1
|
Guo W, Zhang Z, Wang B, Xue L, Feng Y. Novel insights into released hydrochar particle derived from typical high nitrogen waste biomass: Special properties, microstructure and formation mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:517-528. [PMID: 39742586 DOI: 10.1016/j.wasman.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/25/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Hydrothermal carbonization (HTC) treatment is a promising method to transforming waste biomass into valuable resources and promoting waste recycling, especially for high nitrogen feedstocks. While small-sized hydrochar particle (≥0.45 μm) released from its solid product (hydrochar) application demonstrated large knowledge gaps compared with its original hydrochar and "secondary char" from model biomass (like glucose, sucrose, and starch). Thus, hydrochar particles derived from typical high nitrogen biomass, kitchen garbage (KG), and blue-green algae mud (AM), were collected to investigate their basic properties, microstructures and corresponding formation mechanisms. The results were: 1) the micron-sized hydrochar particles with yields as 3.42-7.86 wt% presented special characteristics, i.e., poor porous structures, moderate pH value, negative surface charge and higher surface hydrophobicity (contact angles as 95.00-117.67°) relative to original hydrochar and secondary char; 2) micronuclei aromatic core and hydrophobic hydrothermal polymers (methoxyl groups/alkyl chain with ether and carboxy groups) were identified in these hydrochar microparticles (HMPs) by jointly using differential thermogravimetry (DTG) analysis, Gaussian fitting model and thermogravimetric analysis combined with Fourier transform infrared spectrometry and mass spectrometry (TG-FTIR-MS) analysis; 3) polycondensation/cyclization reactions and Maillard/Mannich reaction in the KGHMPs, as well as solid-solid conversion and Maillard/Mannich reaction, polymerization reaction in AMHMPs core and its shell were proposed as their dominated formation mechanisms. The conclusions of this study indicated strong binding of HMPs with NH4+, metals, and hydrophobic contaminants, and further reinforcing these application effects as soil fertilizer and decontaminant in soil/water for the N conversion, which also significantly depend on HTC temperature and feedstock.
Collapse
Affiliation(s)
- Wenjing Guo
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
2
|
Ji R, Yang Y, Wu Y, Zhu C, Min J, Liu C, Zhang L, Cheng H, Xue J, Zhou D. Capturing differences in the release potential of dissolved organic matter from biochar and hydrochar: Insights from component characterization and molecular identification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177209. [PMID: 39471945 DOI: 10.1016/j.scitotenv.2024.177209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Biochar and hydrochar have garnered widespread attention owing to their excellent performance in environmental remediation, carbon sequestration, and resource utilization from biowaste. Studies on the release potential of dissolved organic matter (DOM) have been limited, and the distinction between biochar and hydrochar remains unclear. In this study, pine sawdust was utilized as a model precursor with the aim of comparing the release quantity, components, and properties of DOM from biochar (BDOM) and hydrochar (HDOM) under various simulated conditions. The amount of DOM released by hydrochar (38.20-190.49 g/kg) was significantly greater than that released by biochar (0.57-11.96 g/kg), and more DOM was released at higher temperatures and pH values. BDOM consists of three categories of components, namely, humic-like, protein-like, and benzoic acid-like and tyrosine-like substances compounds, whereas HDOM consists of four categories of components, namely, two categories of humic-like compounds and two categories of protein-like compounds. By using ESI-FT-ICR-MS technology, 8586 compounds in BDOM and 6428 compounds in HDOM were identified. A total of 4665 unique compounds were found in BDOM, 1416 unique compounds were found in HDOM under alkaline release conditions, and HDOM contained more unique compounds than those found in other environments. CRAM/lignin-like compounds made up the majority of the released DOM and reached 31.01-65.35 % for BDOM and 54.79-73.05 % for HDOM. These findings revealed significant differences in the release potential of DOM from biochar and hydrochar, and further behavior research is needed to guide future applications of char materials in the environment and agriculture fields.
