1
|
Ren X, Li Y, Feng T, Lei J, Cheng L. Removal of cefuroxime from aqueous solution by biochars derived from antibiotic mycelial residue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61049-61059. [PMID: 39402362 DOI: 10.1007/s11356-024-35296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
In China, antibiotic mycelial residue is categorized as hazardous waste. To achieve the harmless and resourceful disposal of cephalosporin, three types of biochars from cephalosporin mycelia residues, namely non-activated carbon (BC1), ZnCl2-activated carbon (BC2), and KOH-activated carbon (BC3), were respectively fabricated by high-temperature pyrolysis carbonization technology. These three kinds of biochars were characterized via iodine value, FTIR, and SEM, and the adsorption performance of the prepared biochars was investigated using cefuroxime (CXM) as the adsorption target. The results indicated that BC3 biochar possesses the most well-developed pores and the highest iodine value of 1367.41 mg/g; The most suitable dosage is 1.6 g/L, and the lower the pH, the more favorable the adsorption effect. The investigation of adsorption kinetics revealed that it conformed to the kinetic model of pseudo-second order, as well as the process of adsorption was governed by the chemical adsorption mechanism, the rate of adsorption was affected by the collective impact of the quantity of active sites present and the interaction strength between the CXM molecules and the biochar. The exploration of adsorption thermodynamics revealed that it aligned with the Langmuir model, the surface of biochar was relatively uniform, and the adsorption was mainly of low coverage; The calculation of thermodynamic parameters demonstrated that the adsorption was exothermic and spontaneous.
Collapse
Affiliation(s)
- Xiaoli Ren
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, Shanxi Province, PR China.
| | - Yingfu Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, Shanxi Province, PR China
| | - Tao Feng
- Sinopharm Weiqida Pharmaceutical Co., Ltd., Datong, Shanxi Province, PR China
| | - Juan Lei
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, Shanxi Province, PR China
| | - Lijun Cheng
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, Shanxi Province, PR China
| |
Collapse
|
2
|
Feiyue G, Chuncai Z, Yachuan C, Yue Y, Yunfei L, Guijian L. Synthesis of porous carbon derived from coal tar residue via bimetallic salt activation for effective and selective adsorption of thallium(I). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134755. [PMID: 38852249 DOI: 10.1016/j.jhazmat.2024.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
As a highly toxic rare metal, the removal of thallium (Tl) from wastewater has been widely investigated, and adsorption is considered one of the most promising treatment technologies for Tl-containing contaminated water because of its cost-effectiveness, convenience, and high efficacy. In this work, coal tar residue (CTR)-based porous carbon was synthesized through K2FeO4 activation, and applied in adsorbing Tl(I). K2FeO4 could synergistically produce porosity and load iron oxide on the produced porous carbon surface because of the catalytic cracking and oxidative etching during the activation of CTR. The adsorbent was synthesized at 800 ℃ with a mass ratio of K2FeO4/CTR being 3 (PC3-800) showed optimal Tl(I) adsorption performance. The removal efficiency and distribution coefficient of PC3-800 were above 95 % and 104 mL/g, respectively, in a wide pH range (4-10). Furthermore, the selection and reusability of PC3-800 were favorable. The adsorption was a spontaneous, exothermic, and entropy increase process. The adsorption process was dominated by electrostatic attraction, surface complexation, and surface oxidation. The results suggested that removing Tl(I) from contaminated water via CTR-based porous carbon was feasible.
Collapse
Affiliation(s)
- Gao Feiyue
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China
| | - Zhou Chuncai
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China.
