Park YK. Sewage sludge steam gasification over bimetallic mesoporous Al-MCM48 catalysts for efficient hydrogen generation. ENVIRONMENTAL RESEARCH 2023; 224:115553. [PMID: 36822530 DOI: 10.1016/j.envres.2023.115553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
This study explored the potential of steam gasification of sewage sludge over different temperatures (non-catalytic) and bimetallic (Ni-Fe and Ni-Co) mesoporous Al-MCM48 (3-5% Al basis). The higher temperature (800 °C) resulted in higher gas yield (36.74 wt%) and syngas (H2 and CO) selectivity (35.30 vol% and 11.66 vol%). Moreover, catalytic approach displayed that the Al-MCM48 was effective support because the incorporation of nickel increased the efficiency of gasification reactions compared to HZSM-5 (30). It mainly comes from the presence of mesopores and higher surface area (710.05 m2/g) providing more reaction sites and higher stability (less coke formation). Furthermore, the addition of promoters such as Co and Fe allowed the formation of Ni-Fe and Ni-Co alloys, resulting in even higher gas yield and overall H2 and CO selectivity due to the promotion of related reactions such as tar cracking, Boudouard, water gas shift and reforming and so on. Ni-Co alloy catalyst (10% Ni-5% Co/Al-MCM48) resulted in the highest H2 (∼52 vol%) selectivity due to the enhanced Ni dispersion and synergy effect between Ni and Co. Moreover, the application of bi-metal alloy on Al-MCM48 showed no coke formation and significantly reduced CO2 and hydrocarbon selectivity in the product gas. Overall, this study presented a promising solution for sewage sludge disposal in terms of clean H2 generation, reduction in CO2 and higher stability of metal based catalysts at the same time.
Collapse
Affiliation(s)
- Abid Farooq
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Chang Hyun Ko
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Y-K Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
7
|
Seo J, Kim H, Jeon S, Valizadeh S, Khani Y, Jeon BH, Rhee GH, Chen WH, Lam S, Khan MA, Park YK. Thermocatalytic conversion of wood-plastic composite over HZSM-5 catalysts. BIORESOURCE TECHNOLOGY 2023; 373:128702. [PMID: 36740100 DOI: 10.1016/j.biortech.2023.128702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Air gasification of the Wood-Plastic Composite (WPC) was performed over Ni-loaded HZSM-5 catalysts to generate H2-rich gas. Increasing SiO2/Al2O3 ratio (SAR) of HZSM-5 adversely affected catalytic activity, where the highest gas yield (51.38 wt%) and H2 selectivity (27.01 vol%) were acquired using 20 %Ni/HZSM-5(30) than those produced over 20 %Ni/HZSM-5(80) and 20 %Ni/HZSM-5(280). Reducing SAR was also favorably conducive to increasing the acyclic at the expense of cyclic compounds in oil products. These phenomena are attributed to enhanced acid strength and Ni dispersion of 20 %Ni/HZSM-5(30) catalyst. Moreover, catalytic activity in the terms of gas yield and H2 selectivity enhanced with growing Ni loading to 20 %. Also, the addition of promoters (Cu and Ca) to 20 %Ni/HZSM-5(30) boosted the catalytic efficiency for H2-rich gas generation. Raising temperature indicated a positive relevance with the gas yield and H2 selectivity. WPC valorization via gasification technology would be an outstanding outlook in the terms of a waste-to-energy platform.
Collapse
Affiliation(s)
- Jihyeon Seo
- School of Environmental Engineering, University of Seoul, Republic of Korea
| | - Hyunjin Kim
- School of Environmental Engineering, University of Seoul, Republic of Korea
| | - Sugyeong Jeon
- School of Environmental Engineering, University of Seoul, Republic of Korea
| | - Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Republic of Korea
| | - Yasin Khani
- School of Environmental Engineering, University of Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University , Chennai, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Republic of Korea.
