1
|
Celem E, Tarakci Z. Investigation of the use of fruit pomace and glycerol in the encapsulation of Lactobacillus acidophilus (THT 030101) in pullulan-based electrospun nanofibers. Carbohydr Polym 2025; 356:123341. [PMID: 40049941 DOI: 10.1016/j.carbpol.2025.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
Pomace, which contains valuable components such as dietary fiber, is the most important by-product of the fruit juice industry. Since orange and kiwi are the most widely cultivated fruits globally and in our region, respectively, this study aimed to utilise soluble dietary fiber-rich aqueous extracts of the pomace of these fruits (OWE and KWE, respectively) for nano-encapsulation of Lactobacillus acidophilus cells in electrospun pullulan nanofibers. Additionally, the objective was to encapsulate glycerol, a cryoprotectant, in conjunction with the cells. It was found that the viscosity of the pullulan polymer solution decreased significantly and the conductivity increased significantly with the addition of KWE/OWE, and therefore the diameters of the nanofibers formed were significantly smaller (81-170 nm, P < 0.05). The study found that the survival rates of L. acidophilus cells were significantly higher (97 % and 93.78 %, respectively; P < 0.05) in the encapsulation using KWE/OWE in combination with pullulan. However, the addition of glycerol had no significant effect on cell viability. In conclusion, it has been determined that OWE and KWE have positive effects on the production of pullulan-based nanofibers and the encapsulation of L. acidophilus cells by electrospinning technique; that the L. acidophilus and glycerol can be encapsulated together in electrospun nanofibers.
Collapse
Affiliation(s)
- Ersin Celem
- Food Technology, Department of Food Processing, Ulubey Vocational College, Ordu University, Ulubey, Ordu 52850, Turkey.
| | - Zekai Tarakci
- Department of Food Engineering, Faculty of Agriculture, Ordu University, Ordu 52200, Turkey
| |
Collapse
|
2
|
Krzykowska B, Fajdek-Bieda A, Jakubus A, Kostrzewa J, Białkowska A, Kisiel M, Dvořáčková Š, Frącz W, Zarzyka I. Bio-Based Poly(3-hydroxybutyrate) and Polyurethane Blends: Preparation, Properties Evaluation and Structure Analysis. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1914. [PMID: 40363419 DOI: 10.3390/ma18091914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/22/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
The present work deals with polymer blends produced from poly(3-hydroxybutyrate), P3HB and polyurethane. Linear polyurethane (PU) was here synthesized by reacting polypropylene glycol with 4,4'-diphenylmethane diisocyanate, and was used in amounts of 5, 10 and 15 wt. %. The polymers were melt-mixed using a twin-screw extruder after prior premixing. The obtained blends were tested by differential scanning calorimetry analysis (DSC), Fourier transformation infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). Their thermal and mechanical properties, including impact resistance, hardness, tensile and flexural properties, were also determined, and the surface topography and roughness were analyzed. FTIR analysis of the prepared blends confirmed the interactions of PU with the P3HB matrix via hydrogen bonding. Analysis of the surface topography of the samples showed that the higher the PU content, the greater the regularity and homogeneity of the surface structure. The roughness of the P3HB blend containing 5 wt. % PU was the greatest. SEM images of the fracture surfaces of the blend samples explain the mechanism of the improvement of their mechanical properties. The obtained polymer blends were characterized by significantly lower hardness, and better impact strength and relative elongation at break compared to native P3HB. The DSC results confirm a decrease in the glass transition, melting and crystallization temperatures with increasing amounts of PU in the blends. The lower melting temperature and the higher degradation temperature of the resulted blends than native P3HB make the processing conditions easier, and prevent the degradation of the material. The best mechanical and thermal properties were shown by blends containing 10 wt. % of PU.
Collapse
Affiliation(s)
- Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Anna Fajdek-Bieda
- Department of Medical Analytics, Faculty of Health Sciences, The Jacob of Paradies University in Gorzów Wielkopolski, Chopina 52, 66-400 Gorzów Wielkopolski, Poland
| | - Aneta Jakubus
- Faculty of Technology, Jacob of Paradies University, 66-400 Gorzów Wielkopolski, Poland
| | - Joanna Kostrzewa
- Faculty of Technology, Jacob of Paradies University, 66-400 Gorzów Wielkopolski, Poland
| | - Anita Białkowska
- Faculty of Mechanic, Radom University, Stasieckiego 54, 26-600 Radom, Poland
| | - Maciej Kisiel
- Department of Industrial and Materials Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Štěpánka Dvořáčková
- Department of Machining and Assembly, Technical University of Liberec, Studentská 1402/2, 460 01 Liberec, Czech Republic
| | - Wiesław Frącz
- Department of Material Forming and Processing, Rzeszów University of Technology, Powstańców Warszawy 8, 35-959 Rzeszów, Poland
| | - Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Mugnai G, Bernabò L, Daly G, Corneli E, Adessi A. Photofermentative production of poly-β-hydroxybutyrate (PHB) by purple non-sulfur bacteria using olive oil by-products. BIORESOUR BIOPROCESS 2025; 12:25. [PMID: 40128444 PMCID: PMC11933499 DOI: 10.1186/s40643-025-00856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/22/2025] [Indexed: 03/26/2025] Open
Abstract