| | - Cao Yachuan
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China
| | - Yu Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China
| | - Li Yunfei
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China
| | - Liu Guijian
- School of Earth and Space Sciences, University of Science and Technology of China, No. 96, Road Jinzhai, Hefei 230026, China
| |
Collapse
|
3
|
Hao J, Cui Z, Liang J, Ma J, Ren N, Zhou H, Xing D. Sustainable efficient utilization of magnetic porous biochar for adsorption of orange G and tetracycline: Inherent roles of adsorption and mechanisms. ENVIRONMENTAL RESEARCH 2024; 252:118834. [PMID: 38565414 DOI: 10.1016/j.envres.2024.118834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Iron-doped biochar has been widely used as an adsorbent to remove contaminants due to the high adsorption performance, but it still suffers from complicated preparation methods, unstable iron loading, unsatisfactory specific surface area, and uneven distribution of active sites. Here, a novel magnetic porous biochar (FeCS800) with nanostructure on surface was synthesized by one-pot pyrolysis method of corn straw with K2FeO4, and used in orange G (OG) and tetracycline (TC) adsorption. FeCS800 exhibited outstanding adsorption capacities for OG and TC after K2FeO4 activation and the adsorption data were fitted satisfactorily to Langmuir isotherm and Pseudo-second-order kinetic model. The maximum adsorption capacities of FeCS800 for OG and TC were around 303.03 mg/g and 322.58 mg/g, respectively, at 25 °C and pH 7.0, which were 16.27 and 24.61 times higher than that before modification. Thermodynamic studies showed that the adsorption of OG/TC by FeCS800 were thermodynamically favorable and highly spontaneous. And the adsorption capacity of OG and TC by FeCS800 remained 77% and 81% after 5 cycles, respectively, indicating that FeCS800 had good stability. The outstanding adsorption properties and remarkable reusability of FeCS800 show its great potential to be an economic and environmental adsorbent in contaminants removal.
Collapse
Affiliation(s)
- Jiayin Hao
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiliang Cui
- College of National Defense Engineering, Army Engineering University of PLA, Nanjing, 210007, China
| | - Jiale Liang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huihui Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Defeng Xing
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Mishal BH, Das S, Mahajan VN, Dharne MS, Joshi RS, Giri AP. An Adsorption Based Downstream Processing Approach for Penicillin V from a Penicillium chrysogenum BIONCL I22 Culture Filtrate. ACS OMEGA 2024; 9:25859-25869. [PMID: 38911711 PMCID: PMC11191097 DOI: 10.1021/acsomega.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 06/25/2024]
Abstract
Penicillin V (phenoxy methyl penicillin) is highly sought after among natural penicillins because of its exceptional acid stability and effectiveness against common skin and respiratory infections. Given its wide-ranging therapeutic uses, there is a need to establish a greener method for its maximum recovery to reduce the carbon footprint. Here, we have identified and validated optimized operational conditions for resin-based penicillin V recovery. It was observed that Amberlite XAD4 had the highest penicillin V hydrophobic adsorption capacity among the other screened resins. Kinetic and isothermal studies using linear and nonlinear regression analysis showed that the adsorption process well fitted with pseudo-second-order kinetics (R 2 = 0.9816) and the Freundlich adsorption isotherm model (R 2 = 0.9871). Adsorption equilibrium was attained within 4 h, while maximum adsorption was observed at 3 mg/mL penicillin V concentration. Furthermore, the optimized extraction protocol was compared with the conventional butyl acetate-based downstream processing. Under optimum conditions resin-based penicillin V recovery was 2-fold higher as compared to the solvent extraction method and the resin could be reused for over six cycles without compromising the yield. These findings signify substantial progress toward the development of an environmentally sustainable approach for penicillin V recovery and a potentially viable method for extractive fermentation.
Collapse
Affiliation(s)
- Bela H. Mishal
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sancharini Das
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Vaishnavi N. Mahajan
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Mahesh S. Dharne
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh S. Joshi
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok P. Giri
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Lei Y, Pu R, Tian Y, Wang R, Naidu R, Deng S, Shen F. Novel enhanced defluorination of perfluorooctanoic acids by biochar-assisted ultrasound coupling ferrate: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130790. [PMID: 38703964 DOI: 10.1016/j.biortech.2024.130790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
An ultrasound (US)/biochar (BC)/ferrate (Fe (VI)) system was firstly proposed to enhance perfluorooctanoic acid (PFOA) defluorination. It achieved 93 % defluorination optimally, higher than the sum of 77 % (28 % and 49 % for US/BC and US/Fe (VI) respectively), implying synergistic effect. Besides, the mechanism study confirmed that, this system can not only increase the specific surface area of BC and the generation of reactive oxidant species (ROS), enriching the active sites and forming new oxygen-containing functional groups, but also promote the formation of intermediate iron species. The PFOA degradation in the US/BC/Fe (VI) was probably an adsorption-degradation process, both ROS and electron transfer promoted the defluorination. Additionally, its sustainability was also demonstrated with 14 % reduced defluorination percentage after five cycles of BC. Overall, the synergistic effect of the US/BC/Fe (VI) and its enhancing mechanism for PFOA defluorination were clarified firstly, which contributes to the development of biochar for assisting polyfluoroalkyl substances degradation.
