1
|
Sun J, Wang X, He Y, Han M, Li M, Wang S, Chen J, Zhang Q, Yang B. Environmental fate of antibiotic resistance genes in livestock farming. Arch Microbiol 2025; 207:120. [PMID: 40214801 DOI: 10.1007/s00203-025-04320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
As emerging environmental pollutants, antibiotic resistance genes (ARGs) are prevalent in livestock farms and their surrounding environments. Although existing studies have focused on ARGs in specific environmental media, comprehensive research on ARGs within farming environments and their adjacent areas remains scarce. This review explores the sources, pollution status, and transmission pathways of ARGs from farms to the surrounding environment. Drawing on the "One Health" concept, it also discusses the potential risks of ARGs transmission from animals to human pathogens and the resulting impact on human health. Our findings suggest that the emergence of ARGs in livestock farming environments primarily results from intrinsic resistance and genetic mutations, while their spread is largely driven by horizontal gene transfer. The distribution of ARGs varies according to the type of resistance genes, seasonal changes, and the medium in which they are present. ARGs are disseminated into the surrounding environment via pathways such as manure application, wastewater discharge, and aerosol diffusion. They may be absorbed by humans, accumulating in the intestinal microbiota and subsequently affecting human health. The spread of ARGs is influenced by the interplay of microbial communities, antibiotics, heavy metals, emerging pollutants, and environmental factors. Additionally, we have outlined three control strategies: reducing the emergence of ARGs at the source, controlling their spread, and minimizing human exposure. This article provides a theoretical framework and scientific guidance for understanding the cross-media migration of microbial resistance in livestock farming environments.
Collapse
Affiliation(s)
- Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China
| | - Jia Chen
- Shijiazhuang University, Shijiazhuang, 050035, China
| | - Qiang Zhang
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, 22# Xi'nong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Zhao K, Si T, Liu S, Liu G, Li D, Li F. Co-metabolism of microorganisms: A study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176561. [PMID: 39362550 DOI: 10.1016/j.scitotenv.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The widespread use of antibiotics has resulted in large quantities of antibiotic residues entering aquatic environments, which can lead to the development of antibiotic-resistant bacteria and antibiotic-resistant genes, posing a potential environmental risk and jeopardizing human health. Constructing a microbial co-metabolism system has become an effective measure to improve the removal efficiency of antibiotics by microorganisms. This paper reviews the four main mechanisms involved in microbial removal of antibiotics: bioaccumulation, biosorption, biodegradation and co-metabolism. The promotion of extracellular polymeric substances for biosorption and extracellular degradation and the regulation mechanism of enzymes in biodegradation by microorganisms processes are detailed therein. Transformation pathways for microbial removal of antibiotics are discussed. Bacteria, microalgae, and microbial consortia's roles in antibiotic removal are outlined. The factors influencing the removal of antibiotics by microbial co-metabolism are also discussed. Overall, this review summarizes the current understanding of microbial co-metabolism for antibiotic removal and outlines future research directions.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Tingting Si
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Donghao Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Chen Z, Ren J, Yun Z, Wen Q, Fu Q, Qiu S. Effects of agricultural mulch film on swine manure composting: Film degradation and nitrogen transformation. BIORESOURCE TECHNOLOGY 2024; 406:131042. [PMID: 38936678 DOI: 10.1016/j.biortech.2024.131042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The utilization of biodegradable mulch films (bio-MFs) is essential for agricultural safety. This study explored the effects of no MF (CK), aging bio-MF (BM), non-aging bio-MF (NBM), and aging polyethylene (PE)-MF (PEM) on swine manure composting. The results demonstrated that outdoor aging (45 days) accelerated the macroscopic degradation of bio-MF in the BM. A reduction in NH4+-N and NH3 emissions in the initial composting was observed owing to an increase in the carbon source or the bulking effect provided by the MFs. N2O emissions from days 9 to 21 were higher in the PEM than other treatments because of the formation of anaerobic zone in the MF-based aggregates. An obvious increase of amoA in PEM indicated a promoted nitrification during the maturation phase, meanwhile the increase of NO2--N and aggregate promoted denitrification. Altogether, MF influenced composting through the synergistic effects of increasing the carbon source, bulking effect, and aggregates.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jie Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Zerui Yun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, Heilongjiang 150090, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
