1
|
Alias A, Ramli M, Deventhiran KV, Siddique MNI, Yahaya N, Heděnec P. Diversity and composition of rare bacterial community in gut and vermicompost of Eudrilus eugeniae fed with multiple substrates during vermicomposting. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01257-5. [PMID: 40164890 DOI: 10.1007/s12223-025-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Vermicomposting has been recognized as a sustainable solution for the managing of organic waste, primarily because of the bacterial communities that drive microbial decomposition. However, while the roles of abundant bacteria in composting processes are well-documented, the contributions of rare bacteria remain underexplored. In this study, we investigated the diversity and composition of abundant and rare bacterial communities in gut of Eudrilus eugeniae and resulting vermicompost, comparing okara as a single substrate compared to a combination of more substrates, such as kitchen waste or okara and kitchen waste. Amplicon sequencing revealed a total of 3085 operational taxonomic units (OTUs), comprising 188 abundant OTUs and 2127 rare OTUs. Significant differences in bacterial community composition were observed between vermicompost and the earthworm gut, particularly in the rare bacterial communities, with distinct abundances of Gemmatimonadota, Desulfobacteria, Myxococcota, Acidobacteria, and Firmicutes. Interestingly, no significant differences were found between treatments in the abundant bacterial communities, suggesting that okara alone can sustain a bacterial community comparable to mixed substrates. However, rare bacterial communities were more sensitive to substrate variation, with okara fostering distinct rare microbial populations in the vermicompost and earthworm gut. Our results indicate okara can support both abundant and rare bacteria, producing compost with similar physico-chemical properties to those derived from mixed substrates. The study highlights the importance of rare bacterial communities in vermicomposting and demonstrates the potential of okara as a valuable resource for sustainable waste management and soil improvement.
Collapse
Affiliation(s)
- Amirah Alias
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Maisarah Ramli
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Khoseelaa Vijaya Deventhiran
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Md Nurul Islam Siddique
- Faculty of Marine Engineering Technology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Nurshieren Yahaya
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia.
| |
Collapse
|
2
|
Mugivhisa LL, Manganyi MC. Green Catalysis: The Role of Medicinal Plants as Food Waste Decomposition Enhancers/Accelerators. Life (Basel) 2025; 15:552. [PMID: 40283107 PMCID: PMC12028435 DOI: 10.3390/life15040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
The escalating global issue of food waste, valued at billions of USD annually and significantly impacting sustainability across social, economic, and environmental dimensions, necessitates innovative solutions to enhance waste management processes. Conventional decomposition techniques frequently encounter challenges related to inefficiencies and extended processing durations. This investigation examines the potential contributions of medicinal plants as green catalysts in the decomposition of food waste, utilizing their bioactive compounds to mitigate these obstacles. Medicinal plants facilitate the decomposition process through various mechanisms as follows: they secrete enzymes and metabolites that aid in the disintegration of organic matter, enhancing microbial activity and soil pH and structure. Furthermore, they foster nitrogen cycling and generate growth regulators that further optimize the efficiency of decomposition. The symbiotic associations between medicinal plants and microorganisms, including mycorrhizal fungi and rhizobacteria, are also instrumental in enhancing nutrient cycling and improving rates of decomposition. The utilization of medicinal plants in food waste management not only accelerates the decomposition process but also underpins sustainable practices by converting waste into valuable compost, thereby enriching soil health and lessening dependence on chemical fertilizers. This methodology is congruent with the 2030 Agenda for Sustainable Development and presents a plausible trajectory toward a circular economy and improved environmental sustainability.