Collapse
Affiliation(s)
- Yongjia Lei
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ruoqi Pu
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ruixiang Wang
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shihuai Deng
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Fei Shen
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
6
|
Pei T, Shi F, Hou D, Yang F, Lu Y, Liu C, Lin X, Lu Y, Zheng Z, Zheng Y. Enhanced adsorption of phenol from aqueous solution by KOH combined Fe-Zn bimetallic oxide co-pyrolysis biochar: Fabrication, performance, and mechanism. BIORESOURCE TECHNOLOGY 2023; 388:129746. [PMID: 37689119 DOI: 10.1016/j.biortech.2023.129746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
In this study, impregnation combined with KOH activation with different mixing methods was used to prepare magnetic biochar. The effects of synthetic method on biochar physicochemical properties and adsorption performance were explored. The results showed that treatment of a Fe-Zn oxide with KOH activation provided excellent adsorption properties with adsorption capacity of 458.90 mg/g due to well-developed microporous structure and rich-in O-containing functional groups as well as exposed oxidizing functional groups (Fe2O3 and FeOOH). Langmuir-Freundlich and pseudo-second-order models accurately fit phenol adsorption. Neutral conditions (pH = 6) and lower ionic strengths were beneficial to phenol removal. Additionally, the predominant adsorption processes were physisorption and chemisorption. Correlation analyses and characterization data confirmed that pore filling, π-π interactions and surface complexation were the dominant driving forces for phenol adsorption. This research provides an environmentally friendly method for utilizing agricultural wastes for the removal of a variety of pollutions from aquatic environment.
Collapse
Affiliation(s)
- Tao Pei
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Feng Shi
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Yi Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Yanling Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Zhifeng Zheng
- Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass (Xiamen University), Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen 361102, PR China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
7
|
Li Y, Zhu Y, Yan X, Zhang G, Yan G, Li H. Strategy and mechanisms of sulfamethoxazole removal from aqueous systems by single and combined Shewanella oneidensis MR-1 and nanoscale zero-valent iron-enriched biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163676. [PMID: 37100153 DOI: 10.1016/j.scitotenv.2023.163676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
Sulfamethoxazole (SMX, a sulfonamide antibiotic) is ubiquitously present in various aqueous systems, which can accelerate the spread of antibiotic resistance genes, induce genetic mutations, and even disrupt the ecological equilibrium. Considering the potential eco-environmental risk of SMX, this study explored an effective technology using Shewanella oneidensis MR-1 (MR-1) and nanoscale zero-valent iron-enriched biochar (nZVI-HBC) to remove SMX from aqueous systems with different pollution levels (1-30 mg·L-1). SMX removal by nZVI-HBC and nZVI-HBC + MR-1 (55-100 %) under optimal conditions (iron/HBC ratio of 1:5, 4 g·L-1 nZVI-HBC, and 10 % v/v MR-1) was more effective than its removal by MR-1 and biochar (HBC) (8-35 %). This was due to the catalytic degradation of SMX in the nZVI-HBC and nZVI-HBC + MR-1 reaction systems because of accelerated electron transfer during oxidation of nZVI and reduction of Fe(III) to Fe(II). When SMX concentration was lower than 10 mg·L-1, nZVI-HBC + MR-1 effectively removed SMX (removal rate of approximately 100 %) when compared to nZVI-HBC (removal rate of 56-79 %). In addition to oxidation degradation of SMX by nZVI in the nZVI-HBC + MR-1 reaction system, MR-1-driven dissimilatory iron reduction accelerated electron transfer to SMX, thereby enhancing reductive degradation of SMX. However, a considerable decline in SMX removal from the nZVI-HBC + MR-1 system (42 %) was observed when SMX concentrations ranged 15-30 mg·L-1, which was due to the toxicity of accumulated degradation products of SMX. A high interaction probability between SMX and nZVI-HBC promoted the catalytic degradation of SMX in the nZVI-HBC reaction system. The results of this study provide promising strategies and insights for enhancing antibiotic removal from aqueous systems with different pollution levels.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China.