4
|
Su Y, Qian J, Wang J, Mi X, Huang Q, Zhang Y, Jiang Q, Wang Q. Unraveling the mechanism of norfloxacin removal and fate of antibiotics resistance genes (ARGs) in the sulfur-mediated autotrophic denitrification via metagenomic and metatranscriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171328. [PMID: 38428600 DOI: 10.1016/j.scitotenv.2024.171328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The co-contamination of antibiotics and nitrogen has attracted widespread concerns due to its potential harm to ecological safety and human health. Sulfur-driven autotrophic denitrification (SAD) with low sludge production rate was adopted to treat antibiotics laden-organic deficient wastewater. Herein, a lab-scale sequencing batch reactor (SBR) was established to explore the simultaneous removal of nitrate and antibiotics, i.e. Norfloxacin (NOR), as well as microbial response mechanism of SAD sludge system towards NOR exposure. About 80.78 % of NOR was removed by SAD sludge when the influent NOR level was 0.5 mg/L, in which biodegradation was dominant removal route. The nitrate removal efficiency decreased slightly from 98.37 ± 0.58 % to 96.58 ± 1.03 % in the presence of NOR. Thiobacillus and Sulfurimonas were the most abundant sulfur-oxidizing bacteria (SOB) in SAD system, but Thiobacillus was more sensitive to NOR. The up-regulated genes related to Xenobiotics biodegradation and metabolism and CYP450 indicated the occurrence of NOR biotransformation in SAD system. The resistance of SAD sludge to the exposure of NOR was mainly ascribed to antibiotic efflux. And the effect of antibiotic inactivation was enhanced after long-term fed with NOR. The NOR exposure resulted in the increased level of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs). Besides, the enhanced ARG-MGE co-existence patterns further reveals the higher horizontal mobility potential of ARGs under NOR exposure pressures. The most enriched sulfur oxidizing bacterium Thiobacillus was a potential host for most of ARGs. This study provides a new insight for the treatment of NOR-laden wastewater with low C/N ratio based on the sulfur-mediated biological process.
Collapse
Affiliation(s)
- Yan Su
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| | - Jing Wang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Xiaohui Mi
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Qiong Huang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China; Xi'an Yitong Thermal Technology Service Co., Ltd., Xi'an 710000, PR China
| | - Yichu Zhang
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Qi Jiang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Fu Q, Chen Z, Zhu C, Wen Q, Bao H, Wu Y. Size matters: Powder biochar promotes the elimination of antibiotics resistance genes and potential hosts during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167384. [PMID: 37797762 DOI: 10.1016/j.scitotenv.2023.167384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Livestock manure faced acute environmental pollution and ecology risky caused by antibiotic resistance genes (ARGs). This study investigated the effects of biochar particle size including powder biochar (75 μm, PB), and granular biochar (2 mm, GB) on ARGs variation during the aerobic composting. The results showed that the total relative abundance (RA) of the ARGs decreased significantly in all the treatments after composting. While compared to the removal efficiency of total RA in the control (CK), PB decreased by 90.99 % and GB increased by 93.25 %, and both PB and GB removed MGEs completely. Sulfonamide antibiotic resistance genes were the main contributor of the ARGs rebounding. PB addition could hinder the rebounding of sulfonamide antibiotic resistance genes during the later stage of the composting. Co-occurrence network analysis showed that the addition of biochar (both types) increased the complexity of the microbial community the competition of inter-phylum, which was indicated by the higher number of edge and density and lower positive connection. The different ARGs removal efficiency in these two treatments might be that PB promoted the competition both inter-phylum and potential hosts-other microbes, resulted in fewer kinds and abundance of ARGs hosts, while GB increased the stability of ARGs hosts making it more resistant to environment changes. Totally, compared with the global adjustment strategy of microbial communities, more exclusive methods focusing on the controlling of ARGs hosts should be explored to decrease the ecological risk of composting products during composting process.
