1
|
Baby EK, Savitha R, Kinsella GK, Nolan K, Ryan BJ, Henehan GT. Influence of deep eutectic solvents on redox biocatalysis involving alcohol dehydrogenases. Heliyon 2024; 10:e32550. [PMID: 38948051 PMCID: PMC11209023 DOI: 10.1016/j.heliyon.2024.e32550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Redox biocatalysis plays an increasingly important role in modern organic synthesis. The recent integration of novel media such as deep eutectic solvents (DESs) has significantly impacted this field of chemical biology. Alcohol dehydrogenases (ADHs) are important biocatalysts where their unique specificity is used for enantioselective synthesis. This review explores aspects of redox biocatalysis in the presence of DES both with whole cells and with isolated ADHs. In both cases, the presence of DES has a significant influence on the outcome of reactions albeit via different mechanisms. For whole cells, DES was shown to be a useful tool to direct product formation or configuration - a process of solvent engineering. Whole cells can tolerate DES as media components for the solubilization of hydrophobic substrates. In some cases, DES in the growth medium altered the enantioselectivity of whole cell transformations by solvent control. For isolated enzymes, on the other hand, the presence of DES promotes substrate solubility as well as enhancing enzyme stability and activity. DES can be employed as a smart solvent or smart cosubstrate particularly for cofactor regeneration purposes. From the literatures examined, it is suggested that DES based on choline chloride (ChCl) such as ChCl:Glycerol (Gly), ChCl:Glucose (Glu), and ChCl:1,4-butanediol (1,4-BD) are useful starting points for ADH-based redox biocatalysis. However, each specific reaction will require optimisation due to the influence of several factors on biocatalysis in DES. These include solvent composition, enzyme source, temperature, pH and ionic strength as well as the substrates and products under investigation.
Collapse
Affiliation(s)
- Ebin K. Baby
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| | - Rangasamy Savitha
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| | - Gemma K. Kinsella
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| | - Kieran Nolan
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, D09 V209, Ireland
| | - Barry J. Ryan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| | - Gary T.M. Henehan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| |
Collapse
|
2
|
Kong X, Gui Q, Liu H, Qian F, Wang P. Efficient Synthesis of Chiral Aryl Alcohol with a Novel Kosakonia radicincitans Isolate in Tween 20/L-carnitine: Lysine-Containing Synergistic Reaction System. Appl Biochem Biotechnol 2024; 196:1509-1526. [PMID: 37428385 DOI: 10.1007/s12010-023-04641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Chiral trifluoromethyl alcohols as vital intermediates are of great interest in fine chemicals and especially in pharmaceutical synthesis. In this work, a novel isolate Kosakonia radicincitans ZJPH202011 was firstly employed as biocatalyst for the synthesis of (R)-1-(4-bromophenyl)-2,2,2-trifluoroethanol ((R)-BPFL) with good enantioselectivity. By optimizing fermentation conditions and bioreduction parameters in aqueous buffer system, the substrate concentration of 1-(4-bromophenyl)-2,2,2-trifluoroethanone (BPFO) was doubled from 10 to 20 mM, and the enantiomeric excess (ee) value for (R)-BPFL increased from 88.8 to 96.4%. To improve biocatalytic efficiency by strengthening the mass-transfer rate, natural deep-eutectic solvents, surfactants and cyclodextrins (CDs) were introduced separately in the reaction system as cosolvent. Among them, L-carnitine: lysine (C: Lys, molar ratio 1:2), Tween 20 and γ-CD manifested higher (R)-BPFL yield compared with other same kind of cosolvents. Furthermore, based on the excellent performance of both Tween 20 and C: Lys (1:2) in enhancing BPFO solubility and ameliorating cell permeability, a Tween 20/C: Lys (1:2)-containing integrated reaction system was then established for efficient bioproduction of (R)-BPFL. After optimizing the critical factors involved in BPFO bioreduction in this synergistic reaction system, BPFO loading increased up to 45 mM and the yield reached 90.0% within 9 h, comparatively only 37.6% yield was acquired in neat aqueous buffer. This is the first report on K. radicincitans cells as new biocatalyst applied in (R)-BPFL preparation, and the developed Tween 20/C: Lys-containing synergistic reaction system has great potential for the synthesis of various chiral alcohols.