| | - Guanyu Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| |
Collapse
|
8
|
Pei T, Shi F, Liu C, Lu Y, Lin X, Hou D, Yang S, Li J, Zheng Z, Zheng Y. Bamboo-derived nitrogen-doping magnetic porous hydrochar coactivated by K 2FeO 4 and CaCO 3 for phenol removal: Governing factors and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121871. [PMID: 37225081 DOI: 10.1016/j.envpol.2023.121871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, a novel nitrogen-doped magnetic Fe-Ca codoped biochar for phenol removal was successfully fabricated via a hydrothermal and coactivation pyrolysis method. A series of adsorption process parameters (K2FeO4 to CaCO3 ratio, initial phenol concentration, pH value, adsorption time, adsorbent dosage and ion strength) and adsorption models (kinetic models, isotherms and thermodynamic models) were determined using batch experiments and various analysis techniques (XRD, BET, SEM-EDX, Raman spectroscopy, VSM, FTIR and XPS) to investigate the adsorption mechanism and metal-nitrogen-carbon interaction. The biochar with a ratio of Biochar: K2FeO4: CaCO3 = 3:1:1 exhibited superior properties for adsorption of phenol and had a maximum adsorption capacity of 211.73 mg/g at 298 K, C0 = 200 mg/L, pH = 6.0 and t = 480 min. These excellent adsorption properties were due to superior physicomechanical properties (a large specific surface area (610.53 m2/g) and pore volume (0.3950 cm3/g), a well-developed pore structure (hierarchical), a high graphitization degree (ID/IG = 2.02), the presence of O/N-rich functional groups and Fe-Ox,Ca-Ox, N-doping, as well as synergistic activation by K2FeO4 and CaCO3). The Freundlich and pseudo-second-order models effectively fit the adsorption data, indicating multilayer physicochemical adsorption. Pore filling and π-π interactions were the predominant mechanisms for phenol removal, and H-bonding interactions, Lewis-acid-base interactions, and metal complexation played an important role in enhancing phenol removal. A simple, feasible approach with application potential to organic contaminant/pollutant removal was developed in this study.
Collapse
Affiliation(s)
- Tao Pei
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Feng Shi
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Yi Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Shunxiong Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Jirong Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Zhifeng Zheng
- Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass (Xiamen University), Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen, 361102, PR China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
9
|
Tian H, Peng S, Zhao L, Chen Y, Cui K. Simultaneous adsorption of Cd(II) and degradation of OTC by activated biochar with ferrate: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130711. [PMID: 36641845 DOI: 10.1016/j.jhazmat.2022.130711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Biochar-supported zero-valent iron nanocomposites have received much attention due to their application potential in environmental pollution remediation. However, in many occasions, zero-valent iron loading improves the electron transfer efficiency and catalytic oxidation capacity of biochar while blocking the original pore structure of biochar, limiting its application potential. In this study, a zero-valent iron composites with large SSA (865.86 m2/g) was prepared in one step using pre-pyrolysis of biochar powder and K2FeO4 grinding for co-pyrolysis. The processes of ZVI generation and SSA expansion during the pyrolysis were investigated. The factors affecting the removal process of Cd and OTC in water by the composites were investigated. The mechanisms of Cd fixation and OTC degradation by the composites were explored by experiments, characterization, and DFT calculations. The OTC degradation pathway was proposed by theoretical predication and LC-MS spectrometry. The results indicate that ion exchange, complexation with oxygen-containing functional groups, electrostatic attraction, and interaction with π-electrons are the main mechanisms of Cd immobilization. The degradation pathways of OTC mainly include dehydroxylation, deamination and dealkylation.
Collapse
Affiliation(s)
- Haoran Tian
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Lu Zhao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230000, China
| |
Collapse
|
10
|
Liu Y, Gao W, Yin S, Liu R, Li Z. Efficient removal of tetracycline from aqueous solution by K 2CO 3 activated penicillin fermentation residue biochar. Front Chem 2022; 10:1078877. [PMID: 36583157 PMCID: PMC9792616 DOI: 10.3389/fchem.2022.1078877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
In this study, biochar was prepared using penicillin fermentation residue (PR) as the raw material by different methods. The adsorption behavior and adsorption mechanism of biochar on tetracycline (TC) in an aqueous environment were investigated. The results showed that K2CO3 as an activator could effectively make porous structures, and that biochar with mesoporous or microporous could be prepared in a controlled manner with two kinds of different activation methods, the dry mixing method and the impregnation method. The dry mixing method could create more mesopores, while the impregnation method could prepare more micropores. Microporous biochar (IKBCH) with a high specific surface area could be prepared by the impregnation method combined with HCl soaking, which has an excellent adsorption effect on tetracycline. When the concentration of tetracycline was 200 mg/L, the removal rate of 99.91% could be achieved with the dosage of microporous biochar at 1 g/L. The adsorption process was in accordance with the Langmuir model and the pseudo-second-order model, respectively. The maximum adsorption capacity of IKBCH was 268.55 mg/g (25°C). The adsorption mechanisms were pore filling, π-π interaction, electrostatic adsorption, and hydrogen bond. Its stable and wide applicability adsorption process does not cause ecological pollution in the aqueous environment, and it is a promising biochar adsorbent.
