1
|
Cui B, Ding J, Xie H, Ji T, Yang C, Cui Y, Shu X, Dai W, Wang W, Li S. Processing wheat straw into strong and flexible cellulose fiber bundle: Waste-to-wealth strategy. Int J Biol Macromol 2025; 314:144382. [PMID: 40398778 DOI: 10.1016/j.ijbiomac.2025.144382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/15/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
The excessive reliance on traditional petroleum resources poses significant environmental challenges. Fortunately, agricultural straw, which is often regarded as a waste product, has considerable potential for various applications. However, these materials are frequently crushed into particles, thereby neglecting their inherent structural advantages. In this study, wheat straw is utilized in its complete form and converted to a strong and flexible fiber bundle. We employ a top-down approach on whole wheat straw that involves an alkali pretreatment combined with delignification and freeze-drying to obtain highly directional cellulose aggregates. Subsequent twist densification results in the formation of a strong, flexible wheat straw-derived fiber bundle (WFB). WFB exhibits an excellent strength of 203.9 MPa, representing a 3.4 improvement rate in relation to that of the initial straw. This indicates that agricultural waste can be transformed to a high-performance material, embodying the concept of "Waste to Wealth." In addition, WFB can be further functionalized (e.g., via hydrophobic treatment, dyeing treatment, or incorporation with a conductive material) on the basis of the abundant hydroxyl groups present on its surface. This strategy provides insights into the innovative utilization of straw and promotes its application in wearable textile and smart fiber development.
Collapse
Affiliation(s)
- Boyu Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Jiayan Ding
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Hao Xie
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Tong Ji
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chunmao Yang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yutong Cui
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xin Shu
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Wei Dai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Weihong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Shuang Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
2
|
Wang L, Liu S, Mehdi S, Liu Y, Zhang H, Shen R, Wen H, Jiang J, Sun K, Li B. Lignocellulose-Derived Energy Materials and Chemicals: A Review on Synthesis Pathways and Machine Learning Applications. SMALL METHODS 2025:e2500372. [PMID: 40264353 DOI: 10.1002/smtd.202500372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Lignocellulose biomass, Earth's most abundant renewable resource, is crucial for sustainable production of high-value chemicals and bioengineered materials, especially for energy storage. Efficient pretreatment is vital to boost lignocellulose conversion to bioenergy and biomaterials, cut costs, and broaden its energy-sector applications. Machine learning (ML) has become a key tool in this field, optimizing pretreatment processes, improving decision-making, and driving innovation in lignocellulose valorization for energy storage. This review explores main pretreatment strategies - physical, chemical, physicochemical, biological, and integrated methods - evaluating their pros and cons for energy storage. It also stresses ML's role in refining these processes, supported by case studies showing its effectiveness. The review examines challenges and opportunities of integrating ML into lignocellulose pretreatment for energy storage, underlining pretreatment's importance in unlocking lignocellulose's full potential. By blending process knowledge with advanced computational techniques, this work aims to spur progress toward a sustainable, circular bioeconomy, particularly in energy storage solutions.
Collapse
Affiliation(s)
- Luyao Wang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Huanhuan Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Hu M, Lv X, Wang Y, Ma L, Zhang Y, Dai H. Recent advance on lignin-containing nanocelluloses: The key role of lignin. Carbohydr Polym 2024; 343:122460. [PMID: 39174133 DOI: 10.1016/j.carbpol.2024.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Nanocelluloses (NCs) isolated from lignocellulosic resources usually require harsh chemical pretreatments to remove lignin, which face constraints such as high energy consumption and inefficient resource utilization. An alternative strategy involving the partial retention of lignin can be adopted to endow NCs with better versatility and functionality. The resulting lignin-containing nanocelluloses (LNCs) generally possess better mechanical property, thermal stability, barrier property, antioxidant activity, and surface hydrophobicity than lignin-free NCs, which have attracted extensive interest as a promising green nanomaterial for numerous applications. This review provides a comprehensive overview of the recent advances in the preparation, properties, and food application of LNCs. The effect of residual lignin on the preparation and properties of LNCs is discussed. Furthermore, the key roles of lignin in the properties of LNCs, including particle size, crystalline structure, dispersibility, thermal, mechanical, antibacterial, rheological and adhesion properties, are summarized comprehensively. Furthermore, capitalizing on their dietary fiber and nanostructure properties, the food applications of LNCs in the forms of films, gels and emulsions are also discussed. Finally, the challenges and opportunities regarding the development of LNCs are provided.