Collapse
Affiliation(s)
- Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Chengwu Zhu
- Beijing Municipal Constructure (Group) Co., Ltd, Beijing 100045, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, China
| |
Collapse
|
6
|
Xuehan F, Xiaojun G, Weiguo X, Ling Z. Effect of the addition of biochar and wood vinegar on the morphology of heavy metals in composts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118928-118941. [PMID: 37922076 DOI: 10.1007/s11356-023-30645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
In the experiment, the morphology of heavy metals (Pb, Cr, Cd, and Ni, HMs) was characterized using flame atomic absorption spectroscopy. In addition, Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) were used to characterize the correlation between environmental factors and metal morphology in the rotting compost from several angles. The results showed that the humus treated with wood vinegar solution had a high degree of humification and rich aromatic structure. FTIR spectroscopy confirmed that the degree of humus aromatization gradually increased during the composting process, which enhanced the complexation of humus (HS) with HMs but had less effect on Ni. In addition, the optimum concentration of wood vinegar (WV) was determined to be 1.75%. The results of the study showed that in the Pb passivation treatment group, the proportion of soluble (Red) and exchangeable states (Exc) converted to oxidized (Oxi) and residual states (Res) was 8%, 14%, 6%, 1%, and 12% in the CK, T1, T2, T3, and T4 treatment groups, respectively; in the Cr passivation treatment group, the proportion of Cr-Red and Cr-Exc converted to oxidized and residual states was 31%, 33%, 25%, 29%, and 25%; in the Cd passivation treatment group, the proportions of Cd-Red and Cd-Exc converted to oxidized and residual states were 5%, 15%, 4%, 9%, and 11%, respectively; whereas the Ni treatment group did not show any significant passivation effect. The proportion of Pb-Oxi was relatively stable, Cr-Oxi was converted to Cr-Res, whereas Cd showed the conversion of Cd-Oxi to Cd-Exc. SUVA254 and SUVA280 showed significant positive correlations with Pb-Res, Cr-Res and Ni-Res, and significant positive correlations with moisture content (MC); whereas MC was significantly negatively correlated with each form of HMs. Total potassium (TK), total nitrogen (TN), and both carbon (TOC) were negatively correlated with Pb-Res and Pb-Exc. Structural equation modeling verified the relationship between environmental factors and HMs, and the composting results showed that the addition of biochar (BC) and a higher percentage of WV could increase compost decomposition and passivate HMs to improve its agronomic function.
Collapse
Affiliation(s)
- Fu Xuehan
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Guo Xiaojun
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Xu Weiguo
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Zhou Ling
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China.
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China.