This study evaluated the ability of six purple non-sulfur bacteria (PNSB) to convert olive oil by-products into poly-β-hydroxybutyrate (PHB). Strains were first independently cultivated in synthetic media with different carbon sources (acetic, lactic and malic acid) to assess their physiology and PHB production. Subsequently, their growth and PHB production using ingested pâté olive cake (IPOC) as a substrate were investigated. Transmission electron microscopy (TEM) observations were conducted on strains cultivated on IPOC to investigate their cell morphologies and inclusion bodies presence and size. Rhodopseudomonas palustris strains accumulated up to 6.8% w PHB/w cells with acetate and 0.86% w PHB/w cells with a daily productivity of 0.54 mg PHB L⁻1 culture d⁻1 on IPOC. In contrast, Cereibacter johrii and Cereibacter sphaeroides reached 58.64% w PHB/w cells and 65.45% w PHB/w cells with acetate, respectively, while C. sphaeroides achieved 21.48% w PHB/w cells and a daily productivity of 10.85 mg PHB L⁻1 culture d⁻1 when cultivated on IPOC. All strains exhibited growth and PHB accumulation in both synthetic media and IPOC substrate. Specifically, R. palustris strains 42OL, AV33 and CGA009 displayed growth capability in all substrates, while C. johrii strains 9Cis and PISA 7, and C. sphaeroides F17 showed promising PHB synthesis capabilities. TEM observations revealed that R. palustris strains, with smaller cell and inclusion body sizes, exhibited lower PHB accumulations, while C. johrii and C. sphaeroides strains, characterized by larger cells and inclusion bodies, demonstrated higher PHB production, recognizing them as promising candidates for PHB production using olive oil by-products. Further investigations under laboratory-scale conditions will be necessary to optimize operating parameters and develop integrated strategies for simultaneous PHB synthesis and the co-production of value-added products, thereby enhancing the economic feasibility of the process within a biorefinery framework.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Luca Bernabò
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Giulia Daly
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Elisa Corneli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- PhotoB. Srl, Via Montecalvi, 3, San Casciano in Val Di Pesa, 50026, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy.
| |
Collapse
|
4
|
Mgeni ST, Mero HR, Mtashobya LA, Emmanuel JK. The prospect of fruit wastes in bioethanol production: A review. Heliyon 2024; 10:e38776. [PMID: 39421386 PMCID: PMC11483485 DOI: 10.1016/j.heliyon.2024.e38776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Utilising agricultural byproducts specifically fruit wastes for bioethanol production offers a promising approach to sustainable energy production and waste mitigation. This approach focuses on assessing the biochemical composition of fruit wastes, particularly their sugar content, as a key aspect of bioethanol production. This study evaluates the potential of pineapple, mango, pawpaw and watermelon fruit wastes for bioethanol production, highlighting the substantial organic waste generated during fruit processing stages such as peeling and pulping. Various techniques, including enzymatic hydrolysis, fermentation, and distillation, are reviewed to optimise bioethanol yields while addressing challenges such as seasonal availability, substrate variability and process optimisation. Besides, the environmental benefits of bioethanol derived from fruit wastes, such as reduced environmental pollution, decreased reliance on fossil fuels, and promotion of sustainable agricultural practices, are emphasised. The study deployed a comprehensive literature review using keywords, specific research questions, and a search strategy that included academic databases, library catalogues, and Google Scholar. Search results were systematically screened and selected based on their relevance to the topic.
Collapse
Affiliation(s)
- Shedrack Thomas Mgeni
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Herieth Rhodes Mero
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Lewis Atugonza Mtashobya
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | | |
Collapse
|
5
|
Panda J, Mishra AK, Mohanta YK, Patowary K, Rauta PR, Mishra B. Exploring Biopolymer for Food and Pharmaceuticals Application in the Circular Bioeconomy: An Agro-Food Waste-to-Wealth Approach. WASTE AND BIOMASS VALORIZATION 2024; 15:5607-5637. [DOI: 10.1007/s12649-024-02452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/28/2024] [Indexed: 01/06/2025]
|
6
|
Sun Z, Wu Y, Long S, Feng S, Jia X, Hu Y, Ma M, Liu J, Zeng B. Aspergillus oryzae as a Cell Factory: Research and Applications in Industrial Production. J Fungi (Basel) 2024; 10:248. [PMID: 38667919 PMCID: PMC11051239 DOI: 10.3390/jof10040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillus oryzae, a biosafe strain widely utilized in bioproduction and fermentation technology, exhibits a robust hydrolytic enzyme secretion system. Therefore, it is frequently employed as a cell factory for industrial enzyme production. Moreover, A. oryzae has the ability to synthesize various secondary metabolites, such as kojic acid and L-malic acid. Nevertheless, the complex secretion system and protein expression regulation mechanism of A. oryzae pose challenges for expressing numerous heterologous products. By leveraging synthetic biology and novel genetic engineering techniques, A. oryzae has emerged as an ideal candidate for constructing cell factories. In this review, we provide an overview of the latest advancements in the application of A. oryzae-based cell factories in industrial production. These studies suggest that metabolic engineering and optimization of protein expression regulation are key elements in realizing the widespread industrial application of A. oryzae cell factories. It is anticipated that this review will pave the way for more effective approaches and research avenues in the future implementation of A. oryzae cell factories in industrial production.