| |
Collapse
|
8
|
Valizadeh S, Khani Y, Farooq A, Kumar G, Show PL, Chen WH, Lee SH, Park YK. Microalgae gasification over Ni loaded perovskites for enhanced biohydrogen generation. BIORESOURCE TECHNOLOGY 2023; 372:128638. [PMID: 36669624 DOI: 10.1016/j.biortech.2023.128638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Steam gasification of microalgae upon perovskite oxide-supported nickel (Ni) catalysts was carried out for H2-rich gas production. Ni-perovskite oxide catalysts with partial substitution of B in perovskite structures (Ni/CaZrO3, Ni/Ca(Zr0.8Ti0.2)O3, and Ni/Ca(Zr0.6Ti0.4)O3) were synthesized and compared with those of the Ni/Al2O3 catalyst. The perovskite oxide supports improved Ni dispersion by reducing the particle size and strengthening the Ni-support interaction. Higher gas yields and H2 selectivity were obtained using Ni-perovskite oxide catalysts rather than Ni/Al2O3. In particular, Ni/Ca(Zr0.8Ti0.2)O3 showed the highest activity and selectivity for H2 production because of the synergetic effect of metallic Ni and elements present in the perovskite structures caused by high catalytic activity coupled with enhanced oxygen mobility. Moreover, increasing the temperature promoted the yield of gas and H2 content. Overall, considering the outstanding advantages of perovskite oxides as supports for Ni catalysts is a promising prospect for H2 production via gasification technology.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Republic of Korea
| | - Yasin Khani
- School of Environmental Engineering, University of Seoul, Republic of Korea
| | - Abid Farooq
- School of Environmental Engineering, University of Seoul, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St, Zone 1, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - See Hoon Lee
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 54896 Jeonju, Republic of Korea; Department of Environment and Energy, Jeonbuk National University, 567 Jeonju, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Republic of Korea.
| |
Collapse
|
9
|
Tariq R, Inayat A, Shahbaz M, Zeb H, Ghenai C, Al-Ansari T, Kim J. Kinetic and thermodynamic evaluation of pyrolysis of jeans waste via coats-redfern method. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Murugesan P, Raja V, Dutta S, Moses JA, Anandharamakrishnan C. Food waste valorisation via gasification - A review on emerging concepts, prospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157955. [PMID: 35964752 DOI: 10.1016/j.scitotenv.2022.157955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Disposing of the enormous amounts of food waste (FW) produced worldwide remains a great challenge, promoting worldwide research on the utilization of FW for the generation of value-added products. Gasification is a significant approach for decomposing and converting organic waste materials into biochar, bio-oil, and syngas, which could be adapted for energy (hydrogen (H2) and heat) generation and environmental (removal of pollutants and improving the soil quality) applications. Employment of FW matrices for syngas production through gasification is one of the effective methods of energy recovery. This review explains different gasification processes (catalytic and non-catalytic) used for the decomposition of unutilized food wastes and the effect of operating parameters on H2-rich syngas generation. Also, potential applications of gasification byproducts such as biochar and bio-oil for effective valorization have been discussed. Besides, the scope of simulation to optimize the gasification conditions for the effective valorization of FW is elaborated, along with the current progress and challenges in the research to identify the feasibility of gasification technology for FW. Overall, this review concludes the sustainable route for conversion of unutilized food into hydrogen-enriched syngas production.
Collapse
Affiliation(s)
- Pramila Murugesan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Vijayakumar Raja
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India.
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India.
| |
Collapse
|
11
|
Moogi S, Lam SS, Chen WH, Ko CH, Jung SC, Park YK. Household food waste conversion to biohydrogen via steam gasification over copper and nickel-loaded SBA-15 catalysts. BIORESOURCE TECHNOLOGY 2022; 366:128209. [PMID: 36323373 DOI: 10.1016/j.biortech.2022.128209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Household food waste (FW) was converted into biohydrogen-rich gas via steam gasification over Ni and bimetallic Ni (Cu-Ni and Co-Ni) catalysts supported on mesoporous SBA-15. The effect of catalyst method on steam gasification efficiency of each catalyst was investigated using incipient wetness impregnation, deposition precipitation, and ethylenediaminetetraacetic acid metal complex impregnation methods. H2-TPR confirmed the synergistic interaction of the dopants (Co and Cu) and Ni. Furthermore, XRD and HR-TEM revealed that the size of the Ni particle varied depending on the method of catalyst synthesis, confirming the formation of solid solutions in Co- or Cu-doped Ni/SBA-15 catalysts due to dopant insertion into the Ni. Notably, the exceptional activity of the Cu-Ni/SBA-15-EMC catalyst in FW steam gasification was attributed to the fine distribution of the concise Ni nanoparticles (9 nm), which resulted in the highest hydrogen selectivity (62 vol%), gas yield (73.6 wt%). Likewise, Cu-Ni solid solution decreased coke to 0.08 wt%.