| |
Collapse
|
7
|
Li S, Li X, Chang H, Zhong N, Ren N, Ho SH. Comprehensive insights into antibiotic resistance gene migration in microalgal-bacterial consortia: Mechanisms, factors, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166029. [PMID: 37541493 DOI: 10.1016/j.scitotenv.2023.166029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
With the overuse of antibiotics, antibiotic resistance gene (ARG) prevalence is gradually increasing. ARGs are considered emerging contaminants that are broadly concentrated and dispersed in most aquatic environments. Recently, interest in microalgal-bacterial biotreatment of antibiotics has increased, as eukaryotes are not the primary target of antimicrobial drugs. Moreover, research has shown that microalgal-bacterial consortia can minimize the transmission of antibiotic resistance in the environment. Unfortunately, reviews surrounding the ARG migration mechanism in microalgal-bacterial consortia have not yet been performed. This review briefly introduces the migration of ARGs in aquatic environments. Additionally, an in-depth summary of horizontal gene transfer (HGT) between cyanobacteria and bacteria and from bacteria to eukaryotic microalgae is presented. Factors influencing gene transfer in microalgal-bacterial consortia are discussed systematically, including bacteriophage abundance, environmental conditions (temperature, pH, and nutrient availability), and other selective pressure conditions including nanomaterials, heavy metals, and pharmaceuticals and personal care products. Furthermore, considering that quorum sensing could be involved in DNA transformation by affecting secondary metabolites, current knowledge surrounding quorum sensing regulation of HGT of ARGs is summarized. In summary, this review gives valuable information to promote the development of practical and innovative techniques for ARG removal by microalgal-bacterial consortia.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Nianbing Zhong
- Liangjiang International College, Chongqing University of Technology, Chongqing 401135, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
8
|
Zhou S, Li H, Wu Z, Li S, Cao Z, Ma B, Zou Y, Zhang N, Liu Z, Wang Y, Liao X, Wu Y. The addition of nano zero-valent iron during compost maturation effectively removes intracellular and extracellular antibiotic resistance genes by reducing the abundance of potential host bacteria. BIORESOURCE TECHNOLOGY 2023:129350. [PMID: 37352990 DOI: 10.1016/j.biortech.2023.129350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Applying compost to soil may lead to the spread of antibiotic resistance genes (ARGs) in the environment. Therefore, removing ARGs from compost is critical. In this study, for the first time, nano zero-valent iron (nZVI) was added to compost during the maturation stage to remove ARGs. After adding 1 g/kg of nZVI, the abundance of total intracellular and total extracellular ARGs was decreased by 97.62% and 99.60%, and that of total intracellular and total extracellular mobile genetic elements (MGEs) was decreased by 92.39% and 99.31%, respectively. A Mantel test and network analysis indicated that the reduction in potential host bacteria and intI1 after nZVI treatment promoted the removal of intracellular and extracellular ARGs. The addition of nZVI during composting reduced the horizontal transfer of ARGs and improve the total nitrogen and germination index of compost, allowing it to meet the requirements for organic fertilizers.
Collapse
Affiliation(s)
- Shizheng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Hualing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Zhiyin Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Si Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan, China
| | - Ziyu Liu
- Jinnuo Biotech Co.Ltd., Beijing, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; National Engineering Research Center for Breeding Swine Industry, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.
| |
Collapse
|
9
|
Wanyan R, Pan M, Mai Z, Xiong X, Su W, Yang J, Yu Q, Wang X, Han Q, Li H, Wang G, Wu S. Distribution and influencing factors of antibiotic resistance genes of crayfish (Procambarus clarkii) intestine in main crayfish breeding provinces in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159611. [PMID: 36273569 DOI: 10.1016/j.scitotenv.2022.159611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The propagation of antibiotic resistance genes (ARGs) has become a global public health concern. However, the distribution and influencing factors of ARGs, especially high-risk ARGs, in the gut of aquaculture animals remain unclear. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to determine crayfish gut microbiota and ARGs collected from 40 culture ponds in major crayfish farming provinces of China. We detected 74 ARGs in crayfish gut. Among them, the beta-lactamase and tetracycline resistance genes were dominant. The total ARG abundance was the highest in Hubei Province. High-risk ARGs were also found in crayfish gut, and ermB had the highest abundance and distributed in Anhui, Hubei, Henan and Jiangxi Province. In addition, opportunistic pathogens (Streptococcus, Aeromonas and Acinetobacter) might be potential hosts for ARGs, including high-risk ARGs. Finally, habitat, environmental factors (NO3-N, pH and temperature), microbial alpha diversity and mobile genetic elements (MGEs) showed significant influence on ARGs profiles. Generally, our results illustrate that ARGs are prevalent in crayfish gut and may pose potential risk to human health, which will help develop targeted strategies for the risk management and assessment of ARGs in the aquaculture.