Collapse
Affiliation(s)
- Zeao Sun
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Z.S.); (S.F.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Yijian Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Shihua Long
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Sai Feng
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Z.S.); (S.F.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Xiao Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Yan Hu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Maomao Ma
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Jingxin Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (S.L.); (X.J.); (Y.H.); (M.M.)
| |
Collapse
|
7
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Mishra P, Panda B. Polyhydroxybutyrate (PHB) accumulation by a mangrove isolated cyanobacteria Limnothrix planktonica using fruit waste. Int J Biol Macromol 2023; 252:126503. [PMID: 37633558 DOI: 10.1016/j.ijbiomac.2023.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Cyanobacterial polyhydroxybutyrate (PHB) is preferred over bacteria for low-cost production due to its photoautotrophic nature and lower carbon requirement. Considering its impact on the environment and circular economy, the valorization of fruit waste is the need of the hour. In the present study, fruit peels of banana, orange, pea, jackfruit, watermelon and waste flowers were tried as carbon sources for mangrove-isolated cyanobacteria Limnothrix planktonica to accumulate PHB. Alterations in the ASN-III culture medium and the introduction of untreated and pre-treated (acid/alkali-treated) peels as carbon sources are tried to enhance PHB. Banana peel showed the maximum PHB accumulation potential of 25.73 mg/L on the 12th day of incubation, followed by jackfruit (22.46 mg/L) and watermelon peels (20.72 mg/L); whereas, commercial carbon sources showed lower PHB accumulation up to 19.26 mg/L and 18.21 mg/L with fructose and glucose respectively. PHB accumulation was boosted to 5-fold higher (39.39 mg/L) in NP deficiency medium along with banana peel supplement, as compared to photoautotrophic conditions (8.49 mg/L) after the 9th day of incubation. Additionally, the PHB obtained by using the fruit wastes has a higher molecular weight than the PHB accumulated during photoautotrophic conditions. Optimization of parameters using fruit wastes and characterization of PHB would lead to its potential use.
Collapse
Affiliation(s)
- Prateeksha Mishra
- Environmental Biology Research Laboratory, Department of Botany, Utkal University, Bhubaneswar, Odisha, India
| | - Bhabatarini Panda
- Environmental Biology Research Laboratory, Department of Botany, Utkal University, Bhubaneswar, Odisha, India; Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
9
|
Li HH, Wu J, Liu JQ, Wu QZ, He RL, Cheng ZH, Lv JL, Lin WQ, Wu J, Liu DF, Li WW. Nonsterilized Fermentation of Crude Glycerol for Polyhydroxybutyrate Production by Metabolically Engineered Vibrio natriegens. ACS Synth Biol 2023; 12:3454-3462. [PMID: 37856147 DOI: 10.1021/acssynbio.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, Vibrio natriegens, a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes. The key genes encoding the PHB biosynthesis pathway of V. natriegens were identified through base editing and overexpressed. The metabolically engineered strain showed 166-fold higher PHB content (34.95 wt %) than the wide type when using glycerol as a substrate. Enhanced PHB production was also achieved when other sugars were used as feedstock. Importantly, it outperformed the engineered Escherichia coli MG1655 in PHB productivity (0.053 g/L/h) and tolerance to toxic substances in crude glycerol, without obvious activity decline under nonsterilized fermentation conditions. Our work demonstrates the great potential of engineered V. natriegens for low-cost PHB bioproduction and lays a foundation for exploiting this strain as a next-generation model chassis microorganism in synthetic biology.
Collapse
Affiliation(s)
- Hui-Hui Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Qi-Zhong Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhou-Hua Cheng
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jun-Lu Lv
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei-Qiang Lin
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Wen-Wei Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
10
|
Ming Y, Li G, Shi Z, Zhao X, Zhao Y, Gao G, Ma T, Wu M. Co-utilization of glucose and xylose for the production of poly-β-hydroxybutyrate (PHB) by Sphingomonas sanxanigenens NX02. Microb Cell Fact 2023; 22:162. [PMID: 37635215 PMCID: PMC10463938 DOI: 10.1186/s12934-023-02159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Poly-β-hydroxybutyrate (PHB), produced by a variety of microbial organisms, is a good substitute for petrochemically derived plastics due to its excellent properties such as biocompatibility and biodegradability. The high cost of PHB production is a huge barrier for application and popularization of such bioplastics. Thus, the reduction of the cost is of great interest. Using low-cost substrates for PHB production is an efficient and feasible means to reduce manufacturing costs, and the construction of microbial cell factories is also a potential way to reduce the cost. RESULTS In this study, an engineered Sphingomonas sanxanigenens strain to produce PHB by blocking the biosynthetic pathway of exopolysaccharide was constructed, and the resulting strain was named NXdE. NXdE could produce 9.24 ± 0.11 g/L PHB with a content of 84.0% cell dry weight (CDW) using glucose as a sole carbon source, which was significantly increased by 76.3% compared with the original strain NX02. Subsequently, the PHB yield of NXdE under the co-substrate with different proportions of glucose and xylose was also investigated, and results showed that the addition of xylose would reduce the PHB production. Hence, the Dahms pathway, which directly converted D-xylose into pyruvate in four sequential enzymatic steps, was enhanced by overexpressing the genes xylB, xylC, and kdpgA encoding xylose dehydrogenase, gluconolactonase, and aldolase in different combinations. The final strain NX02 (ΔssB, pBTxylBxylCkdpgA) (named NXdE II) could successfully co-utilize glucose and xylose from corn straw total hydrolysate (CSTH) to produce 21.49 ± 0.67 g/L PHB with a content of 91.2% CDW, representing a 4.10-fold increase compared to the original strain NX02. CONCLUSION The engineered strain NXdE II could co-utilize glucose and xylose from corn straw hydrolysate, and had a significant increase not only in cell growth but also in PHB yield and content. This work provided a new host strain and strategy for utilization of lignocellulosic biomass such as corn straw to produce intracellular products like PHB.