Collapse
Affiliation(s)
- Xiangxin Kong
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qian Gui
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hanyu Liu
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Qian
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Pu Wang
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
3
|
Combination of Enzymes and Deep Eutectic Solvents as Powerful Toolbox for Organic Synthesis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020516. [PMID: 36677575 PMCID: PMC9863131 DOI: 10.3390/molecules28020516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
During the last decade, a wide spectrum of applications and advantages in the use of deep eutectic solvents for promoting organic reactions has been well established among the scientific community. Among these synthetic methodologies, in recent years, various examples of biocatalyzed processes have been reported, making use of eutectic mixtures as reaction media, as an improvement in terms of selectivity and sustainability. This review aims to show the newly reported protocols in the field, subdivided by reaction class as a 'toolbox' guide for organic synthesis.
Collapse
|
4
|
Efficient Biosynthesis of (S)-1-chloro-2-heptanol Catalyzed by a Newly Isolated Fungi Curvularia hominis B-36. Catalysts 2022. [DOI: 10.3390/catal13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
(S)-1-chloro-2-heptanol is an enantiopure chemical of great value that can synthesize Treprostinil for treating primary pulmonary hypertension. In this work, a new strain B-36, capable of asymmetric reduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol, was screened and identified as Curvularia hominis B-36 (CCTCC M 2017654) based on the morphological and internally transcribed spacer (ITS) sequence. The reductive capacity of Curvularia hominis B-36 was investigated as a whole-cell biocatalyst in the bioreduction, and the excellent yield (97.2%) and enantiomeric excess (ee) value (99.9%) were achieved under the optimal conditions as follows: 75 mM 1-chloro-2-heptanone, K2HPO4-KH2PO4 (100 mM, pH 6.0), 50 g L−1 resting cells (dry cell weight; DCW), 15% (v/v) isopropanol as co-substrate, 200 rpm, 30 °C, 20 h. The scaled-up biocatalytic process was accomplished at a bioreactor in a 1.5 L working volume, showing superb yield (~97%) and selectivity (99.9%). The product (S)-1-chloro-2-heptanol was purified and characterized by NMR. Curvularia hominis B-36 is a novel catalyst and the asymmetric synthesis route is benign and eco-friendly.
Collapse
|
5
|
Zhuang W, Liu H, Zhang Y, He J, Wang P. Effective asymmetric preparation of (R)-1-[3-(trifluoromethyl)phenyl]ethanol with recombinant E. coli whole cells in an aqueous Tween-20/natural deep eutectic solvent solution. AMB Express 2021; 11:118. [PMID: 34410519 PMCID: PMC8377109 DOI: 10.1186/s13568-021-01278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
(R)-1-[3-(Trifluoromethyl)phenyl]ethanol ((R)-MTF-PEL) is an important chiral building block for the synthesis of a neuroprotective compound, (R)-3-(1-(3-(trifluoromethyl)phenyl)ethoxy)azetidine-1-carboxamide. In this work, an effective whole-cell-catalyzed biotransformation was developed to produce (R)-MTF-PEL, and its productivity was increased by medium engineering strategy. The recombinant E. coli BL21(DE3)-pET28a(+)-LXCAR-S154Y variant affording carbonyl reductase was adopted for the reduction of 3'-(trifluoromethyl)acetophenone to (R)-MTF-PEL with enantiomeric excess (ee) > 99.9%. The addition of 0.6% Tween-20 (w/v) boosted the bioreduction, because the substrate concentration was increased by 4.0-fold than that in the neat buffer solution. The biocatalytic efficiency was further enhanced by introducing choline chloride: lysine (ChCl:Lys, molar ratio of 1:1) in the reaction medium, because the product yield reached 91.5% under 200 mM substrate concentration in the established Tween-20/ChCl:Lys-containing system, which is the highest ever reported for (R)-MTF-PEL production. The optimal reduction conditions were as follows: 4% (w/v) ChCl:Lys, 12.6 g (DCW)/L recombinant E. coli cells, pH 7.0, 30 ℃ and 200 rpm, reaction for 18 h. The combined strategy of surfactant and NADES has great potential in the biocatalytic process and the synthesis of chiral alcohols.
Collapse
Affiliation(s)
- Wenjin Zhuang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanyu Liu
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junyao He
- Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Pu Wang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|