Collapse
Affiliation(s)
- Ruijun Wanyan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Assessment Impacts of Ozone on Salmonella Typhimurium and Escherichia coli O157:H7 in Liquid Dairy Waste. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Liquid dairy manure, which is produced in enormous quantities in flush dairy manure management systems, is commonly used as an alternative to chemical fertilizers. It provides nutrient benefits to crops and soils. While dairy waste is a well-accepted and widely used fertilizer, the presence of indicator organisms and human pathogens in manure may lead to pathogen contamination in crops and soils. This study is focused on the examination of ozone gas-based sterilization. In the past, ozone (O3) has been used for sanitizing various foods and solid surfaces, but the potential of O3 for eliminating human pathogens in liquid dairy waste is not studied yet. Pathogens such as Salmonella Typhimurium and Escherichia coli O157:H7 are reported to be present in liquid dairy manure, and this research evaluated the effects of various levels of ozone on the survival of these two pathogens. We designed a continuous type O3 treatment system that has four major components: (1) ozone generator using oxygen; (2) ozone concentration control by mixing with pure air; (3) continuous monitoring of ozone concentrations; and (4) ozone experiment chambers. Various levels of ozone (43.26, 87.40, and 132.46 mg·L−1) were produced in the ozone system, and subsequently, ozone was diffused through liquid manure. Liquid manure was exposed to ozone for multiple durations (30, 60, and 120 min). To determine the effectiveness of O3 in eliminating pathogens, time-series samples were collected and analyzed for determining the levels of S. typhimurium and E. coli O157:H7. Preliminary results showed that ozone concentrations of 132.46 mg/L, and exposure time of 120 min resulted in the reduced levels of E. coli and Salmonella. Low levels of ozone and limited exposure time were found to be less effective in pathogen removal potentially due to high solid contents. Additional studies carrying out experiments to evaluate the impacts of solids in combination with ozone concentrations will provide further insights into developing full-scale ozone-based treatment systems.
Collapse
|
11
|
Yang K, Feng X, Lin H, Xu J, Yang C, Du J, Cheng D, Lv S, Yang Z. Insight into the rapid elimination of low-concentration antibiotics from natural waters using tandem multilevel reactive electrochemical membranes: Role of direct electron transfer and hydroxyl radical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127239. [PMID: 34844357 DOI: 10.1016/j.jhazmat.2021.127239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Herein, we reported a tandem multilevel reactive electrochemical membrane (REM) system was promising for the rapid and complete removal of trace antibiotics from natural waters. Results indicate that a four-stage REM module-in-series system achieved steady over 98% removal of model antibiotic norfloxacin (NOR, 100 μg·L-1) from wastewater treatment plant final effluent and surface water with a residence time of 5.4 s, and the electric energy consumption was only around 0.007-0.011 kWh·m-3. As for the oxidation mechanism, direct electron transfer (DET) oxidation process played an important role in NOR rapid oxidation, enabling the REM system to tolerate various •OH scavenges in natural waters, including natural organic matters, Cl- and HCO3-, even at very high concentration levels. Meanwhile, •OH-mediated indirect oxidation process promotes the oxidation and mineralization of NOR. Although the DET-dominated oxidation mechanism makes the REM system cannot achieve the complete mineralization of NOR with residence times of few seconds, the antibacterial activity from NOR was completely eliminated. This REM system featured effective removal performance of trace contaminants with low energy cost and was tolerant to complex waster matrix, suggesting that it could be a powerful supplementary step for wastewater/water treatment.