Collapse
Affiliation(s)
- Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Xin Zhao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Yufei Zhao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China.
| | - Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, 300071, Tianjin, PR China.
| |
Collapse
|
11
|
Hari S, Ramaswamy K, Sivalingam U, Ravi A, Dhanraj S, Jagadeesan M. Progress and prospects of biopolymers production strategies. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
In recent decades, biopolymers have garnered significant attention owing to their aptitude as an environmentally approachable precursor for an extensive application. In addition, due to their alluring assets and widespread use, biopolymers have made significant strides in their production based on various sources and forms. This review focuses on the most recent improvements and breakthroughs that have been made in the manufacturing of biopolymers, via sections focusing the most frequented and preferred routes like micro-macro, algae apart from focusing on microbials routes with special attention to bacteria and the synthetic biology avenue of biopolymer production. For ensuring the continued growth of the global polymer industry, promising research trends must be pursued, as well as methods for overcoming obstacles that arise in exploiting the beneficial properties exhibited by a variety of biopolymers.
Collapse
|
12
|
Han X, Zhang N, Luo L, Zhang Y, Wang M, Yin X, Zhang B, Fan J. A new strategy to strongly release sweet-enhancing volatiles from goji pomace using trivalent iron salts. Food Res Int 2023; 167:112659. [PMID: 37087246 DOI: 10.1016/j.foodres.2023.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Efforts to fully utilize pomace volatiles have been obstructed by the lack of high-performance technologies to release free and bound volatiles. This study first established that ferric chloride (FeCl3) could strongly release the sweet-enhancing volatiles (SVs) from goji pomace, thus increasing the main aroma compounds [MACs; odor activity value (OAV) > 1] from 9 to 27. The underlying mechanism included the special hydrolysis to glycosides by ferric ions acting as Brønsted and Lewis acids, and the oxidation of β-carotene and β-ionone by electrophilic ferrite. The sweet fragrance could be reconstituted and simulated by the 27 MACs. Subsequent extraction and concentration increased MACs on average by 2.28-fold, and the extracted essence could be used as a green and safe sweet-enhancing sugar substitute for specific consumers. These study findings laid a foundation for understanding the relationship between metal salts and flavor chemistry, further providing an opportunity for the full utilization of resources.
Collapse
|
13
|
Esposito FP, Vecchiato V, Buonocore C, Tedesco P, Noble B, Basnett P, de Pascale D. Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment. BIORESOURCE TECHNOLOGY 2023; 368:128287. [PMID: 36368485 DOI: 10.1016/j.biortech.2022.128287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The production and disposal of plastics from limited fossil reserves, has prompted research for greener and sustainable alternatives. Polyhydroxyalkanoates (PHAs) are biocompatible, biodegradable, and thermoprocessable polyester produced by microbes. PHAs found several applications but their use is limited due to high production cost and low yields. Herein, for the first time, the isolation and characterization of Pseudohalocynthiibacter aestuariivivens P96, a marine bacterium able to produce surprising amount of PHAs is reported. In the best growth condition P96 was able to reach a maximum production of 4.73 g/L, corresponding to the 87 % of total cell dry-weight. Using scanning and transmission microscopy, lab-scale fermentation, spectroscopic techniques, and genome analysis, the production of thermoprocessable polymer Polyhydroxybutyrate P(3HB), a PHAs class, endowed with mechanical and thermal properties comparable to that of petroleum-based plastics was confirmed. This study represents a milestone toward the use of this unexplored marine bacterium for P(3HB) production.
Collapse
Affiliation(s)
- Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Vittoria Vecchiato
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Brendon Noble
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Pooja Basnett
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy.
| |
Collapse
|
14
|
Ray A, Dubey KK, Marathe SJ, Singhal R. Supercritical fluid extraction of bioactives from fruit waste and its therapeutic potential. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Gautam K, Vishvakarma R, Sharma P, Singh A, Kumar Gaur V, Varjani S, Kumar Srivastava J. Production of biopolymers from food waste: Constrains and perspectives. BIORESOURCE TECHNOLOGY 2022; 361:127650. [PMID: 35907601 DOI: 10.1016/j.biortech.2022.127650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/27/2023]
Abstract
Food is an essential commodity for the survival of any form of life on earth. Yet generation of plethora of food waste has significantly elevated the global concern for food scarcity, human and environment deterioration. Also, increasing use of polymers derived from petroleum hydrocarbons has elevated the concerns towards the depletion of this non-renewable resource. In this review, the use of waste food for the production of bio-polymers and their associated challenges has been thoroughly investigated using scientometric analysis. Various categories of food waste including fruit, vegetable, and oily waste can be employed for the production of different biopolymers including polyhydroxyalkanoates, starch, cellulose, collagen and others. The advances in the production of biopolymers through chemical, microbial or enzymatic process that increases the acceptability of these biopolymers has been reviewed. The comprehensive compiled information may assist researchers for addressing and solving the issues pertaining to food wastage and fossil fuel depletion.