Collapse
Affiliation(s)
- Yanfang Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China,Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| | - Wei Gao
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China,School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Sijie Yin
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China,Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| | - Rui Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China,School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China,Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China,*Correspondence: Zaixing Li,
| |
Collapse
|
11
|
Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224045. [PMID: 36432330 PMCID: PMC9694191 DOI: 10.3390/nano12224045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.
Collapse
|
12
|
Zou M, Tian W, Chu M, Gao H, Zhang D. Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120104. [PMID: 36075339 DOI: 10.1016/j.envpol.2022.120104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L-1, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g-1 at 35 °C with adsorbent dosage of 0.4 g L-1, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g-1, and 44.7 and 59.0 mg g-1, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K+ and Ca2+ (0.02-0.1 mol L-1). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Huizi Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Dantong Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
13
|
Zhang L, Dong Y, Liu J, Liu W, Lu Y, Lin H. Promotion of higher synthesis temperature for higher-efficient removal of antimonite and antimonate in aqueous solution by iron-loaded porous biochar. BIORESOURCE TECHNOLOGY 2022; 363:127889. [PMID: 36067894 DOI: 10.1016/j.biortech.2022.127889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Iron-loaded porous biochar (FPBC) was synthesized by co-pyrolysis method using sawdust and potassium ferrate at 500 (FPBC500) and 800°C (FPBC800), then characterized and applied to eliminate antimonite (Sb(III)) and antimonate (Sb(V)) in aqueous. Due to alkali erosion on feedstock and K/Fe-oxides attacking carbon, FPBC800 obtained a larger specific surface area (SSA) (515.49 m2·g-1) that was 5.48-fold that of PFBC500, meaning the exposure of more active sites. Fe3O4 was formed on FPBC500, but Fe0 and Fe3C were generated on FPBC800. FPBC800 showed the optimal sorption performance for Sb(III) (144.48 mg·g-1) and Sb(V) (45.29 mg·g-1), which were much higher than that of FPBC500. Noteworthily, Sb(III) anchored on FPBC was oxidized to Sb(V) with less ecotoxicity; moreover, FPBC800 with Fe0 showed stronger oxidization. Although pH-dependent sorption of Sb(III)/Sb(V) on FPBC occurred, the resistance to environmental factors showed a potential for eliminating actual pollution, demonstrating an easy-to-operate construction strategy for modified biochar.
Collapse
Affiliation(s)
- Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
14
|
Qu J, Wu Z, Liu Y, Li R, Wang D, Wang S, Wei S, Zhang J, Tao Y, Jiang Z, Zhang Y. Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. BIORESOURCE TECHNOLOGY 2022; 360:127407. [PMID: 35667535 DOI: 10.1016/j.biortech.2022.127407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Herein, novel Fe-biochar composites (MBCBM500 and MBCBM700) were synthesized through K2FeO4 co-pyrolysis and ball milling, and were used to eliminate Cr(VI)/TC from water. Characterization results revealed that higher temperature promoted formation of zero-valent iron and Fe3C on MBCBM700 through carbothermal reduction between K2FeO4 and biochar. The higher specific surface area and smaller particle size of MBCBM500/700 stemmed from the corrosive functions of K and the ball milling process. And the maximal uptake amount of MBCBM700 for Cr(VI)/TC was 117.49/90.31 mg/g, relatively higher than that of MBCBM500 (93.86/84.15 mg/g). Furthermore, ion exchange, pore filling, precipitation, complexation, reduction and electrostatic attraction were proved to facilitate the adsorption of Cr(VI), while hydrogen bonding force, pore filling, complexation and π-π stacking were the primary pathways to eliminate TC. This study provide a reasonable design of Fe-carbon materials for Cr(VI)/TC contained water remediation, which required neither extra modifiers nor complex preparation process.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruolin Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingru Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
15
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
16
|
Young C, Chen HT, Guo SZ. Highly Porous Holey Carbon for High Areal Energy Density Solid-State Supercapacitor Application. MICROMACHINES 2022; 13:mi13060916. [PMID: 35744530 PMCID: PMC9229398 DOI: 10.3390/mi13060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Biomass materials are perceived as sustainable, carbon-rich precursors for the fabrication of carbon materials. In this study, we demonstrated the capacitance performance of biomass-derived carbon, produced by using golden shower tree seeds (GTs) as carbon precursors and potassium ferrate (K2FeO4) as the activation agent. The as-prepared porous carbon (GTPC) possessed an ultrahigh specific surface area (1915 m2 g-1) and abundant pores. They also exhibited superior electrochemical performance, owing to their well-constructed porous structure, high surface area, and optimized porous structure. Optimized activated carbon (GTPC-1) was used to assemble a symmetric solid-state supercapacitor device with poly(vinyl alcohol) (PVA)/H2SO4 as a solid-state gel electrolyte. The device exhibited a maximum areal energy density of 42.93 µWh cm-2 at a power density of 520 µW cm-2.