Collapse
Affiliation(s)
- Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Yiting Yang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yudong Wu
- Yangjiang Town Agricultural Technology Extension Service Center in Gaochun District of Nanjing, Nanjing 211311, PR China
| | - Changyin Zhu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ju Min
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Chenwei Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
3
|
Ge M, Wang B, Chen B, Xie H, Sun H, Sun K, Feng Y. Hydrochar and Its Dissolved Organic Matter Aged in a 30-Month Rice-Wheat Rotation System: Do Primary Aging Factors Alter at Different Stages? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3019-3030. [PMID: 38308619 DOI: 10.1021/acs.est.3c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Hydrochar, recognized as a green and sustainable soil amendment, has garnered significant attention. However, information on the aging process in soil and the temporal variability of hydrochar remains limited. This study delves deeper into the interaction between hydrochar and soil, focusing on primary factors influencing hydrochar aging during a 30-month rice-wheat rotation system. The results showed that the initial aging of hydrochar (0-16 months) is accompanied by the development of specific surface area and leaching of hydrochar-derived dissolved organic matter (HDOM), resulting in a smaller particle size and reduced carbon content. The initial aging also features a mineral shield, while the later aging (16 to 30 months) involves surface oxidation. These processes collectively alter the surface charge, hydrophilicity, and composition of aged hydrochar. Furthermore, this study reveals a dynamic interaction between the HDOM and DOM derived from soil, plants, and microbes at different aging stages. Initially, there is a preference for decomposing labile carbon, whereas later stages involve the formation of components with higher aromaticity and molecular weight. These insights are crucial for understanding the soil aging effects on hydrochar and HDOM as well as evaluating the interfacial behavior of hydrochar as a sustainable soil amendment.
Collapse
Affiliation(s)
- Mengting Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingfa Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
4
|
Li H, Li D, Xu S, Wang Z, Chen X, Ding Y, Chu Q, Sha Z. Hydrothermal carbonization of biogas slurry and cattle manure into soil conditioner mitigates ammonia volatilization from paddy soil. CHEMOSPHERE 2023; 344:140378. [PMID: 37806332 DOI: 10.1016/j.chemosphere.2023.140378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Hydrothermal carbonization of biogas slurry and animal manure into hydrochar could enhance waste recycling waste and minimize ammonia (NH3) volatilization from paddy fields. In this study, cattle manure-derived hydrochar prepared in the presence of Milli-Q water (CMWH) and biogas slurry (CMBSH), and biogas slurry-based hydrochar embedded with zeolite (ZHC) were applied to rice-paddy soil. The results demonstrated that CMBSH and ZHC treatments could significantly mitigate the cumulative NH3 volatilization and yield-scale NH3 volatilization by 27.9-45.2% and 28.5-45.4%, respectively, compared to the control group (without hydrochar addition), and significantly correlated with pH and ammonium-nitrogen (NH4+-N) concentration in floodwater. Nitrogen (N) loss via NH3 volatilization in the control group accounted for 24.9% of the applied N fertilizer, whereas CMBSH- and ZHC-amended treatments accounted for 13.6-17.9% of N in applied fertilizer. The reduced N loss improved soil N retention and availability for rice; consequently, grain N content significantly increased by 6.5-14.9% and N-use efficiency increased by 6.4-16.0% (P < 0.05), respectively. Based on linear fitting results, NH3 volatilization mitigation resulted from lower pH and NH4+-N concentration in floodwater that resulted from the acidic property and specific surface area of hydrochar treatments. Moreover, NH3-oxidizing archaea abundance in hydrochar-treated soil decreased by 40.9-46.9% in response to CMBSH and ZHC treatments, potentially suppressing NH4+-N transformation into nitrate and improving soil NH4+-N retention capacity. To date, this study applied biogas slurry-based hydrochar into paddy soil for the first time and demonstrated that ZHC significantly mitigated NH3 and increased N content. Overall, this study proposes an environmental-friendly strategy to recycle the wastes, biogas slurry, to the paddy fields to mitigate NH3 volatilization and increase grain yield of rice.