Collapse
Affiliation(s)
- Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | | |
Collapse
|
16
|
Muhorakeye A, Cayetano RD, Kumar AN, Park J, Pandey AK, Kim SH. Valorization of pretreated waste activated sludge to organic acids and biopolymer. CHEMOSPHERE 2022; 303:135078. [PMID: 35644235 DOI: 10.1016/j.chemosphere.2022.135078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Polyhydroxybutyrate (PHB) is a natural polyester that may be made by utilizing volatile fatty acids (VFAs) as a substrate. VFA generated by continuous anaerobic fermentation of waste activated sludge (WAS) was fed into bioreactors for PHB synthesis in this work. Series of optimization tests were conducted to increase the biodegradability and hydrolysis of waste activated sludge. It was found out that 0.05 g/g TS of SDBS (sodium dodecylbenzene sulfonate), 70 °C (heat treatment) and 2hr (time) as pretreatment condition would give the highest solubilization. Impact of pH adjustment on the acidogenesis of pretreated WAS was evaluated in batch experiments at varying initial pH (4-10). The result indicated that when operational pH was between 7.5 and 8, the VFA yield was increased by 5.3-18.1%. Continuous acidogenic operation validated the SDBS pretreatment and pH adjustment warranted stable VFA conversion from WAS at a yield of 47% in COD basis. Firmicutes, Actinobacteria and Proteobacteria were affiliated as dominant bacterial phyla in the continuous acidogenesis. The effluent of the continuous acidogenesis was converted to biopolymer with the average yields of 0.23 g PHB-COD/g VFAadded-COD in the feast mode and 0.34 g PHB-COD/g VFAadded-COD in the famine mode. In feast and famine cycle, the average VFA utilization was 55% and 60% respectively. The sequential SDBS pretreatment, acidogenesis and PHB production would produce 162 g of PHB from 1 kg of WAS as COD basis.
Collapse
Affiliation(s)
- Alice Muhorakeye
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Roent Dune Cayetano
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Gnaim R, Unis R, Gnayem N, Das J, Gozin M, Golberg A. Turning mannitol-rich agricultural waste to poly(3-hydroxybutyrate) with Cobetia amphilecti fermentation and recovery with methyl levulinate as a green solvent. BIORESOURCE TECHNOLOGY 2022; 352:127075. [PMID: 35346815 DOI: 10.1016/j.biortech.2022.127075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The present study explored the use of mannitol and mannitol-rich agro-industrial wastes as substrates for PHB production by Cobetia amphilecti isolated from the green Ulva sp. seaweed. Cultivation of C. amphilecti on mannitol, celery, and olive leaves (OLs) waste led to 4.20, 6.00, and 5.16 g L-1 of cell dry mass (CDM), 76.3, 25.5, and 12.0% of PHB content in CDM and 3.2, 1.53, and 0.62 g L-1 of PHB concentration, respectively; which suggested that they can be exploited as carbon substrates for the production of PHB. Extraction of PHB from C. amphilecti cultures by solubilization in the green solvent methyl levulinate (ML) (2% w/w, 140 °C, 1 h) indicated that the recovery yield and purity of PHB are above 97 and 90% w/w, respectively. The use of ML could be an attractive method for the recovery of PHB when safe and non-toxic solvents are required.
Collapse
Affiliation(s)
- Rima Gnaim
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel; The Triangle Regional R&D Center (TRDC), Kfar Qari 30075, Israel.
| | - Razan Unis
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel; The Triangle Regional R&D Center (TRDC), Kfar Qari 30075, Israel
| | - Nabeel Gnayem
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel; The Triangle Regional R&D Center (TRDC), Kfar Qari 30075, Israel
| | - Jagadish Das
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael Gozin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Center for Advanced Combustion Science, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy. SUSTAINABILITY 2022. [DOI: 10.3390/su14084425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plastic waste (PW) is one of the most rapid-growing waste streams in municipal solid waste all over the world. India has become a global player in the plastic value chain. Despite low consumption, domestic generation and imports create a significant burden on the overall waste management system, which requires in-depth understanding of the scenario and pathways that can mitigate the crisis. Although Indian researchers have widely researched technology-related issues in academic papers, a substantial knowledge gap exists in understanding the problem’s depth and possible solutions. This review article focuses on current plastic production, consumption, and waste generation in India. This review article mainly analyzes data and information regarding Indian PW management and highlights some critical issues such as reverse supply chain, effective PW management, source-specific recovery, and PW rules in India. Comprehensively, this review will help to identify implementable strategies for policymakers and research opportunities for future researchers in holistic PW management and recycling in India, focusing on the circular economy and sustainable development goals.
Collapse
|
19
|
Boura K, Dima A, Nigam PS, Panagopoulos V, Kanellaki M, Koutinas A. A critical review for advances on industrialization of immobilized cell Bioreactors: Economic evaluation on cellulose hydrolysis for PHB production. BIORESOURCE TECHNOLOGY 2022; 349:126757. [PMID: 35077811 DOI: 10.1016/j.biortech.2022.126757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Advances such as cell-on-cell immobilization, multi-stage fixed bed tower (MFBT) bioreactor, promotional effect on fermentation, extremely low temperature fermentation, freeze dried immobilized cells in two-layer fermentation, non-engineered cell factories, and those of recent papers are demonstrated. Studies for possible industrialization of ICB, considering production capacity, low temperatures fermentations, added value products and bulk chemical production are studied. Immobilized cell bioreactors (ICB) using cellulose nano-biotechnology and engineered cells are reported. The development of a novel ICB with recent advances on high added value products and conceptual research areas for industrialization of ICB is proposed. The isolation of engineered flocculant cells leads to a single tank ICB. The concept of cell factories without GMO is a new research area. The conceptual development of multi-stage fixed bed tower membrane (MFBTM) ICB is discussed. Finally, feasible process design and technoeconomic analysis of cellulose hydrolysis using ICB are studied for polyhydroxybutyrate (PHB) production.