Collapse
Affiliation(s)
- Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
4
|
Sarkar J, Naskar A, Nath A, Gangopadhyay B, Tarafdar E, Das D, Chakraborty S, Chattopadhyay D, Acharya K. Innovative utilization of harvested mushroom substrate for green synthesis of silver nanoparticles: A multi-response optimization approach. ENVIRONMENTAL RESEARCH 2024; 248:118297. [PMID: 38281560 DOI: 10.1016/j.envres.2024.118297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
In this work, harvested mushroom substrate (HMS) has been explored for the first time through a comprehensive optimization study for the green synthesis of silver nanoparticles (AgNPs). A multiple response central composite design with three parameters: pH of the reaction mixture, temperature, and incubation period at three distinct levels was employed in the optimization study. The particle size of AgNPs, UV absorbance, and the percentage of Ag/Cl elemental ratio were considered as the response parameters. For each response variable examined the model used was found to be significant (P < 0.05). The ideal conditions were: pH 8.9, a temperature of 59.4 °C, and an incubation period of 48.5 h. The UV-visible spectra of AgNPs indicated that the absorption maxima for AgNP-3 were 414 nm, 420 for AgNPs-2, and 457 for AgNPs-1. The XRD analysis of AgNPs-3 and AgNPs-2 show a large diffraction peak at ∼38.2°, ∼44.2°, ∼64.4°, and ∼77.4°, respectively, which relate to the planes of polycrystalline face-centered cubic (fcc) silver. Additionally, the XRD result of AgNPs-1, reveals diffraction characteristics of AgCl planes (111, 200, 220, 311, 222, and 400). The TEM investigations indicated that the smallest particles were synthesized at pH 9 with average diameters of 35 ± 6 nm (AgNPs-3). The zeta potentials of the AgNPs are -36 (AgNPs-3), -28 (AgNPs-2), and -19 (AgNPs-1) mV, respectively. The distinct IR peak at 3400, 1634, and 1383 cm-1 indicated the typical vibration of phenols, proteins, and alkaloids, respectively. The AgNPs were further evaluated against gram (+) strain Bacillus subtilis (MTCC 736) and gram (-) strain Escherichia coli (MTCC 68). All of the NPs tested positive for antibacterial activity against both bacterial strains. The study makes a sustainable alternative to disposing of HMS to achieve the Sustainable Development Goals (SDGs).
Collapse
Affiliation(s)
- Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Anirban Nath
- Department of Genetics and Plant Breeding, Institute of Agricultural Science, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Bhuman Gangopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal, PIN-700019, India
| | - Entaj Tarafdar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Diptosh Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Somsubhra Chakraborty
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, PIN-721302, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal, PIN-700019, India; Center for Research in Nano Science and Nano Technology, University of Calcutta, Kolkata - 700106, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India.
| |
Collapse
|
5
|
Tian R, Zhu B, Hu Y, Liu Q, Bian J, Li M, Ren J, Peng F. Selectively fractionate hemicelluloses with high molecular weight from poplar thermomechanical pulp by tetramethylammonium hydroxide. Int J Biol Macromol 2024; 254:127499. [PMID: 38287562 DOI: 10.1016/j.ijbiomac.2023.127499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 01/31/2024]
Abstract
Selective fractionation of hemicelluloses is of great significance for realizing high-value application of hemicelluloses and comprehensive utilization of lignocellulosic biomass. Tetramethylammonium hydroxide (TMAH) solvent has been confirmed as a promising solvent to selectively fractionate hemicelluloses from holocellulose. Herein, TMAH solvent was adopted to pretreat poplar thermomechanical pulp (PTMP) for the selective fractionation of hemicelluloses and enhancement of enzymatic hydrolysis performance of residues. The maximal hemicelluloses yield (65.0 %) and excellent cellulose retention rate (93.3 %) were achieved after pretreatment by the 25 wt% TMAH solvent, while the delignification was only 33.9 %. The hemicelluloses fractions could be selectively fractionated with high molecular weights (109,800-118,500 g/mol), the contents of Klason lignin in them were low (3.2-5.9 %), and the dominating structure of them was 4-O-methylglucurono-β-D-xylan. Compared to the H2SO4 and NaOH methods, the hemicelluloses fractionated by TMAH method exhibited higher yields, more complete structures and higher molecular weights. Furthermore, the crystalline structure of cellulose practically remained stable, and the highest yield of enzymatic hydrolysis glucose was 57.5 %, which was 3.3 times of that of PTMP. The fractionation effectiveness of TMAH solvent was not significantly reduced after repeatedly recycling. This work demonstrated TMAH solvent could selectively fractionate hemicelluloses from PTMP and efficiently promote sustainable poplar-based biorefinery.