Collapse
Affiliation(s)
- Huiting Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Detian Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhan Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenqi Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xu Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yuling Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingnan Chu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, 28223, Spain.
| | - Zhimin Sha
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Ji R, Zhou Y, Cai J, Chu K, Zeng Y, Cheng H. Release characteristics of hydrochar-derived dissolved organic matter: Effects of hydrothermal temperature and environmental conditions. CHEMOSPHERE 2023; 321:138138. [PMID: 36791817 DOI: 10.1016/j.chemosphere.2023.138138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Much research has been done on the preparation and application of hydrochars, but research on the release characteristics of hydrochar-derived dissolved organic matter (HDOM) is very limited; clarifying the release characteristics of HDOM is important for understanding and adjusting the environmental behaviour of hydrochar. Herein, the potential release of HDOM from rice straw-derived hydrochars prepared at different hydrothermal temperatures was investigated under various potential environmental conditions for the first time. The total release quantity and humification degree of HDOM decreased with increasing hydrothermal temperature. The critical dividing line for various hydrothermal reactions, decomposition and polymerization, was in the range of 240 °C-260 °C. Alkaline condition increased the HDOM release amount (up to 299 mg g-1), molecular weight (as high as 423 Da) and molecular diversity (8857 compounds) from rice straw-derived hydrochars. The unique substances of HDOM released under alkaline condition were mainly distributed in lipids-like substances, CRAM/lignins-like substances, aromatic structures, and tannins-like substances, while few unique substances were found under acidic condition. Additionally, CRAM/lignins-like substances were the most abundant in all HDOM samples, reaching 82%, which were relatively stable and could achieve carbon sequestration in different environments. The findings provided a new insight on understanding the potential environment behaviors of hydrochar.
Collapse
Affiliation(s)
- Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China
| | - Yue Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jinbang Cai
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China
| | - Kejian Chu
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China.
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
6
|
Feng Y, Du H, Wulandari T, Poinern GEJ, Jiang ZT, Fawcett D, Hassan N, Xue L, Yang L. Hydrochar amendments stimulate soil nitrous oxide emission by increasing production of hydroxyl radicals and shifting nitrogen functional genes in the short term: A culture experiment. CHEMOSPHERE 2022; 302:134771. [PMID: 35500635 DOI: 10.1016/j.chemosphere.2022.134771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The application of waste biomass-derived hydrochar to soil may cause extremely intensive nitrous oxide (N2O) fluxes that can challenge our current mechanistic understanding of the global nitrogen cycle in the biosphere. In this study, two waste biomasses were used to prepare cyanobacterial biomas-derived hydrochar (CHC) and wheat straw-derived hydrochar (SHC) for short-term incubation experiments to identify their effects and mechanisms of waste biomass-derived hydrochar on soil N2O efflux, with time-series samples collected for N2O efflux and soil analysis. The results showed that CHC and SHC caused short-term bursts of N2O effluxes without nitrogen inputs. Moreover, the enrichment of exogenous organics and nutrients at the hydrochar-soil interface was identified as the key factor for enhancing N2O fluxes, which stimulated microbial nitrification (i.e., increased gene copy number of ammonia oxidizing bacteria) and denitrification (i.e., increased gene copy number of nitrate and N2O reducing bacteria) processes. The concentrations of Fe (II) and hydroxyl radicals (HO•) were 6.49 and 5.63 times higher, respectively, in the hydrochar layer of CHC than SHC amendment. Furthermore, structural equation models demonstrated that HO•, as well as soil microbiomes, played an important role in driving N2O fluxes. Together, our findings provide a deeper insight into the assessment and prognosis of the short-term environmental risk arising from agricultural waste management in integrated agriculture. Further studies under practical field application conditions are warranted to verify the findings.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Haiyan Du
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Triana Wulandari
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Gerrard Eddy Jai Poinern
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Zhong-Tao Jiang
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Derek Fawcett
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Naveed Hassan
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
7
|
He L, Wang B, Cui H, Yang S, Wang Y, Feng Y, Sun X, Feng Y. Clay-hydrochar composites return to cadmium contaminated paddy soil: Reduced Cd accumulation in rice seed and affected soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155542. [PMID: 35489518 DOI: 10.1016/j.scitotenv.2022.155542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Excess cadmium (Cd) in rice precipitated by Cd contamination in paddy soils is a global human health threat and rational response is urgently needed. In this study, attapulgite-modified hydrochar (CA) and the montmorillonite-modified hydrochar (CM) were utilized in Cd-contaminated paddy soils at 0.5% (w/w) and 1% (w/w) application rates to investigate the effects of these clay-hydrochar composites on rice growth and soil Cd availability. The results show that the utility of CA and CM resulted in a significant increase in rice yield, especially at 1% application rate, which extended rice yield by 46.7-50.0% compared to 0.5% application rate. This is related to the Cd fixation and nutrient sequestration of the acidic functional groups on the surface of CA and CM. Additionally, CA-1% and CM-1% reduced the Cd concentration in rice seeds by 26.9-28.1% relative to the control. Notably, CA-1% showed the capacity to passivate Cd at the early stage of rice transplanting, lowering the proportion of Cd in the ion exchange state by 41.6% compared to the control, and this passivation effect persisted until the late stage of transplanted rice. The soil microbial community consequences showed that CA and CM did not significantly change the horizontal composition of the soil bacterial phylum and species diversity, indicating that CA and CM had excessive soil microbial adaptability. Moreover, results of correlation and Canonical Correspondence Analysis confirm that microbial genera responded significantly to the soil Cd morphologies, revealing the importance of CA and CM in the remediation of Cd-contaminated soils by influencing microorganisms. Our findings provide clay-hydrochar composites as a low-cost approach to effectively mitigate soil Cd contamination and improve the security and quality of rice.