Collapse
Affiliation(s)
| | - Madira C. Manganyi
- Department of Biological and Environmental Science, Sefako Makgatho Health Sciences University, P.O. Box 139, Ga-Rankuwa, Pretoria 0204, South Africa;
| |
Collapse
|
3
|
Hasan AK, Islam SS, Jahan M, Kheya SA, Uddin MR, Islam MS, Khomphet T. Synergistic Effects of Vermicompost and Biochar Amendments on Soil Fertility and Wheat Productivity in Bangladesh Floodplain Soils. SCIENTIFICA 2024; 2024:6624984. [PMID: 39664756 PMCID: PMC11634403 DOI: 10.1155/sci5/6624984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Biochar is gaining importance due to its potential to enhance soil health, crop yield, and quality. It may also promote more sustainable farming methods. This study evaluated the combined effects of biochar, vermicompost, and inorganic fertilizers on soil characteristics, growth, and yield in wheat. Ten different treatments were applied to wheat (cultivar BARI Gom-33). The tallest plants, highest total dry weight, and largest leaf area index were observed in plots where chemical fertilizers, rice husk biochar, poultry manure, and vermicompost were applied together. At harvest, the treatment containing 1/4 recommended fertilizer dose (RFD) + 1/4 poultry manure biochar + 1/4 rice husk biochar + 1/4 vermicompost produced the best yield and yield-contributing factors. The combination of biochar, vermicompost, and inorganic fertilizers increased grain production by 43.23%-79.48% compared with the control. These treatments also improved soil health by increasing available phosphorus, organic matter, carbon-to-nitrogen ratio, and organic carbon. In conclusion, the combined application of 1/4 RFD, 1/4 poultry manure biochar, 1/4 rice husk biochar, and 1/4 vermicompost can replace the sole use of chemical fertilizers and serve as a key component for sustainable crop production.
Collapse
Affiliation(s)
- Ahmed Khairul Hasan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shams Shaila Islam
- Department of Agronomy, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh
| | - Marina Jahan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sinthia Afsana Kheya
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Romij Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Shafiqul Islam
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Thanet Khomphet
- Department of Agricultural Technology, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
4
|
Zhou X, Yu Z, Deng W, Deng Z, Wang Y, Zhuang L, Zhou S. Hyperthermophilic composting coupled with vermicomposting stimulates transformation of organic matter by altering bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176676. [PMID: 39383961 DOI: 10.1016/j.scitotenv.2024.176676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Hyperthermophilic composting (HTC) has been proven to be an effective strategy to recycle organic wastes, while vermicomposting (VC) has been widely applied to produce humic fertilizer. The combination of HTC with VC (HVC) is expected to integrate the advantages of both. This study showed that HTC pre-fermentation provided plentiful substances such as dissolved organic matter (DOM) for the subsequent VC enriching humic acid (HA). Compared to thermophilic composting (TC), HVC significantly stimulated the degradation of organic matter (OM) and the production of N-rich HA, and incubated higher diversity of bacterial community. SHapley Additive exPlanations (SHAP), correlation network, Mantel test and PLS-LM model were constructed to identify the potential roles of the key bacterial groups contributing to OM transformation. Firmicutes (e.g., Bacillus and Tuberibacillus) dominant in HTC may mineralize and mobilize OM, providing affluent bioavailable nutrients as part of DOM for microbial metabolism and abundant precursors for HA formation in the further VC. Actinobacteriota (e.g., Microbacterium) and Bacteroidota (e.g., Flavobacterium and Parapedobacter) prominent in VC metabolized DOM, mineralized OM and produced HA probably by enhancing the metabolic activity involved in OM degradation and amino acid generation. However, when DOM was exhausted, some members especially Proteobacteria (e.g., Ochrobactrum, Devosia and Cellvibrio) would change their roles from promoter to inhibitor of mineralization and humification. Altering the nutrient bioavailability and the composition of bacterial community can regulate the mineralization, mobilization and humification of OM. Overall, this study provides new insights into the roles of bacteria participating in transforming organic wastes into HA-rich composts.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Wenkang Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ziwei Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Li J, Liu S, Xu Y, Xu C, Deng B, Cao H, Yuan Q. Optimizing biochar addition strategies in combined processes: Comprehensive assessment of earthworm growth, lignocellulose degradation and vermicompost quality. BIORESOURCE TECHNOLOGY 2024; 406:131031. [PMID: 38925402 DOI: 10.1016/j.biortech.2024.131031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
The sustainable management of agricultural waste is essential for curtailing environmental contamination. To address the shortcomings of single treatment methods, this study evaluated the feasibility of combining membrane-covered composting (MC) with vermicomposting. Based on this, the integrated effects of different biochar addition strategies on the combined process were investigated. The aim was to improve the efficiency of vermicomposting while eliminating the negative effects of biochar on earthworms. Addition of biochar before membrane-covered composting increased total earthworm biomass by 25.6 - 31.4 % and reproduction rate by 13.4 - 23.9 %. Specifically, the electrical conductivity (EC) (1061.0 - 1112.0 uS/cm) of the vermicompost was significantly reduced, while the total nutrient content (42.3 - 42.6 mg/g) and germination index (GI) (103.9 - 108.4 %) were maximized. Additionally, reductions in the carbon-to-nitrogen ratio and volatile content were observed. Overall, combination process is a promising approach to improve the quality of vermicomposting. The study's results offer a novel perspective on the value-added treatment of agricultural waste.