Collapse
Affiliation(s)
| | - Agapi Dima
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Poonam S Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Maria Kanellaki
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
20
|
Sharma P, Gaur VK, Gupta S, Varjani S, Pandey A, Gnansounou E, You S, Ngo HH, Wong JWC. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152357. [PMID: 34921885 DOI: 10.1016/j.scitotenv.2021.152357] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
Majority of industries, in order to meet the technological development and consumer demands generate waste. The untreated waste spreads out toxic and harmful substances in the environment which serves as a breeding ground for pathogenic microorganisms thus causing severe health hazards. The three industrial sectors namely food, agriculture, and oil industry are among the primary organic waste producers that affect urban health and economic growth. Conventional treatment generates a significant amount of greenhouse gases which further contributes to global warming. Thus, the use of microbes for utilization of this waste, liberating CO2 offers an indispensable tool. The simultaneous production of value-added products such as bioplastics, biofuels, and biosurfactants increases the economics of the process and contributes to environmental sustainability. This review comprehensively summarized the composition of organic waste generated from the food, agriculture, and oil industry. The linkages between global health hazards of industrial waste and environmental implications have been uncovered. Stare-of-the-art information on their subsequent utilization as a substrate to produce value-added products through bio-routes has been elaborated. The research gaps, economical perspective(s), and future research directions have been identified and discussed to strengthen environmental sustainability.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
21
|
Awasthi MK, Kumar V, Yadav V, Sarsaiya S, Awasthi SK, Sindhu R, Binod P, Kumar V, Pandey A, Zhang Z. Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: A review. CHEMOSPHERE 2022; 290:133310. [PMID: 34919909 DOI: 10.1016/j.chemosphere.2021.133310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Poly-3-hydroxyalkanoates (PHA) are biodegradable and compostable polyesters. This review is aimed to provide a unique approach that can help think tanks to frame strategies aiming for clean technology by utilizing cutting edge biotechnological advances to convert fruit and vegetable waste to biopolymer. A PHA manufacturing method based on watermelon waste residue that does not require extensive pretreatment provides a more environmentally friendly and sustainable approach that utilizes an agricultural waste stream. Incorporating fruit processing industry by-products and water, and other resource conservation methods would not only make the manufacturing of microbial bio-plastics like PHA more eco-friendly, but will also help our sector transition to a bioeconomy with circular product streams. The final and most critical element of this review is an in-depth examination of the several hazards inherent in PHA manufacturing.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
22
|
Ghosh M, Singh AK. Potential of engineered nanostructured biopolymer based coatings for perishable fruits with Coronavirus safety perspectives. PROGRESS IN ORGANIC COATINGS 2022; 163:106632. [PMID: 34931104 PMCID: PMC8674086 DOI: 10.1016/j.porgcoat.2021.106632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
Fresh fruits are prioritized needs in order to fulfill the required health benefits for human beings. However, some essential fruits are highly perishable with very short shelf-life during storage because of microbial growth and infections. Thus improvement of fruits shelf-life is a serious concern for their proper utlization without generation of huge amount of fruit-waste. Among various methods employed in extension of fruits shelf-life, design and fabrication of edible nanocoatings with antimicrobial activities have attracted considerable interest because of their enormous potential, novel functions, eco-friendly nature and good durability. In recent years, scientific communities have payed increased attention in the development of advanced antimicrobial edible coatings to prolong the postharvest shelf-life of fruits using hydrocolloids. In this review, we attempted to highlight the technical breakthrough and recent advancements in development of edible fruit coating by the application of various types of agro-industrial residues and different active nanomaterials incorporated into the coatings and their effects on shelf-life of perishable fruits. Improvements in highly desired functions such as antioxidant/antimicrobial activities and mechanical properties of edible coating to significantly control the gases (O2/CO2) permeation by the incorporation of nanoscale natural materials as well as metal nanoparticles are reviewed and discussed. In addition, by compiling recent knowledge, advantages of coatings on fruits for nutritional security during COVID-19 pandemic are also summarized along with the scientific challenges and insights for future developments in fabrication of engineered nanocoatings.
Collapse
Affiliation(s)
- Moushumi Ghosh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Arun Kumar Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| |
Collapse
|
23
|
Cheng HH, Whang LM. Resource recovery from lignocellulosic wastes via biological technologies: Advancements and prospects. BIORESOURCE TECHNOLOGY 2022; 343:126097. [PMID: 34626758 DOI: 10.1016/j.biortech.2021.126097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic wastes were recently considered as biomass resources, however, its conversion to valuable products is still immature although researchers have put lots of effort into this issue. This article reviews the key challenges of the biorefinery utilizing lignocellulosic materials and recent developments to conquer those obstacles. Available biological techniques and processes, from the pretreatments of cellulosic materials to the valorization processes, were emphasized. Biological pretreatments, including hydrolysis using microbial consortia, fungi, enzymes, engineered bacterial/fungal strains, and co-culture systems, could enhance the release of reducing sugar. Resources recovery, including biogases, ethanol, butanol, PHA, etc., from lignocellulosic materials were also discussed, while the influences of composition of lignocellulosic materials and pretreatment options, applications of co-culture system, and integrated treatments with other wastes, were described. In the review, co-culture system and metabolic engineering are emphasized as the promising biological technologies, while perspectives are provided for their future developments.