Collapse
Affiliation(s)
- Kui Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Xingwei Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Jiale Xu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Cao Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Juan Du
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
12
|
Luo J, Du W, Chu S, Xu Y, Zhang Q, Zhang L, Cheng X, Huang W, Cao J, Su Y. Effects of persulfate treatment on the fates of antibiotic resistance genes in waste activated sludge fermentation process and the underlying mechanism. BIORESOURCE TECHNOLOGY 2022; 345:126474. [PMID: 34864181 DOI: 10.1016/j.biortech.2021.126474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotic resistance genes (ARGs) in waste activated sludge (WAS) fermentation was investigated with persulfate (PS)-based treatment. ARGs affiliated with multidrug (mexP), macrolide (blaOXA-129), tetracycline (tetB), sulfonamide (sul1), and vancomycin (vanRG) types were significantly decreased by PS/Fe treatment. Mechanistic investigations revealed that PS/Fe possessed oxidating potential and exhibited devastating effects on WAS fermentation. First, PS/Fe promoted cell structure damage, which facilitated ARGs release from potential hosts. A co-occurrence network analysis indicated that Fe/PS suppressed the proliferation of potential host bacteria. In addition, the PS/Fe treatment induced the decreased abundance of certain functional genes involved in pathways associated with ARGs dissemination. Finally, variation partitioning analysis demonstrated that the microbial community structure exhibited more vital effects on ARGs fates than physicochemical factors (i.e., pH and ORP) and gene expression (i.e., two-component system). This work provided a deeper understanding of the critical factors used to determine ARGs fates during WAS fermentation.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Siqin Chu
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences. East China Normal University, Shanghai 200241, China
| | - Yulu Xu
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences. East China Normal University, Shanghai 200241, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences. East China Normal University, Shanghai 200241, China.
| |
Collapse
|
13
|
Huang DQ, Fu JJ, Li ZY, Fan NS, Jin RC. Inhibition of wastewater pollutants on the anammox process: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150009. [PMID: 34492484 DOI: 10.1016/j.scitotenv.2021.150009] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been recognized as an efficient nitrogen removal technology. However, anammox bacteria are susceptible to surrounding environments and different pollutants, which limits the extensive application of the anammox process worldwide. Numerous researchers investigate the effects of various pollutants on the anammox process or bacteria, and related findings have also been reviewed with the focused on their inhibitory effects on process performance and microbial community. This review systemically summarized the recent advances in the inhibition, mechanism and recovery process of traditional and emerging pollutants on the anammox process over a decade, such as organics, metals, antibiotics, nanoparticles, etc. Generally, low-concentration pollutants exhibited a promotion on the anammox activity, while high-concentration pollutants showed inhibitory effects. The inhibitory threshold concentration of different pollutants varied. The combined effects of multipollutant also attracts more attentions, including synergistic, antagonistic and independent effects. Additionally, remaining problems and research needs are further proposed. This review provides a foundation for future research on the inhibition in anammox process, and promotes the proper operation of anammox processes treating different types of wastewaters.
Collapse
Affiliation(s)
- Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yue Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Zhang Z, Li X, Liu H, Zamyadi A, Guo W, Wen H, Gao L, Nghiem LD, Wang Q. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. BIORESOURCE TECHNOLOGY 2022; 344:126197. [PMID: 34710608 DOI: 10.1016/j.biortech.2021.126197] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Sludge from wastewater treatment plants can act as a repository and crucial environmental provider of antibiotic resistance genes (ARGs). Over the past few years, people's knowledge regarding the occurrence and removal of ARGs in sludge has broadened remarkably with advancements in molecular biological techniques. Anaerobic and aerobic digestion were found to effectively achieve sludge reduction and ARGs removal. This review summarized advanced detection and removal techniques of ARGs, in the last decade, in the sludge digestion field. The fate of ARGs due to different sludge digestion strategies (i.e., anaerobic and aerobic digestion under mesophilic or thermophilic conditions, and in combination with relevant pretreatment technologies (e.g., thermal hydrolysis pretreatment, microwave pretreatment and alkaline pretreatment) and additives (e.g., ferric chloride and zero-valent iron) were systematically summarized and compared in this review. To date, this is the first review that provides a comprehensive assessment of the state-of-the-art technologies and future recommendations.
Collapse
Affiliation(s)
- Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Melbourne & Adelaide SA 5001, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haiting Wen
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
15
|
Pereira AR, Paranhos AGDO, de Aquino SF, Silva SDQ. Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26380-26403. [PMID: 33835340 DOI: 10.1007/s11356-021-13784-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Aline Gomes de Oliveira Paranhos
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Sérgio Francisco de Aquino
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil.
| |
Collapse
|