Collapse
Affiliation(s)
- Jun Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Sheng Liu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yang Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Chao Xu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Bo Deng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Hongliang Cao
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| |
Collapse
|
6
|
Zheng H, Wang M, Fan Y, Yang J, Zhao Z, Chen H, Ye Z, Zheng Z, Yu K. Reuse of composted food waste from rural China as vermicomposting substrate: effects on earthworms, associated microorganisms, and economic benefits. ENVIRONMENTAL TECHNOLOGY 2024; 45:2685-2697. [PMID: 36846968 DOI: 10.1080/09593330.2023.2184728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
ABSTRACTAerobic composting of food waste (FW) from rural China using a composting device results in a substantial financial burden on the government. This study aimed to assess the feasibility of mitigating this cost using vermicomposting of composted FW. The specific aims were to elucidate the effects of composted FW on earthworm growth and reproduction, reveal the changes in the physical and chemical properties of earthworm casts during vermicomposting, identify the microbial community structure associated with vermicomposting, and perform a financial analysis based on the yield of earthworms and earthworm casts. Mixing composted FW and mature cow dung in an equal ratio achieved the highest earthworm reproduction rate, where 100 adult earthworms produced 567 juvenile earthworms and 252 cocoons in 40 d. Earthworms reduce salt content of vermicomposting substrates by assimilating Na+ and promoting humification by transforming humin into humic and fulvic acid, thus producing earthworm casts with a high generation index > 80%. When composted FW was added to a vermicomposting substrate, a distinctive microbial community structure with alkaliphilic, halophilic, and lignocellulolytic microorganisms dominated the microflora. The dominant bacterial species was Saccharopolyspora rectivirgula, and the dominant fungal species changed from Kernia nitida to Coprinopsis scobicola. Furthermore, microbial genes for refractory organic matter and fat degradation were observed in Vibrio cholerae, Kernia nitida, and Coprinopsis scobicola. Financial analysis showed that vermicomposting has the potential to reduce the cost associated with FW disposal from $ 57 to $ 18/t.
Collapse
Affiliation(s)
- Huabao Zheng
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Min Wang
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Yueqin Fan
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Jian Yang
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Zhuoqun Zhao
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Hengyuan Chen
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Zhenwei Ye
- Office of Qingshanhu strict, Government of Linan district, Linan, People's Republic of China
| | - Zhanwang Zheng
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
- Zhejiang Sunda Public Environmental Protection Co. Ltd., Hangzhou, People's Republic of China
| | - Kefei Yu
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| |
Collapse
|
7
|
Yu Z, Xie C, Zhang Z, Huang Z, Zhou J, Wang C. Microbial fermentation and black soldier fly feeding to enhance maize straw degradation. CHEMOSPHERE 2024; 353:141498. [PMID: 38382720 DOI: 10.1016/j.chemosphere.2024.141498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
This study used an innovative synergistic microbial and insect approach to treat maize straw and kitchen waste substrates, including cyclic microbial fermentation and feeding of black soldier fly larvae (BSFL) using the fermented substrate. Increasing cycle numbers led to significantly increased cellulose, hemicellulose, and lignin degradation rates (DR) in the maize straw, which increased by 68.28%, 81.43% and 99.95%, respectively, compared to those in the blank group without frass addition. Moreover, according to the experimental results, it was revealed that the structure of lignocellulose, the composition and structure of the bacterial community in the BSFL gut and frass changed significantly after the addition of the previous cycle of frass treatment. Moreover, the differences in amplicon sequence variants (ASVs) between the gut and frass further increased. The relative abundances of Enterococcus and Actinobacteria in the gut and Gammaproteobacteria_unclassified and Dysgonomonas in the frass increased significantly, which may play a more positive role in lignocellulose degradation. In conclusion, this study showed that frass fermentation + BSFL feeding to degrade straw is a promising method and that frass fermentation is beneficial for the whole cycle. Furthermore, these findings underscore the beneficial impact of frass fermentation on the entire cycle.
Collapse
Affiliation(s)
- Zuojian Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Chenyang Xie
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhiyi Zhang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zezhao Huang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Junfeng Zhou
- School of Resources and Safety Engineering, Xingfa School of Mining Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China.