Collapse
Affiliation(s)
- Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
24
|
Nanda S, Patra BR, Patel R, Bakos J, Dalai AK. Innovations in applications and prospects of bioplastics and biopolymers: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:379-395. [PMID: 34867134 PMCID: PMC8629338 DOI: 10.1007/s10311-021-01334-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 05/22/2023]
Abstract
Non-biodegradable plastics are continually amassing landfills and oceans worldwide while creating severe environmental issues and hazards to animal and human health. Plastic pollution has resulted in the death of millions of seabirds and aquatic animals. The worldwide production of plastics in 2020 has increased by 36% since 2010. This has generated significant interest in bioplastics to supplement global plastic demands. Bioplastics have several advantages over conventional plastics in terms of biodegradability, low carbon footprint, energy efficiency, versatility, unique mechanical and thermal characteristics, and societal acceptance. Bioplastics have huge potential to replace petroleum-based plastics in a wide range of industries from automobiles to biomedical applications. Here we review bioplastic polymers such as polyhydroxyalkanoate, polylactic acid, poly-3-hydroxybutyrate, polyamide 11, and polyhydroxyurethanes; and cellulose-based, starch-based, protein-based and lipid-based biopolymers. We discuss economic benefits, market scenarios, chemistry and applications of bioplastic polymers.
Collapse
Affiliation(s)
- Sonil Nanda
- Titan Clean Energy Projects Corporation, Craik, SK Canada
| | - Biswa R. Patra
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK Canada
| | - Ravi Patel
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK Canada
| | - Jamie Bakos
- Titan Clean Energy Projects Corporation, Craik, SK Canada
| | - Ajay K. Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
25
|
Chilakamarry CR, Mimi Sakinah AM, Zularisam AW, Sirohi R, Khilji IA, Ahmad N, Pandey A. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2022; 343:126065. [PMID: 34624472 DOI: 10.1016/j.biortech.2021.126065] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The increase in solid waste has become a common problem and causes environmental pollution worldwide. A green approach to valorise solid waste for sustainable development is required. Agricultural residues are considered suitable for conversion into profitable products through solid-state fermentation (SSF). Agricultural wastes have high organic content that is used as potential substrates to produce value-added products through SSF. The importance of process variables used in solid-phase fermentation is described. The applications of SSF developed products in the food industry as flavouring agents, acidifiers, preservatives and flavour enhancers. SSF produces secondary metabolites and essential enzymes. Wastes from agricultural residues are used as bioremediation agents, biofuels and biocontrol agents through microbial processing. In this review paper, the value addition of agricultural wastes by SSF through green processing is discussed with the current knowledge on the scenarios, sustainability opportunities and future directions of a circular economy for solid waste utilisation.
Collapse
Affiliation(s)
- Chaitanya Reddy Chilakamarry
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia
| | - A M Mimi Sakinah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia.
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Irshad Ahamad Khilji
- Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang 26300, Malaysia
| | - Noormazlinah Ahmad
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| |
Collapse
|
26
|
Sirohi R, Lee JS, Yu BS, Roh H, Sim SJ. Sustainable production of polyhydroxybutyrate from autotrophs using CO 2 as feedstock: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2021; 341:125751. [PMID: 34416655 DOI: 10.1016/j.biortech.2021.125751] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Due to industrialization and rapid increase in world population, the global energy consumption has increased dramatically. As a consequence, there is increased consumption of fossil fuels, leading to a rapid increase in CO2 concentration in the atmosphere. This accumulated CO2 can be efficiently used by autotrophs as a carbon source to produce chemicals and biopolymers. There has been increasing attention on the production of polyhydroxybutyrate (PHB), a biopolymer, with focus on reducing the production cost. For this, cheaper renewable feedstocks, molecular tools, including metabolic and genetic engineering have been explored to improve microbial strains along with process engineering aspects for scale-up of PHB production. This review discusses the recent advents on the utilization of CO2 as feedstock especially by engineered autotrophs, for sustainable production of PHB. The review also discusses the innovations in cultivation technology and process monitoring while understanding the underlying mechanisms for CO2 to biopolymer conversion.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Jeong Seop Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Hyejin Roh
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea.
| |
Collapse
|
27
|
Zikmanis P, Kolesovs S, Ruklisha M, Semjonovs P. Production of bacterial cellulose from glycerol: the current state and perspectives. BIORESOUR BIOPROCESS 2021; 8:116. [PMID: 38650300 PMCID: PMC10992469 DOI: 10.1186/s40643-021-00468-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/20/2021] [Indexed: 11/10/2022] Open
Abstract
Current research in industrial microbiology and biotechnology focuses on the production of biodegradable microbial polymers as an environmentally friendly alternative to the still dominant fossil hydrocarbon-based plastics. Bacterial cellulose (BC) is important among microbial polymers due to its valuable properties and broad applications in variety of fields from medical to industrial technologies. However, the increase in BC production and its wider deployment is still limited by high costs of traditionally used raw materials. It is therefore necessary to focus on less expensive inputs, such as agricultural and industrial by-products or waste including the more extended use of glycerol. It is the environmentally harmful by-product of biofuel production and reducing it will also reduce the risk of environmental pollution. The experimental data obtained so far confirm that glycerol can be used as the renewable carbon source to produce BC through more efficient and environmentally friendly bioprocesses. This review summarizes current knowledge on the use of glycerol for the production of commercially prospective BC, including information on producer cultures, fermentation modes and methods used, nutrient medium composition, cultivation conditions, and bioprocess productivity. Data on the use of some related sugar alcohols, such as mannitol, arabitol, xylitol, for the microbial synthesis of cellulose are also considered, as well as the main methods and applications of glycerol pre-treatment briefly described.