Collapse
|
17
|
Ning Z, Xu B, Zhong W, Liu C, Qin X, Feng W, Zhu L. Preparation of phosphoric acid modified antibiotic mycelial residues biochar: Loading of nano zero-valent iron and promotion on biogas production. BIORESOURCE TECHNOLOGY 2022; 348:126801. [PMID: 35124216 DOI: 10.1016/j.biortech.2022.126801] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic mycelial residues (AMRs), as recyclable hazardous waste, can realize efficient utilization by reasonable treatment. To solve the problems of undeveloped pore structure and low specific surface area existed in AMR biochar, this study first modified biochar by phosphoric acid (H3PO4) to prepare PBC (H3PO4-modified biochar). Then, PBC was used as carrier to load nano zero-valent iron (nZVI) for preparation of nZVI/PBC. Finally, the biochar materials were used to promote anaerobic digestion (AD) of corn straw. The results showed that H3PO4-modification can effectively improve the specific surface area, pore structure, and electron donating capacity of AMRs biochar. The using of PBC as carrier to load nZVI attenuated the agglomeration of nZVI particles. Both PBC and nZVI/PBC improved the AD process, with biogas yield enhanced by 29.63% and 29.26%, respectively. The nZVI/PBC exhibited higher ability in maintaining the stability of AD system and promotion of fiber degradation than PBC.
Collapse
Affiliation(s)
- Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Bin Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Chun Liu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Xue Qin
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weibo Feng
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Lin Zhu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| |
Collapse
|
18
|
Yan J, Zuo X, Yang S, Chen R, Cai T, Ding D. Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: Competitive versus synergistic. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127435. [PMID: 34638070 DOI: 10.1016/j.jhazmat.2021.127435] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 05/27/2023]
Abstract
Combined pollution caused by organic pollutants and heavy metals pose a significant challenge to the adsorption process. In this study, iron-modified biochar (Fe-BC) was prepared by using ferrate (K2FeO4) and wheat stalk as the precursors for the adsorption of copper (Cu2+) and sulfadiazine (SDZ), especially under combined pollution scenarios. Iron modification not only enlarged the surface area but also loaded iron oxide nanoparticles on biochar surface. Accordingly, Fe-BC exhibited better adsorption capability of Cu2+ and SDZ than the pristine biochar (BC). The corresponding maximum adsorption capacities of Fe-BC700 were 46.85 mg g-1 and 45.43 mg g-1 towards Cu2+ and SDZ, respectively. Interestingly, the adsorption was elevated in binary-pollutants system, suggesting a synergistic effect, which was probably attributed to the mutual bridging effects and complexation between Cu2+ and SDZ. The loaded iron oxide particles could serve as a physical barrier to separate the adsorptions of Cu2+ and SDZ and thus inhibited the competitive adsorption. Meanwhile, theoretical calculation demonstrated that sulfonamide group was the most probable binding site. Columns packed with Fe-BC700 showed better performances for Cu2+ and SDZ removal in binary system (635.73 BV for Cu2+ and 4846.26 BV for SDZ) than in single systems (571.60 BV for Cu2+ and 3572.06 BV for SDZ), which was consistent with batch adsorption experiments. These results demonstrated the potential application of Fe-BC700 for simultaneous adsorption of Cu2+ and SDZ and provided a cost-effective way for the remediation of organic and inorganic pollutants.
Collapse
Affiliation(s)
- Jieru Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxue Zuo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|