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| |
Collapse
|
8
|
Li J, Guo Z, Cui K, Chen X, Yang X, Dong D, Xi S, Wu Z, Wu F. Remediating thiacloprid-contaminated soil utilizing straw biochar-loaded iron and manganese oxides activated persulfate: Removal effects and soil environment changes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132066. [PMID: 37467608 DOI: 10.1016/j.jhazmat.2023.132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Thiacloprid (THI) has accumulated significantly in agricultural soil. Herein, a novel approach to removing THI was explored by straw biochar-loaded iron and manganese oxides (FeMn@BC) to activate the persulfate (PS). The factors influencing the removal of 5 mg kg-1 THI from the soil by FeMn@BC/PS were investigated, including FeMn@BC dosing, PS dosing, temperature, and soil microorganisms. The feasibility was demonstrated by the 75.22% removal rate of THI with 3% FeMn@BC and 2% PS at 7 days and a 92.50% removal rate within 60 days. Compared to the THI, NH4+-N and available potassium were 3.96 and 3.25 times, and urease and phosphatase activities were increased by 22.54% and 33.28% in the FeMn@BC/PS at the 15 days, respectively. THI was found to seriously alter the structure of the genus in the 15 days by 16 S rRNA analysis; however, the FeMn@BC/PS group alleviated the damage, compared to the THI with 658 more operational taxonomic units. Actinobacteriota accounted for 51.48% of the microbial community in the FeMn@BC/PS group after 60 days, possibly converting transition products of THI into smaller molecules. This article provides a novel insight into advanced oxidative remediation of soils.
Collapse
Affiliation(s)
- Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xing Chen
- Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Xi
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Zhangzhen Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
9
|
Liang J, Cheng Y, Ma Y, Yu X, Wang Z, Wu N, Wang X, Liu X, Xu X. Effects of straw addition on the physicochemical and microbial features of black soldier fly larvae frass derived from fish meat and bone meal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1435-1444. [PMID: 36951008 DOI: 10.1177/0734242x231160091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Black soldier fly larvae (BSFL) hold great promise for sustainable management of meat and bone meal (MBM), a kind of organic waste. Harvested BSFL frass can be used as soil amendment or organic fertilizer. This study evaluated the quality and microbial profile in the frass of BSFL, fed with fish MBM containing 0% (CK), 1% (T1), 2% (T2) and 3% (T3) of rice straw. Results suggested straw addition into fish MBM had no significant impacts on BSFL weight; however, straw addition remarkably affected waste reduction and conversion efficiency, as well as physicochemical properties including electric conductivity, organic matter (OM) and total phosphorus contents in frass. Fourier transform infrared analysis indicated that increasing levels of cellulose and lignin might not be fully degraded or transformed by BSFL when more straw was introduced into substrates. Straw addition had hardly significant influences on microbial richness or evenness in BSFL frass, only T3 treatment remarkably elevated the phylogenetic diversity value more than the control. Bacteroidetes, Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla. Genera Myroides, Acinetobacter and Paenochrobactrum maintained high abundances in all frass samples. Elements including OM, pH and Na were key factors in shaping the microbiological characteristics of BSFL frass. Our findings helped to understand the effects of fish MBM waste manipulation on BSFL frass qualities and contributed to the further application of BSFL frass.
Collapse
Affiliation(s)
- Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Yixian Cheng
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xiaohui Yu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
10
|
Chen Y, Li J, Zhao T, Zhang Y, Zhang L, Xu L. The temporal profile of GH 1 gene abundance and the shift in GH 1 cellulase-producing microbial communities during vermicomposting of corn stover and cow dung. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84035-84045. [PMID: 37354300 DOI: 10.1007/s11356-023-28341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Vermicomposting is a promising method for corn stover management to achieve bioresource recovery and environmental protection. Most β-glucosidases, which limit the cellulose degradation rate during vermicomposting of corn stover, belong to glycoside hydrolase family 1 (GH1). This study was conducted with different earthworm densities to quantify the GH1 gene abundance and investigate the evolution of GH1 cellulase-producing microbial communities using qPCR and pyrosequencing. The results showed that β-glucosidase activity, GH1 gene abundance, TOC, and microbial communities carrying the GH1 gene were affected by processing time and earthworm density. After introducing earthworms, β-glucosidase activity increased to 1.90-2.13 U/g from 0.54 U/g. The GH1 gene abundance of treatments with earthworms (5.82E+09-6.70E+09 copies/g) was significantly higher than that of treatments without earthworms (2.48E+09 copies/g) on Day 45. Earthworms increased the richness of microbial communities. The relative abundances of Sphingobium and Dyadobacter, which are dominant genera harboring the GH1 gene, were increased by earthworms to peak values of 23.90% and 11.20%, respectively. Correlation analysis showed that Sphingobium, Dyadobacter, Trichoderma, and Starkeya were positively associated with β-glucosidases. This work sheds new light on the mechanism of cellulose degradation during vermicomposting at the molecular level.