Collapse
Affiliation(s)
- Surendar Moogi
- School of Environmental Engineering, University of Seoul, 02504 Seoul, Republic of Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Chang Hyun Ko
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504 Seoul, Republic of Korea.
| |
Collapse
|
12
|
Valizadeh S, Hakimian H, Farooq A, Jeon BH, Chen WH, Hoon Lee S, Jung SC, Won Seo M, Park YK. Valorization of biomass through gasification for green hydrogen generation: A comprehensive review. BIORESOURCE TECHNOLOGY 2022; 365:128143. [PMID: 36265786 DOI: 10.1016/j.biortech.2022.128143] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Green and sustainable hydrogen from biomass gasification processes is one of the promising ways to alternate fossil fuels-based hydrogen production. First off, an overview of green hydrogen generation from biomass gasification processes is presented and the corresponding possible gasification reactions and the effect of respective experimental criteria are explained in detail. In addition, a comprehensive explanation of the catalytic effect on tar reduction and hydrogen generation via catalytic gasification is presented regarding the functional mechanisms of various types of catalysts. Furthermore, the commercialization aspects, the associated technical challenges and barriers, and the prospects of a biomass gasification process for green hydrogen generation are discussed. Finally, this comprehensive review provides the related advancements, challenges, and great insight of biomass gasification for the green hydrogen generation to realize a sustainable hydrogen society via biomass valorization.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hanie Hakimian
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Abid Farooq
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - See Hoon Lee
- Department of Mineral Res. and Energy Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Department of Environment & Energy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Myung Won Seo
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
13
|
Jeon W, Park JY, Kim MC, Lee SJ, Kim DK. Effect of oxidant on the epoxidation of methyl oleate over transition metal-based Al2O3 catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Zha Z, Wang K, Ge Z, Zhou J, Zhang H. Morphological and heat transfer characteristics of biomass briquette during steam gasification process. BIORESOURCE TECHNOLOGY 2022; 356:127334. [PMID: 35589040 DOI: 10.1016/j.biortech.2022.127334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The morphological evolution and heat transfer characteristics of biomass briquette greatly affect the directional regulation of target products during steam gasification process. In this work, a visual gasifier with an on-line temperature monitoring system was developed to investigate the coupling relationship between the morphological change and temperature distribution of biomass briquette. The gasification behaviors of biomass briquette at different temperatures and steam concentrations were comprehensively examined and compared. The shrinkage rate and heating rate of biomass briquette both reached the maximum at 1-2 min. The morphological evolution of biomass briquette in the heating process was shrinking particle mode, then changed to the shrinking core mode when the biomass temperature kept relatively stable. The high-quality syngas with a high H2/CO ratio of 3.07 at 50 vol% steam concentration and 700 °C was obtained, which were idealized to synthesize other fuels/chemicals.
Collapse
Affiliation(s)
- Zhenting Zha
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Kai Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Zefeng Ge
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Jinghao Zhou
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
15
|
Abstract
The problem of global warming and the emission of greenhouse gases is already directly affecting the world’s energy. In the future, the impact of CO2 emissions on the world economy will constantly grow. In this paper, we review the available literature sources on the benefits of using algae cultivation for CO2 capture to decrease CO2 emission. CO2 emission accounts for about 77% of all greenhouse gases, and the calculation of greenhouse gas emissions is 56% of all CO2 imports. As a result of the study of various types of algae, it was concluded that Chlorella sp. is the best at capturing CO2. Various methods of cultivating microalgae were also considered and it was found that vertical tubular bioreactors are emerging. Moreover, for energy purposes, thermochemical methods for processing algae that absorb CO2 from flue gases were considered. Of all five types of thermochemical processes for producing synthesis gas, the most preferred method is the method of supercritical gasification of algae. In addition, attention is paid to the drying and flocculation of biofuels. Several different experiments were also reviewed on the use of flue gases through the cultivation of algae biomass. Based on this literature review, it can be concluded that microalgae are a third generation biofuel. With the absorption of greenhouse gases, the growth of microalgae cultures is accelerated. When a large mass of microalgae appears, it can be used for energy purposes. In the results, we present a plan for further studies of microalgae cultivation, a thermodynamic analysis of gasification and pyrolysis, and a comparison of the results with other biofuels and other algae cultures.