Collapse
Affiliation(s)
- Lili He
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Shengmao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Yuying Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Key Laboratory for Combined Farming and Raising, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Product Quality, Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Murdoch Applied Innovation Nanotechnology Research Group, Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 5150, Australia.
| | - Xiaolong Sun
- Institute of Agricultural Economics and Development, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Key Laboratory for Combined Farming and Raising, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Product Quality, Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
8
|
Wu M, Li P, Li G, Liu K, Gao G, Ma S, Qiu C, Li Z. Using Potential Molecular Transformation To Understand the Molecular Trade-Offs in Soil Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11827-11834. [PMID: 35880861 DOI: 10.1021/acs.est.2c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the chemical composition and molecular transformation in soil dissolved organic matter (DOM) is important to the global carbon cycle. To address this issue, ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was applied to investigate DOM molecules in 36 paddy soils collected from subtropical China. All the detected 7576 unique molecules were divided into seven compound groups, and nine trade-off relationships between different compound groups were revealed based on principal component analysis and Pearson's correlation. An optimized method was developed to evaluate all potential molecular transformations in DOM samples. The concept of thermodynamics was introduced to evaluate the identified molecular transformations and classify them as thermodynamically favorable (TFP) and thermodynamically limited (TLP) processes. Here, we first tried to understand the molecular trade-offs by using the potential molecular transformations. All the nine trade-offs could be explained by molecular transformations. Six trade-offs had bases of biochemical reactions, and the trade-off-related direct transformations could explain the content variations of carbohydrate-like, condensed aromatic-like, tannin-like, and lignin-like compounds in TLP. More reasonable explanations existed in the TLP rather than TFP, which demonstrated the critical role of external energy in the molecular transformation of soil DOM.
Collapse
Affiliation(s)
- Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Pengfa Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Guilong Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Kai Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Guozhen Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Shiyu Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Cunpu Qiu
- Zhenjiang College, Zhenjiang 212028, P. R. China
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| |
Collapse
|
9
|
Bona D, Scrinzi D, Tonon G, Ventura M, Nardin T, Zottele F, Andreis D, Andreottola G, Fiori L, Silvestri S. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114894. [PMID: 35334400 DOI: 10.1016/j.jenvman.2022.114894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The work concerns the study of the hydrochar from digestate and hydrochar co-compost characterization as amendments. The processes for hydrochar and co-compost production were described in Part 1 of this work (Scrinzi et al., 2022). The amendment properties of hydrochar (produced at 180-200-220 °C for 3 h) and co-composts (25%, 50%, and 75% hydrochar percentage of digestate substitution) were assessed by phytotoxicity, plant growth bioassay, and soil effect. Different seeds species (Lepidium sativum, Cucumis sativus, and Sorghum bicolor sp.) were dosed at increased concentrations using both wet raw amendments and their water extracts. The chemical characterization showed phytotoxic compounds content depending on both the initial feedstock (digestate) and the HTC process; at the same time, the analysis highlighted the reduction of these compounds by composting (organic acid, polyphenols, salt concentration). The dose-response was analyzed by the Cedergreen-Streibig-Ritz model and the half-maximal effective concentration (EC50) was calculated based on this equation. The soil properties and GHG emissions measurements (CH4, CO2, N2O, and NH3) highlighted the effect on N dynamics and on soil respiration induced by substrates. The HC200 soil application determined a significant impact on CO2 and N2O emission and NH3 volatilization (10.82 mol CO2/m2; 51.45 mmol N2O/m2; 112 mol NH3/m2) and a significant reduction of total N and TOC (46% of TKN and 49% of TOC). The co-compost (75%) showed specific effects after soil application compared to other samples an increase of available P (48%), a greater content of nitrogen (1626 mg/kg dry basis), and a reduction of organic carbon (17%). Our results demonstrate the good quality of co-compost and at the same time the validity of this post-treatment for addressing many issues related to hydrochar use in the soil as an amendment, confirming the suitability of HTC process integration for digestate treatment in anaerobic digestion plants.