Collapse
Affiliation(s)
- Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Jiaolin Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Tingting Zhao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, Mississippi, MS, 39567, USA
| | - Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Lixin Xu
- College of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
11
|
Wu N, Yu X, Liang J, Mao Z, Ma Y, Wang Z, Wang X, Liu X, Xu X. A full recycling chain of food waste with straw addition mediated by black soldier fly larvae: Focus on fresh frass quality, secondary composting, and its fertilizing effect on maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163386. [PMID: 37031930 DOI: 10.1016/j.scitotenv.2023.163386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Bioconversion of food waste (FW) by black soldier fly larvae (BSFL) has great potential in generating high-quality organic fertilizers (insect frass). However, the stabilization of BSFL frass and its fertilizing effect on crops remain largely unexplored. Here, a full recycling chain mediated by BSFL from FW source to end application was systematically evaluated. BSFL were reared on FW containing 0 %-6 % of rice straw. Straw addition alleviated the high salinity of BSFL frass (Na decreased from 5.9 % to 3.3 %). Specifically, 4 % straw addition significantly enhanced larval biomass and conversion rates, producing fresh frass with a higher humification degree. Lactobacillus (57.0 %-79.9 %) strongly prevailed in almost all fresh frass. A 32-day secondary composting process continued to increase the humification degree of 4 % straw-added frass. Major indicators e.g., pH, organic matter (OM), NPK of final compost basically met the organic fertilizer standard. Application of composted frass fertilizers (0 %-6 %) substantially improved soil OM, nutrients availability and enzyme activities. Moreover, 2 % frass application had optimal enhancing impacts on the height and weight, root activity, total phosphorus and net photosynthetic rate of maize seedling. These findings gave an insight into the BSFL-mediated FW conversion process and proposed the rational application of BSFL frass fertilizer in maize.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaohui Yu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiyue Mao
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
12
|
Chen Y, Zhang Y, Shi X, Shi E, Zhao T, Zhang Y, Xu L. The contribution of earthworms to carbon mineralization during vermicomposting of maize stover and cow dung. BIORESOURCE TECHNOLOGY 2023; 368:128283. [PMID: 36368490 DOI: 10.1016/j.biortech.2022.128283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Vermicomposting is an eco-friendly way to manage agricultural wastes. Maize stover and cow dung were used as the substrates. Earthworm ingestion and respiration models were employed to quantify earthworm contributions to carbon mineralization. Decreased substrate C/N and slightly increased earthworm tissue C/N were observed. Earthworm biomass carbon first increased and then decreased. Bacterial biomass carbon decreased, while fungi increased and maintained a steady level until the end of the experiment. Bacteria dominated throughout the process. The earthworm feeding rate showed a decreasing trend. In the early, middle and later stages, earthworms directly led to carbon mineralization rates of 0.030, 0.032 and 0.023 g C m-2 month-1, and indirectly led to 0.197, 0.211 and 0.153 g C m-2 month-1, respectively. It indicated that the driving force exerted by earthworms on microbes was more important. This study provides some new insights into the quantification of earthworm contributions to carbon mineralization during vermicomposting.