Collapse
Affiliation(s)
- Rui Tian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Bolang Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Yajie Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Qiaoling Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Productin of Forest Resources, Beijing 100083, China.
| |
Collapse
|
6
|
Zhong X, Yang Y, Liu H, Fang X, Zhang Y, Cui Z, Lv J. New insights into the sustainable use of soluble straw humic substances for the remediation of multiple heavy metals in contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166274. [PMID: 37582446 DOI: 10.1016/j.scitotenv.2023.166274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
This study addresses the research gap in understanding the differences in straw decomposition and variations in humic substances (HS) extracted from various treatment conditions. The aim is to explore the potential of soluble straw HS in remediating heavy metal pollution in soils. The study characterizes straw decomposition structures using scanning electron microscopy (SEM) and X-ray diffraction (XRD), while employing gel permeation chromatography (GPC) and fluorescence spectroscopy (EEM) to analyze the molecular weight and degree of humification of extracted straw HS. The removal efficiency of HS for heavy metals is assessed, with a focus on aerobic humic substances (AE-HS) showing the highest potential for heavy metal removal. Spectral analysis and mass spectrometry analysis reveal the role of phenolic compounds, carboxylic acids, and aromatic compounds in AE-HS, forming humates or complexes to remove heavy metals from contaminated soil. Notably, the optimized AE-HS achieved the highest removal efficiency of 96.18 %, 82.75 %, 60.43 %, and 41.66 % for cadmium, copper, zinc, and lead, respectively. This study provides new insights into the preparation of straw for use as a heavy metal remover and has implications for the use of straw humic substances in soil remediation.
Collapse
Affiliation(s)
- Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Hexiang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Xianhui Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Yaohui Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Ziying Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
7
|
Rodrigues TL, Pedroso PDC, de Freitas JHC, Carvalho ACP, Flores WH, Morais MM, da Rosa GS, de Almeida ARF. Obtaining of a rich-cellulose material from black wattle (Acacia mearnsii De Wild.) bark residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113055-113067. [PMID: 37848795 DOI: 10.1007/s11356-023-30254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Black wattle (Acacia mearnsii De Wild.) barks are residues produced by tannin industries in huge quantities, which are normally discharged on environmental or used for energy production. Therefore, this study aimed to evaluate the use of black wattle bark residues as a raw material on obtaining of a rich-cellulose material by alkaline (MET1), acetosolv (MET2), and organosolv (MET3) procedures. The results obtained indicated that the alkaline methodology, followed by a bleaching step (MET1), promoted klason lignin and hemicellulose removals more efficiently. It was possible to observe that better results were achieved using NaOH concentration of 6% (wt%), at 65 °C for 2.5 h, presenting a yield of 63.24 ± 1.25%, and a reduction on klason lignin content of almost 90.45%. Regarding the bleaching step, it was possible to obtain a material free of non-cellulosic compounds with a yield of 78.28 ± 1.48%. Thermogravimetric analysis indicated the removal of lignin and hemicellulose as well as an increase in cellulose degradation temperature, due to changes in crystalline phases. According to X-ray diffraction (XRD), the procedures employed have led to an increase in crystallinity from 66.27 to 91.78% due to the removal of non-cellulosic compounds. Scanning electron microscopy (SEM) showed morphological alterations in accordance with the removal of non-cellulosic compounds.
Collapse
Affiliation(s)
- Tereza Longaray Rodrigues
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil
| | | | | | | | - Wladimir Hernández Flores
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil
| | | | - Gabriela Silveira da Rosa
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil
- Chemical Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil
| | - André Ricardo Felkl de Almeida
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil.
- Chemical Engineering, Federal University of Pampa, Bagé, RS, 96413-172, Brazil.
| |
Collapse
|
8
|
Sodkouieh SM, Kalantari M, Shamspur T. Methylene blue adsorption by wheat straw-based adsorbents: Study of adsorption kinetics and isotherms. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
9
|
Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, Adlim M. Cellulosic fiber nanocomposite application review with zinc oxide antimicrobial agent nanoparticle: an opt for COVID-19 purpose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16779-16796. [PMID: 35084685 PMCID: PMC8793331 DOI: 10.1007/s11356-022-18515-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/01/2022] [Indexed: 05/08/2023]
Abstract
Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
Collapse
Affiliation(s)
- Amizon Azizan
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Aisyah Afiqah Samsudin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | | | - Muhammad Harith Dzulkiflee
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nor Roslina Rosli
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Noor Fitrah Abu Bakar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Muhammad Adlim
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
- Chemistry Department, FKIP, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
| |
Collapse
|
10
|
Liao K, Han L, Yang Z, Huang Y, Du S, Lyu Q, Shi Z, Shi S. A novel in-situ quantitative profiling approach for visualizing changes in lignin and cellulose by stained micrographs. Carbohydr Polym 2022; 297:119997. [DOI: 10.1016/j.carbpol.2022.119997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022]
|
11
|
Arce C, Kratky L. Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. iScience 2022; 25:104610. [PMID: 35789853 PMCID: PMC9250023 DOI: 10.1016/j.isci.2022.104610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Lignocellulosic biomass (LCB) has the potential to replace fossil fuels, thanks to the concept of biorefinery. This material is formed mainly by cellulose, lignin, and hemicellulose. To maximize the valorization potential of this material, LCB needs to be pretreated. Milling is always performed before any other treatments. It does not produce chemical change and improves the efficiency of the upcoming processes. Additionally, it makes LCB easier to handle and increases bulk density and transfer phenomena of the next pretreatment step. However, this treatment is energy consuming, so it needs to be optimized. Several mills can be used, and the equipment selection depends on the characteristics of the material, the final size required, and the operational regime: continuous or batch. Among them, ball, knife, and hammer mills are the most used at the laboratory scale, especially before enzymatic or fermentative treatments. The continuous operational regime (knife and hammer mill) allows us to work with high volumes of raw material and can continuously reduce particle size, unlike the batch operating regime (ball mill). This review recollects the information about the application of these machines, the effect on particle size, and subsequent treatments. On the one hand, ball milling reduced particle size the most; on the other hand, hammer and knife milling consumed less energy. Furthermore, the latter reached a small final particle size (units of millimeters) suitable for valorization.