Collapse
Affiliation(s)
- Daniela Bona
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Giustino Tonon
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Fabio Zottele
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Daniele Andreis
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy.
| | - Silvia Silvestri
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| |
Collapse
|
10
|
Li D, Cui H, Cheng Y, Xue L, Wang B, He H, Hua Y, Chu Q, Feng Y, Yang L. Chemical aging of hydrochar improves the Cd 2+ adsorption capacity from aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117562. [PMID: 34426395 DOI: 10.1016/j.envpol.2021.117562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Hydrochar (HC) serves as a promising adsorbent to remove the cadmium from aqueous solution due to porous structure. The chemical aging method is an efficient and easy-operated approach to improve the adsorption capacity of HC. In this study, four chemical aging hydrochars (CAHCs) were obtained by using nitric acid (HNO3) with mass fractions of 5% (N5-HC), 10% (N10-HC), and 15% (N15-HC) to age the pristine HC (N0-HC) and remove the Cd2+ from the aqueous solution. The results displayed that the N15-HC adsorption capacity was 19.99 mg g-1 (initial Cd2+ concentration was 50 mg L-1), which increased by 7.4 folds compared to N0-HC. After chemical aging, the specific surface area and oxygen-containing functional groups of CAHCs were increased, which contributed to combination with Cd2+ by physical adsorption and surface complexation. Moreover, ion exchange also occurred during the adsorption process of Cd2+. These findings have important implications for wastewater treatment to transform the forestry waste into a valuable adsorbent for Cd2+ removal from water.
Collapse
Affiliation(s)
- Detian Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu, 241003, China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu, 241003, China
| | - Yueqin Cheng
- Nanjing Station of Quality Protection in Cultivated Land, Nanjing, 210036, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse/School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huayong He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Yun Hua
- College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain and Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
11
|
Cheng H, Ji R, Yao S, Song Y, Sun Q, Bian Y, Wang Z, Zhang L, Jiang X, Han J. Potential release of dissolved organic matter from agricultural residue-derived hydrochar: Insight from excitation emission matrix and parallel factor analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146712. [PMID: 33812102 DOI: 10.1016/j.scitotenv.2021.146712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Potential release quantity and quality of dissolved organic matter (DOM) from hydrochar (HDOM) in various environmental conditions were investigated. Corn cobs were utilized as model agricultural residue to prepare the hydrochar. Four extracts, ultra-pure water, acid solution, alkali solution and salt solution, and two temperatures, 20 °C and 60 °C, were adopted to imitate various environmental conditions. Excitation-emission spectrophotometry with parallel factor analysis was used to evaluate the chemical properties of HDOM. The results showed that the dissolved organic carbon in the HDOM was high, ranging from 46 to 268 mg g-1. Four components were confirmed in the HDOM: mixed substances of humic-like and protein-like components, marine humic-like substances, terrestrial humic-like substances and tyrosine-like substances. Alkalinity and high temperature conditions could enhance the leaching amount of HDOM, particularly humic-like substances, and change the relative proportion of components and the chemical quality. In addition, values of the fluorescence indexes indicated that the HDOM was high microbial availability. Released HDOM may result in significant impacts in ecosystem functionality. These findings reveal the potential release characteristics of HDOM in the environment, opening new doors to understanding the environmental impacts of hydrochar and guiding its rational application.
Collapse
Affiliation(s)
- Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Huaian, Jiangsu 223100, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China.
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Huaian, Jiangsu 223100, PR China
| |
Collapse
|