Collapse
Affiliation(s)
- Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, MS 39567, United States
| | - Xiong Shi
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Enhui Shi
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Tingting Zhao
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yi Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Lixin Xu
- College of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
13
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
14
|
Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:96-110. [PMID: 35576892 DOI: 10.1016/j.plaphy.2022.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity has become a major threat to land degradation worldwide. The application of organic amendments is a promising alternative to restore salt-degraded soils and alleviate the deleterious effects of soil salt ions on crop growth and productivity. The aim of present study was to explore the potential impact of biochar and vermicompost, applied individually or in combination, on soil enzyme activity and the growth, yield and quality of Hybrid Pennisetum plants suffered moderate salt stress (5.0 g kg-1 NaCl in the soil). Our results showed that biochar and/or vermicompost promoted Na+ exclusion and K+ accumulation, relieved stomatal limitation, increased leaf pigment contents, enhanced electron transport efficiency and net photosynthesis, improved root activity, and minimized the oxidative damage in Hybrid Pennisetum caused by soil salinity stress. In addition, soil enzymes were also activated by biochar and vermicompost. These amendments increased the biomass and crude protein content, and decreased the acid detergent fiber and neutral detergent fiber contents in salt-stressed Hybrid Pennisetum. Biochar and vermicompost addition increased the biomass and quality of Hybrid Pennisetum due to the direct effects related to plant growth parameters and the indirect effects via soil enzyme activity. Finally, among the different treatments, the use of vermicompost showed better results than biochar alone or the biochar-compost combination did, suggesting that the addition of vermicompost to the soil is an effective and valuable method for reclamation of salt-affected soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jiaxuan Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
15
|
Huang K, Guan M, Chen J, Xu J, Xia H, Li Y. Biochars modify the degradation pathways of dewatered sludge by regulating active microorganisms during gut digestion of earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154496. [PMID: 35288128 DOI: 10.1016/j.scitotenv.2022.154496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar can accelerate the degradation and mineralization of organic matter during vermicomposting of sludge and the resulted vermicompost is termed as vermi-char containing active enzymes and microorganisms. However, the mechanisms by which biochars affect vermicomposting of the dewatered sludge during gut digestion of earthworms remain unclear. This study aimed to investigate the effects of biochar on the degradation pathways of organic matter and the involved active microorganisms in dewatered sludge during gut digestion of earthworms. The earthworms Eisenia fetida were fed on three sludge substrates; 1) sludge mixed with 5% corncob biochar, 2) sludge mixed 5% rice husk biochar, and 3) sludge without biochar. The results showed that dissolved organic carbon significantly decreased by 5.65%-21.81% after the 5-day gut digestion of earthworms (P < 0.05) and that biochar addition could accelerate the decomposition of aromatic protein-like substances. Contrarily, the nitrate in earthworms casting with biochars significantly increased by 47.32%-122.64% (P < 0.05) compared with the control. The numbers of active bacteria and eukaryotes in earthworm castings with biochars significantly enhanced by 1.34-1.45 times and 0.45-5.91 times, respectively, than the control (P < 0.05). Active Actinobacteria and Bacteroidetes dominated the castings with biochars significantly enriched by 76.18%-88.83% and 4.02%-18.59% (P < 0.05), respectively, compared to control. As for eukaryotes, the biochars amendment increased Cercozoa abundance by 114.23%-136.31% but decreased Annelida by 55.61%-75.88% in the castings. The partial least squares path model revealed that the biochars could change the content and structure of organic matter in earthworm castings during vermicomposting of sludge by affecting environmental factors, microbial abundance, and microbial community composition.
Collapse
Affiliation(s)
- Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China.
| | - Mengxin Guan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jin Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junjie Xu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yiwen Li
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| |
Collapse
|
16
|
Dawar K, Khan A, Mian IA, Khan B, Ali S, Ahmad S, Szulc P, Fahad S, Datta R, Hatamleh AA, Al-Dosary MA, Danish S. Maize productivity and soil nutrients variations by the application of vermicompost and biochar. PLoS One 2022; 17:e0267483. [PMID: 35544552 PMCID: PMC9094532 DOI: 10.1371/journal.pone.0267483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/10/2022] [Indexed: 11/19/2022] Open
Abstract
Poor soil organic matter is one of the major causes of the deterioration of soil health. Most soils fertility is also decreased when enough organic carbon is not present in the soil. Maize is most susceptible to this poor soil fertility status. A significant amount of maize growth and yield is lost when it is cultivated in low organic matter and poor fertility soil. To overcome this issue organic amendments can play an imperative role. Biochar and vermicompost are organic amendments that can not only improve organic residues but also increase soil nutrient concentration. The current experiment was conducted to explore the sole and combined application of both organic amendments with recommended NPK fertilizer. Four treatments were tested i.e., control, biochar (BC1), vermicompost (VC1) and VC1+BC1 with and without nitrogen (N), phosphorus (P) and potassium (K) in the experiment. Results showed that VC1+BC1+NPK performed significantly best for improvement in maize plant height (6.25 and 3.00%), 1000 grains weight (30.48 and 29.40%), biological yield (18.86 and 43.12%) and grains yield (30.58 and 39.59%) compared to BC0+VC0+NPK and control respectively. A significant improvement in soil N, P and K also validated the efficacious role of VC1+BC1+NPK over BC0+VC0+NPK and control. Treatment VC1+BC1+NPK is recommended for the achievement of better maize growth and yield in poor organic matter soils. More investigations are suggested in variable climatic conditions to declare VC1+BC1+NPK as the best amendment compared to control for enhancing soil N, P and K status as well as maize productivity.