Collapse
Affiliation(s)
- Peteris Zikmanis
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Maija Ruklisha
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia.
| |
Collapse
|
28
|
Lee J, Park HJ, Moon M, Lee JS, Min K. Recent progress and challenges in microbial polyhydroxybutyrate (PHB) production from CO 2 as a sustainable feedstock: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2021; 339:125616. [PMID: 34304096 DOI: 10.1016/j.biortech.2021.125616] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 05/05/2023]
Abstract
The recalcitrance of petroleum-based plastics causes severe environmental problems and has accelerated research into production of biodegradable polymers from inexpensive and sustainable feedstocks. Various microorganisms are capable of producing Polyhydroxybutyrate (PHB), a representative biodegradable polymer, under nutrient-limited conditions, among which CO2-utilizing microorganisms are of primary interest. Herein, we discuss recent progress on bacterial strains including proteobacteria, purple non-sulfur bacteria, and cyanobacteria in terms of CO2-containing carbon sources, PHB-production capability, and genetic modification. In addition, this review introduces recent technical approaches used to improve PHB production from CO2 such as two-stage bioprocesses and bioelectrochemical systems. Challenges and future perspectives for the development of economically feasible PHB production are also discussed. Finally, this review might provide insights into the construction of a closed-carbon-loop to cope with climate change.
Collapse
Affiliation(s)
- Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
29
|
Horue M, Rivero Berti I, Cacicedo ML, Castro GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. BIORESOURCE TECHNOLOGY 2021; 340:125671. [PMID: 34333348 DOI: 10.1016/j.biortech.2021.125671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Agro-industrial wastes to be a global concern since agriculture and industrial processes are growing exponentially with the fast increase of the world population. Biopolymers are complex molecules produced by living organisms, but also found in many wastes or derived from wastes. The main drawbacks for the use of polymers are the high costs of the polymer purification processes from waste and the scale-up in the case of biopolymer production by microorganisms. However, the use of biopolymers at industrial scale for the development of products with high added value, such as food or biomedical products, not only can compensate the primary costs of biopolymer production, but also improve local economies and environmental sustainability. The present review describes some of the most relevant aspects related to the synthesis of hybrid materials and nanocomposites based on biopolymers for the development of products with high-added value.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
30
|
Wang J, Huang J, Guo H, Jiang S, Qiao J, Chen X, Qu Z, Cui W, Liu S. Effects of different sodium salts and nitrogen sources on the production of 3-hydroxybutyrate and polyhydroxybutyrate by Burkholderia cepacia. BIORESOUR BIOPROCESS 2021; 8:64. [PMID: 38650234 PMCID: PMC10992559 DOI: 10.1186/s40643-021-00418-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
The effects of NaCl, Na2SO4, Na2HPO4, and Na3C6H5O7 on the production of 3-hydroxybutyrate, polyhydroxybutyrate, and by-products by Burkholderia cepacia. Proper addition of Na3C6H5O7 can significantly promote the production of 3-hydroxybutyric acid and polyhydroxybutyrate. The concentration, productivity, and yield of 3-hydroxybutyrate were increased by 48.2%, 55.6%, and 48.3% at 16 mM Na3C6H5O7. The increases of 80.1%, 47.1%, and 80.0% in the concentration, productivity, and yield of polyhydroxybutyrate were observed at 12 mM Na3C6H5O7. Na2SO4 and Na2HPO4 also have positive effects on the production capacity of 3-hydroxybutyrate and polyhydroxybutyrate within a certain range of concentration. NaCl is not conducive to the improvement of fermentation efficiency. Compared with a single nitrogen source, a mixed nitrogen source is more conducive to enhancing the production of 3-hydroxybutyrate and polyhydroxybutyrate.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
- The Center for Biotechnology & Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Huanyu Guo
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Shaoming Jiang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Jinyue Qiao
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Xingyu Chen
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Zixuan Qu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
- School of Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wanyue Cui
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.
| |
Collapse
|
31
|
Liu H, Qin S, Sirohi R, Ahluwalia V, Zhou Y, Sindhu R, Binod P, Rani Singhnia R, Kumar Patel A, Juneja A, Kumar D, Zhang Z, Kumar J, Taherzadeh MJ, Kumar Awasthi M. Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. BIORESOURCE TECHNOLOGY 2021; 332:125181. [PMID: 33888357 DOI: 10.1016/j.biortech.2021.125181] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Waste valorization using biological methods for value addition as well as environmental management is becoming popular approach for sustainable development. The present review addresses the availability of blueberry crop residues (BCR), applications of this feedstock in bioprocess for obtaining range of value-added products, to offer economic viability, business development and market potential, challenges and future perspectives. To the best of our knowledge, this is the first article addressing the blueberry waste valorization for a sustainable circular bioeconomy. Furthermore, it covers the information on the alternative BCR valorization methods and production of biochar for environmental management through removal or mitigation of organic and inorganic pollutants from contaminated sites. The review also discusses the ample opportunities of strategic utilization of BCR to offer solutions for environmental sustenance, covers the emerging trends to produce multi-products and techno-economic prospective for sustainable agronomy.
Collapse
Affiliation(s)
- Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Reeta Rani Singhnia
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| |
Collapse
|