Collapse
|
12
|
Facile isolation of cellulose nanofibrils from agro-processing residues and its improved stabilization effect on gelatin emulsion. Int J Biol Macromol 2022; 216:272-281. [DOI: 10.1016/j.ijbiomac.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/18/2022]
|
13
|
Yang J, Gao C, Yang X, Su Y, Shi S, Han L. Effect of combined wet alkaline mechanical pretreatment on enzymatic hydrolysis of corn stover and its mechanism. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:31. [PMID: 35300735 PMCID: PMC8932242 DOI: 10.1186/s13068-022-02130-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND To further optimize the mechanochemical pretreatment process, a combined wet alkaline mechanical pretreatment of corn stover was proposed with a short time and less chemical consumption at room temperature. RESULTS The combined alkaline mechanical pretreatment significantly enhanced enzymatic hydrolysis resulting a highest glucose yield (YG) of 91.9% with 3% NaOH and ball milling (BM) for 10 min. At this optimal condition, 44.4% lignin was removed and major portion of cellulose was retained (86.6%). The prehydrolysate contained by-products such as monosaccharides, oligosaccharides, acetic acid, and lignin but no furfural and 5-HMF. The alkaline concentration showed a significant impact on glucose yield, while the BM time was less important. Quantitative correlation analysis showed that YG (%) = 0.68 × BM time (min) + 19.27 × NaOH concentration (%) + 13.71 (R2 = 0.85), YG = 6.35 × glucan content - 231.84 (R2 = 0.84), and YG = - 14.22 × lignin content + 282.70 (R2 = 0.87). CONCLUSION The combined wet alkaline mechanical pretreatment at room temperature had a boosting effect on the yield of enzymatic hydrolysis with short treatment time and less chemical consumption. The impact of the physical and chemical properties of corn stover pretreated with different BM times and/or different NaOH concentrations on the subsequent enzymatic hydrolysis was investigated, which would be beneficial to illustrate the effective mechanism of the mechanochemical pretreatment method.
Collapse
Affiliation(s)
- Jie Yang
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Chongfeng Gao
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Xueqi Yang
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Yanfu Su
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Suan Shi
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| | - Lujia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| |
Collapse
|
14
|
Mondal S, Santra S, Rakshit S, Kumar Halder S, Hossain M, Chandra Mondal K. Saccharification of lignocellulosic biomass using an enzymatic cocktail of fungal origin and successive production of butanol by Clostridium acetobutylicum. BIORESOURCE TECHNOLOGY 2022; 343:126093. [PMID: 34624476 DOI: 10.1016/j.biortech.2021.126093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
A multistep approach was undertaken for biobutanol production targeting valorization of agricultural waste. Optimum production of lignocellulolytic enzymes [CMCase (3822.93U/mg), FPase (3640.93U/mg), β-glucosidase (3873.92U/mg), xylanase (3460.24U/mg), pectinase (3359.57U/mg), α-amylase (4136.54U/mg), and laccase (3863.16U/mg)] was accomplished through solid-substrate fermentation of pretreated mixed substrates (wheat bran, sugarcane bagasse and orange peel) by Aspergillus niger SKN1 and Trametes hirsuta SKH1. Partially purified enzyme cocktail was employed for saccharification of the said substrate mixture into fermentable sugar (69.23 g/L, product yield of 24% w/w). The recovered sugar with vegetable extract supplements was found as robust fermentable medium that supported 16.51 g/L biobutanol production by Clostridium acetobutylicum ATCC824. The sequential bioprocessing of low-priced substrates and exploitation of vegetable extract as growth factor for microbial butanol production will open a new vista in biofuel research.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Center for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sourav Santra
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Subham Rakshit
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Maidul Hossain
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|