Collapse
Affiliation(s)
- Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ahtesham Khan
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Bushra Khan
- Department of Soil and Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Shamsher Ali
- Department of Soil and Environmental Sciences, Amir Muhammad Khan Campus Mardan, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sagheer Ahmad
- Faculty of Agricultural Sciences and Technology, Department of Agronomy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Dojazd, Poznan, Poland
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rahul Datta
- Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Mendel University in Brno, Zemedelska1, Brno, Czech Republic
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Subhan Danish
- Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
- Faculty of Agricultural Sciences and Technology, Department of Soil Science, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
17
|
Wu N, Wang X, Mao Z, Liang J, Liu X, Xu X. Bioconversion of chicken meat and bone meal by black soldier fly larvae: Effects of straw addition on the quality and microbial profile of larval frass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114579. [PMID: 35078063 DOI: 10.1016/j.jenvman.2022.114579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Meat and bone meal (MBM) is a kind of animal waste with high nutritive values. Bioconversion of MBM by black soldier fly larvae (BSFL) has great potential to obtain high-quality organic fertilizers. However, limited information is available on MBM waste manipulation to enhance BSFL frass quality. In the present study, BSFL were fed with chicken MBM containing increasing levels of rice straw (CK (0%), T1 (1%), T2 (1%), and T3 (3%)). The effects of straw addition into MBM on the quality and microbial profile of BSFL frass were evaluated. Results showed that MBM amended with straw did not significantly affect the body weight of BSFL and most of the nutrients (e.g. pH, EC, TN, TP and Na) in larval frass. Compared to other treatments, T1 sample had the highest organic matter (OM) value, implying proper straw addition could increase OM contents in frass. Fourier transform infrared (FTIR) analysis showed that straw addition might enhance the decomposition of aliphatic carbons and polysaccharides during MBM digestion process. Moreover, T1 sample had the highest microbial richness and Shannon diversity indices. It was supposed that proper straw addition in MBM helped build a more balanced diet and contributed to the BSFL gut health, consequently stimulating the gut microbe-mediated substances transformation or decomposition and promoting the microbial diversity in frass. Compared to CK, straw addition had significant influence on the abundances of Firmicutes, Bacteroidetes and Fusobacteria in frass. Elements including OM, TK and Na played important roles in shaping the microbial profile of BSFL frass.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| | - Zhiyue Mao
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
18
|
Pottipati S, Kundu A, Kalamdhad AS. Process optimization by combining in-vessel composting and vermicomposting of vegetable waste. BIORESOURCE TECHNOLOGY 2022; 346:126357. [PMID: 34798248 DOI: 10.1016/j.biortech.2021.126357] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The process parameters of in-vessel rotary drum composting (RDC) with vermicomposting (VC) were investigated for the conversion of vegetable waste into vermicompost. After 7-day initial thermophilic exposure (maximal 51.5 °C in 24 h), the partially degraded RDC waste was divided into R1 (no vermiculture), R2, R3, and R4 (with Eudrilus eugeniae; Eisenia fetida; and Perionyx excavates monocultures, respectively). R3 derived vermicompost displayed maximum optimal process parameters and desirable compost qualities. Against the constant 2.2% nitrogen content of R1, an increase from 1.4 to 4.15% was seen in R3, with a 52.5% reduction in total organic carbon (TOC). A clear testimony to the enhanced nutritional content and fitness of the novel combination of RDC thermophilic biodegradation and E. fetida based vermicomposting. In an environmentally compatible mode, the faster organic deconstruction in 27 days could substantially alter organic waste treatment in the immediate future.