Collapse
|
16
|
Moogi S, Jang SH, Rhee GH, Ko CH, Choi YJ, Lee SH, Show PL, Andrew Lin KY, Park YK. Hydrogen-rich gas production via steam gasification of food waste over basic oxides (MgO/CaO/SrO) promoted-Ni/Al 2O 3 catalysts. CHEMOSPHERE 2022; 287:132224. [PMID: 34826918 DOI: 10.1016/j.chemosphere.2021.132224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Food waste, a renewable resource, was converted to H2-rich gas via a catalytic steam gasification process. The effects of basic oxides (MgO, CaO, and SrO) with 10 wt% Ni/Al2O3 on the gasification properties of food waste were investigated using a U-shaped gasifier. All catalysts prepared by the precipitation method were analyzed by X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Ni/Al2O3 catalyst was reduced incompletely, and low nickel concentrations were detected on the surface of the alumina. The basic oxides minimized the number of acid sites and suppressed the formation of nickel-aluminate (NiAlxOy) phase in catalyst. In addition, the basic oxides shifted nickel-aluminate reduction reaction to lower temperatures. It resulted in enhancing nickel concentration on the catalyst surface and increasing gas yield and hydrogen selectivity. The low gas yield of the Ni/Al2O3 catalyst was attributed to the low nickel concentration on the surface. The maximum gas yield (66.0 wt%) and hydrogen selectivity (63.8 vol%) of the 10 wt% SrO- 10 wt% Ni/Al2O3 catalyst correlated with the highly dispersed nickel on the surface and low acidity. Furthermore, coke deposition during steam gasification varied with the surface acidity of the catalysts and less coke was formed on 10 wt% SrO- 10 wt% Ni/Al2O3 due to efficient tar cracking. This study showed that the steam gasification efficiency of the Ni/Al2O3 catalyst could be improved significantly by the addition of SrO.
Collapse
Affiliation(s)
- Surendar Moogi
- School of Environmental Engineering, University of Seoul, 02504, Seoul, South Korea
| | - Seong-Ho Jang
- Department of Bio-Environmental Energy, Pusan National Univ., 50463, Miryang, South Korea
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, 02504, Seoul, South Korea
| | - Chang Hyun Ko
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, 02504, Seoul, South Korea
| | - See Hoon Lee
- Department of Mineral Resource and Energy Engineering, Jeonbuk National University, 54896, Jeonju, South Korea
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504, Seoul, South Korea.
| |
Collapse
|
17
|
Farooq A, Jang SH, Lee SH, Jung SC, Rhee GH, Jeon BH, Park YK. Catalytic steam gasification of food waste using Ni-loaded rice husk derived biochar for hydrogen production. CHEMOSPHERE 2021; 280:130671. [PMID: 34162076 DOI: 10.1016/j.chemosphere.2021.130671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
The disposal of food waste (FW) is a major cause of environmental contamination. This study reports an environmentally friendly FW disposal method in the form of catalytic steam gasification using various types of Ni-loaded chars (untreated char, steam-treated char, and ZnCl2-treated char). The results were also compared with the gasification results from the Ni catalysts supported on commercial α-alumina (Ni/α-Al2O3). The Ni/steam-treated char showed the maximum hydrogen generation (0.471 mol/(g feedstock•g cat)) because of the high reducibility, high nickel dispersion, large amount of inherent K and Ca, and moderate surface area. The overall gas and H2 yield were observed in the following order: Ni/steam-treated char > Ni/ZnCl2 treated char > Ni/untreated char > Ni/α-Al2O3. Brunauer-Emmett-Teller analysis of various catalysts showed that the treated chars have a mesoporous structure, and the X-ray diffraction, X-ray fluorescence spectroscopy, scanning electron microscopy - energy dispersive spectroscopy showed that the presence of silica in the chars providing the stable support for the Ni loading and prevented coke formation. The chars obtained from biomass pretreatment could be a potential solution for preventing coke formation at high temperatures, thereby increasing the gas yield and enhancing hydrogen generation.