Collapse
Affiliation(s)
- Suryateja Pottipati
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Ashmita Kundu
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
19
|
Deng S, Li P, Wu Y, Tang H, Cheng S, Thunders M, Qiu J, Li Y. Eco-risk management of tylosin fermentation residues using vermicomposting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114126. [PMID: 34844053 DOI: 10.1016/j.jenvman.2021.114126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Tylosin fermentation residues (TFR) pose an ecotoxicological risk through antibiotic resistant bacteria (ARBs) and their corresponding genes (ARGs). This study evaluated the ecotoxicity of TFR to soil biological activity, and further explored the mechanisms of vermicomposting to reduce the toxicological risk. The results showed that tylosin (TYL) was moderately degradable with a half-life (t1/2) of 37.5 d, inducing 28-44% inhibition rate of nitrogen transformation in soil, and the EC50 of earthworm avoidance was 880 mg/kg. The 30-d vermicomposting reduced the pH and OM content, while increased the EC and TN content, accelerated compost maturation (C/N ratio up to 20), and enriched the microbial community. ARGs were reduced by earthworm through removal of TYL (>70% degradation, t1/2 of <20 d), inhibiting abundance of intI1 and ARBs. We conclude that vermicomposting is an efficient method for TFR treatment and its eco-risk management.
Collapse
Affiliation(s)
- Songge Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiyi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Tang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shujun Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Michelle Thunders
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, 6242, New Zealand
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
20
|
Ferraz Ramos R, Almeida Santana N, de Andrade N, Scheffer Romagna I, Tirloni B, de Oliveira Silveira A, Domínguez J, Josemar Seminoti Jacques R. Vermicomposting of cow manure: Effect of time on earthworm biomass and chemical, physical, and biological properties of vermicompost. BIORESOURCE TECHNOLOGY 2022; 345:126572. [PMID: 34921917 DOI: 10.1016/j.biortech.2021.126572] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Vermicomposting is a biological process for efficient cattle manure treatment, but the vermicomposting time determines the quality of the vermicompost. The objective of this study was to evaluate the effect of cattle manure vermicomposting time on earthworm biomass and the changes in physical, chemical, and biological in properties of the vermicompost. The cattle manure was inoculated with Eisenia andrei earthworms and conducted vermicomposting for 0, 15, 30, 45, 60, and 120 days. The analysis of 44 chemical, physical, and biological properties allowed the vermicomposting process to be divided into initial (<45 days) and final (45-120 days) phases. The initial phase was characterized by high microbial activity and the final by high physical-chemical transformation of the vermicompost and an increase in earthworm density. The organic matter aromaticity increased until the 45th day, subsequently decreasing. Although 30 d of vermicompost are sufficient to obtain a high-quality organic fertilizer, 120 d are necessary for producing matrices.
Collapse
Affiliation(s)
- Rodrigo Ferraz Ramos
- Department of Soil, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Natielo Almeida Santana
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Nariane de Andrade
- Department of Soil, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Izabelle Scheffer Romagna
- Department of Soil, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Bárbara Tirloni
- Department of Chemistry, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Andressa de Oliveira Silveira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Pontevedra, Spain
| | | |
Collapse
|
21
|
Alshehrei F, Ameen F. Vermicomposting: A management tool to mitigate solid waste. Saudi J Biol Sci 2021; 28:3284-3293. [PMID: 34121866 PMCID: PMC8176053 DOI: 10.1016/j.sjbs.2021.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Solid waste management is a serious ecological problem in Saudi Arabia due to rapid industrialization, population growth and urbanization. Recycling and sorting are in their infancy in Saudi Arabia and huge amounts of mixed household and industrial wastes are still dumped without any pre-treatment. Solid waste management techniques such as incineration, pyrolysis and gasification have high investment costs. Composting and vermicomposting of solid organic waste have been considered as an economically viable and sustainable waste management technologies. However, wastes often contain pollutants, such as heavy metals that are toxic to decomposer micro-organisms. Thus, heavy metals are a challenge for the successful biological treatments. Waste may also contain a mixture of organic pollutants that certain microbes, such as micro-algae are known to degrade. The present review paper focuses on understanding the role of vermicomposting as a management tool in mitigating solid organic wastes. It is noteworthy to mention that the microbes also play a pivotal role in the degradation process, wherein the enzymes secreted during the process aid in decomposition of complex molecules into simpler compounds. Also, the extracellular polymeric substance secreted by the earthworm under metal stress serves a source of nutrient for the bacteria to flourish. Henceforth the goal of discussion in present review shows the way forward in using vermicomposting as a novel approach in dealing with solid organic waste.
Collapse
Affiliation(s)
- Fatimah Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah 21955, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|