Collapse
Affiliation(s)
- Abid Farooq
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seong-Ho Jang
- Department of Bio-Environmental Energy, Pusan National University, Miryang, 50463, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resource and Energy Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Suncheon, 57923, Republic of Korea
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
18
|
Valizadeh S, Ko CH, Lee J, Lee SH, Yu YJ, Show PL, Rhee GH, Park YK. Effect of eggshell- and homo-type Ni/Al 2O 3 catalysts on the pyrolysis of food waste under CO 2 atmosphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112959. [PMID: 34116308 DOI: 10.1016/j.jenvman.2021.112959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/17/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
This study highlights the potential of pyrolysis of food waste (FW) with Ni-based catalysts under CO2 atmosphere as an environmentally benign disposal technique. FW was pyrolyzed with homo-type Ni/Al2O3 (Ni-HO) or eggshell-type Ni/Al2O3 (Ni-EG) catalysts under flowing CO2 (50 mL/min) at temperatures from 500 to 700 °C for 1 h. A higher gas yield (42.05 wt%) and a lower condensable yield (36.28 wt%) were achieved for catalytic pyrolysis with Ni-EG than with Ni-HO (34.94 wt% and 40.06 wt%, respectively). In particular, the maximum volumetric content of H2 (21.48%) and CO (28.43%) and the lowest content of C2-C4 (19.22%) were obtained using the Ni-EG. The formation of cyclic species (e.g., benzene derivatives) in bio-oil was also effectively suppressed (24.87%) when the Ni-EG catalyst and CO2 medium were concurrently utilized for the FW pyrolysis. Accordingly, the simultaneous use of the Ni-EG catalyst and CO2 contributed to altering the carbon distribution of the pyrolytic products from condensable species to value-added gaseous products by facilitating ring-opening reactions and free radical mechanisms. This study should suggest that CO2-assisted catalytic pyrolysis over the Ni-EG catalyst would be an eco-friendly and sustainable strategy for disposal of FW which also provides a clean and high-quality source of energy.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chang Hyun Ko
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resource and Energy Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yeon Jeong Yu
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
19
|
Kamyab H, Yuzir MA, Al-Qaim FF, Purba LDA, Riyadi FA. Application of Box-Behnken design to mineralization and color removal of palm oil mill effluent by electrocoagulation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-16197-z. [PMID: 34480301 DOI: 10.1007/s11356-021-16197-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, palm oil mill effluent (POME) was treated using electrocoagulation, whereby the influencing factors including voltage, electrolysis time, and electrolyte amount were optimized to achieve the highest chemical oxygen demand (COD) and color removal efficiencies. Graphite was selected as electrode material due to its performance better compared to aluminum and copper. Response surface methodology (RSM) was carried out for optimization of the electrocoagulation operating parameters. The best model obtained using Box-Behnken design (BBD) were quadratic for COD removal (R2 = 0.9844), color reduction (R2 = 0.9412), and oil and grease removal (R2 = 0.9724). The result from the analysis of variance (ANOVA) was obtained to determine the relationship between factors and treatment efficiencies. The experimental results under optimized conditions such as voltage 14, electrolysis time of 3 h, and electrolyte amount of 13.41 g/L show that the electrocoagulation process effectively reduced the COD (56%), color (65%), and oil and grease (99%) of the POME treatment. Graphical abstract.
Collapse
Affiliation(s)
- Hesam Kamyab
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Muhammad Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Fouad Fadhil Al-Qaim
- Department of Chemistry, Faculty of Sciences for Women, University of Babylon, Hilla, Iraq
| | - Laila Dina Amalia Purba
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Fatimah Azizah Riyadi
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Kim SH, Kumar G, Chen WH, Khanal SK. Renewable hydrogen production from biomass and wastes (ReBioH 2-2020). BIORESOURCE TECHNOLOGY 2021; 331:125024. [PMID: 33814292 DOI: 10.1016/j.biortech.2021.125024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Growing consumption of fossil reserves to meet the rising demand of energy has led to climate deterioration and simultaneous waste generation, urging modern society to find sustainable energy resource that can meet the growing energy demands and reduce greenhouse gas emissions and carbon footprints. In this aspect, hydrogen (H2) is one of the most promising sustainable clean fuels that has gained significant interest in recent years. This article highlights the major research progress on biohydrogen production from renewable bioresources such as organic wastes, lignocellulosic biomass, algal biomass, and industrial wastewaters. It summarizes the research highlights of manuscripts published in the special issue (VSI: ReBioH2-2020), which contains twenty-two articles, including seven critical reviews and fifteen research articles, focusing on biotechnological and thermochemical routes for biohydrogen production from renewable feedstocks. The major findings of the research works in this special issue can be used as a road-map for sustainable renewable hydrogen production from bioresources.
Collapse
Affiliation(s)
- Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
21
|
Yadav S, Singh D, Mohanty P, Sarangi PK. Biochemical and Thermochemical Routes of H
2
Production from Food Waste: A Comparative Review. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanjeev Yadav
- Shiv Nadar University Department of Chemical Engineering 201314 Gr. Noida India
| | - Dharminder Singh
- Shiv Nadar University Department of Chemical Engineering 201314 Gr. Noida India
| | - Pravakar Mohanty
- Govt. of India Department of Science and Technology 110016 New Delhi India
| | | |
Collapse
|